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A Mollifier Useful for Approximations in Sobolev

Spaces and Some Applications to Approximating

Solutions of Differential Equations*

By Stephen Hilbert

Abstract. For a given uniform grid of EN (N-dimensional Euclidean space) with mesh h,

a class of smoothing functions (mollifiers) is constructed. If a function is an element of the

Sobolev space H2, then the error made by replacing the given function by a smoother (C")

function (which is the given function convolved with one of the mollifiers) is bounded by

a constant times hm.

This result is used to construct approximations for functions using Hermite or spline

interpolation, even though the function to be approximated need not satisfy the continuity

conditions necessary for the existence of a Hermite or spline interpolate. These techniques

are used to find approximations to the generalized solution of a second order elliptic

Neumann problem.

I. Introduction. One of the most useful applications of approximation theory

is in approximating the solutions of differential equations. Many approximation

schemes demand that the function which is being approximated satisfy certain con-

tinuity conditions (e.g. Hermite and spline interpolation). Unfortunately, in many

cases the solution to a given differential equation may not satisfy these conditions,

or the theoretical solution is an element of Sobolev space and may not satisfy the

necessary continuity conditions for such schemes.

One procedure for dealing with this type of problem is to "smooth" the function

by convolving the given function with a second function (called a mollifier). Then,

one approximates the smoothed function which does possess the desired continuity

properties. However, another source of error has been introduced, the error made

by replacing the original function by the "smoothed" function. This leads to the

problem of constructing mollifiers which have the property that the "smoothed"

function is "close" to the original function.

In this note, we shall demonstrate a method for constructing a class of mollifiers

with the property that if a function u is in the Sobolev space H™, then the error made

by replacing u by u, convolved with one of the mollifiers, is zzzth order. This will enable

us to construct approximants which are zzzth order accurate for functions in Hm by

using interpolation techniques (even if the original function could not be interpolated).

Using Hermite and spline interpolation techniques, we will construct two sub-
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spaces of approximations which are zzzth order accurate for functions in Hm. Such

subspaces are of crucial importance in the finite element method, Galerkin method

and the least squares method of Bramble and Schatz (see [4], [7]).

Finally, we use these subspaces to get error estimates for the approximate solution

of a second order elliptic problem.

II. Preliminaries and Conventions. Let R be a bounded domain in Euclidean

N space, EN. We will assume R satisfies a restricted cone condition, that is, there is a

finite open cover of dR, the boundary of R, {0,} and cones C, with vertices at the

origin such that for all x E 6,\C\ R, x + C¡ is contained in R.

We shall consider complex valued functions defined on R. As usual, we denote

by L2(P) the completion of the functions / defined on R such that jR \f(x)\2 dx =

|l/lIs exists and is finite, a, ß, y, and r will denote multi-indices a = iax, ■ ■ ■ , aN)

with |a| = 2Z"-i a< and D" = (d/idxx)ai ■ ■ ■ (d/idxr/)"". For any nonnegative

integer m, /T"(P) is the set of all distributions zz such that the distributional deriva-

tives D"u are in  L2(R) for all  |a|   ^   zzz.  The norm on  Hm(R) is  given by

Mil..- Z,«isJU>atC
We will also consider the space of functions which have continuous derivatives

of order up to and including zzz in R. We denote this space by CmiR).

If a function u is infinitely differentiable in R and vanishes identically outside of

some compact set contained in R, then we say u is in C°0(R).

Consider C°0(EN) which we will always denote as simply C". The completion of

Co under the norm ||w||2 = j"Ew \u(x)\2 dx is L2. We define Hm for any positive integer

zzz as the completion of C% under the norm ||«||* = 2~2\«\sm ||-Daw||2-

Now let p be the diameter of the domain R. Let K be any subset of the set of

multi-indices y of length zzz (i.e., \y\ = zzz) which contains the indices y with yk =

m, y j = 0 for j 5¿ k and k = 1, ■ • • , TV. The set of polynomials q such that DTq = 0

for all r E K will be denoted by PK. The following is Theorem 2 of [3].

Theorem 2.1. Let F be a linear functional on Hm(R) satisfying

(a) \F(u)\ ^ C X)i«is» Plal~N/2 H^^zzlU where C is independent of P and u and

(b) Fiq) = QforqE >*.
Then, there is a constant Cx independent of p and u such that \F(u)\ ^ CxPm N'2

■2Z^k\\D'u\\r.
We will always assume that all functions are restricted to the domain R.   Hence,

we can regard PK as a subspace of Hm(R).

In this paper, C will be used to denote a generic constant not necessarily the same

in any two places. Also, all norms which appear in this paper are L2 or Hm2 norms.

III. A Special Mollifier. If a function / satisfies certain continuity properties,

then there are certain subspaces S such that an approximation to /, fx, is in S. For

example, to find an interpolate of /, / must usually be continuous. Now, if / does not

have the necessary continuity properties, it still may be possible to find an approxima-

tion of / in S. The method we will use to find the approximant is first to smooth / so

that it does satisfy the continuity properties and then to approximate the smoothed

function. If the difference between / and the smoothed function is of the same accuracy

as the original approximation, then the method will give an accurate approximation

to / in S, even when / is not continuous. We will now make these ideas precise.
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We will need the Calderón extension theorem. Let R be a bounded domain satis-

fying the restricted cone property. Then, there exists a bounded linear transformation

P of Hm(R) into H" such that for any u E Hm(R), Puix) = u(x) for all x in R. The

proof may be found in Agmon [1, p. 171]. Hence, there is a constant C independent

of u such that ||Pzz||m = G ||zz||m,ñ.

For two square integrable functions / and g, the convolution of / with g, denoted

hy / * g, is defined as

/ * g(x) =   [    fix- y)g(y) dy = g* fix).
Je"

For a function </> in C"0, we can define a linear operator T on locally integrable func-

tions / by Tf(x) = <p * f(x). Since D(Tf) = D<f> * f, if <f> is infinitely differentiable, then
Tf is. Hence, <b is called a mollifier or smoothing function. In this chapter, we will

construct a mollifier with the property Tf = / for / in certain classes of polynomials.

Consider the function 0« in C°0(El) given by

<t>.(x) = - exp    —2 ^   g      for x E (— «, «),

= 0 if |*| > e,

where 1/p = /s. <7Ji(x) dx. By a change of variable, it is easy to see that / <f>t(x) dx = 1

for any « > 0. Hence, <f>t * c = c for any constant c. Consider (<bt * x)(y) — y as a

function of y. Since its derivative is zero, (</ie * x)(y) — y is constant. Now, x is an

odd function and <bt is an even function, thus, when y = 0, the constant vanishes.

Thus, the operator associated with 4>, reproduces polynomials of degree á 1. It

follows that, for any real number r, the operator associated with r<bt + (1 — z-)<jje/2

reproduces polynomials of degree g 1. We denote rib, + (1 — r)<bt/2 by #"'. Con-

sider (0|2i * x2)^) — J>; this is a constant since its derivative is zero. Hence, if we

choose f so that (tf>\2l * x2)(0) = 0, the operator associated with (b[2l will reproduce

polynomials of degree ;£ 2. By a change of variables, (<zi</2 * x2m)(0) =

2-2m(</>t * x2mX0). Hence, (*«> * x2)(0) = (*. * x2X0)[z- + (1 - r)l/4], so r = -1/3.

We denote <t>\2/-x/3 as simply <f>\2). Since <f>\2) is even and x is odd, the operator

associated with <f>\2) reproduces polynomials of degree ^ 3. Letting <pl,3)r = r<f>[2) +

(1 — ry¡>\2\ and following the above procedure, we can construct <plt3) and the operator

associated with <p[3) will reproduce polynomials of degree 5¡ 5. Hence, we can con-

struct a function <f>\m) which is C", and the operator associated with (b[m) will reproduce

polynomials of degree g 2m — 1. We remark that J 0["'(*) ox = 1 for any e > 0

and any nonnegative integer.

We shall define <t>lm)(x) as üf-i <l>l7\Xj), where x = (xx, • • ■ , xw) and e =

(«i> • ■ • > <=n)- It is obvious (by Fubini's Theorem) that the operator associated with

<b[m) will reproduce polynomials of degree at most 2zzz — 1 in each variable.

Next, let Ri be hypercubes with sides of length h that satisfy EN = \Ji P¿ and

Ri C\ R, = 0 or an edge of R¿ for / ^ j. For any x in EN, define Sh(x) as the set of

all hypercubes P, such that there is an element y in P, satisfying \x¡ — y¡\ ¿ h for

all j = 1, • • • , JV. Note that there is an upper bound which is independent of x for

the number of hypercubes in Sh(x).

We will need the following Lemma.
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Lemma. Let u be an element ofL2. Then, for any positive integer m, there are positive

constants C and Cx which are both independent of u and h such that

\4>ïm\y)\ è Ch~N    for any y in EN

and

\\<t>ïm) * HH,,!., ú Cxh'N/2 I MU*,     for any x in EN,

where Ch(x) is simply the set of points z in EN such that z is in Sh(w)for some w in

S„(x).

Proof. Let y¡ = hz„ then <ph(y,) = (l/h)<bx(z,). Since 4>*/2»Cv,) = (2n/h)4>x(2nz,)

and <f>[m) is a linear combination of <f>h/2k for k = 0, 1, • • ■ , zzz — 1, we can express

<b(hm) as a combination of (l/h)<bx evaluated at different points. Since <px is bounded

independently of h and y, the first inequality of the lemma is proved.

The second inequality follows by expressing <bhm) * u as an integral, interchanging

the order of integration, using the first inequality and the fact that ^J;"0 has support

which is proportional to hN.

We will now prove the main result of this section.

Theorem 3.1. Suppose u is a function which is in Hm. Then, there is a constant C

independent of u and h such that

||D"(*Í"*k- n)|| è C/z"-|a| £ \\D]m'u\\

for any index a with \a\ i%\ m and k is greater than or equal to the greatest integer

contained in \im + 1). D]m)u is the mth partial derivative of u in the jth coordinate

direction.

Proof. Let u be in Hm. Then choose x in EN and ^ in C%. Define a functional by

Fiu, *, *) =   [        U4>lk) * u)iy) - uiy)Uiy) dy.
J Sh(z)

It is easy to see that F is linear in u and that Fiu, \f/, x) is defined for any u in L2.

Also, by the construction of <b(hk), we have F(p, \j/, x) = 0 for any polynomial p of

degree at most m — 1 in each variable. Using the Schwartz inequality, we can obtain

\Fiu, *, x)\ ^   \\<blk) * u - u\\ShW  \\1r\\BtM  Ú CWNn IMku,  ||f||,.c„.

where C is independent of zz and h by our lemma. So by the theorem in Section 2,

we have

\Fiu, *,x)\ Ú Ch-N/2 £ HDi-'GOIIoK,) IMUw.

Now integrate |F(zz, \f/, x)\2 with respect to x over any hypercube R¡ to obtain

(|ä   \Fiu, *,x)\2 dx)3 =g Chm £ HDj-'icllo, ll^llo,

where C¡ is the set of all points y such that Sk(y) í\ P¿ ^ 0. Since the L2 norm of

any function / in Pj is the supremum of \fRi f$\ for \p with norm 1 in L2(R¡) and C'iR/)

is dense in L2iR¡), we obtain
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\W„k) *u- u\\Ri g C/V" £ IIDÎ-'bIIo,.
í-i

Summing over all possible indices z and, since each C ¡ is within a combination of a

finite number of hypercubes P., we obtain the theorem in the case a = (0, • • • , 0).

The theorem follows by considering hlalF(Dau, \p, x) for all other multi-indices a

with |a| ^ zzz.

Now, if P is a bounded domain in EN, for u in Hm(R), Pu (the Calderón extension

of u) is in Hm, so by the previous theorem

N

\\Da(<p(hk) * Pu) - Pu\\ ^ Chm-Ia] £ ||Z)<m)P«||.

¿-i

Now, since Pzz(x) = u(x) for any x in P and C"(R) C\ fl""(P) is dense in /7m(P).

we have DaPu(x) = D"u(x) for all indices a such that |a| ^ zzz and for any x in R,

Thus, we have proved the following corollary.

Corollary. Let u be in H"iR). Then there is a constant C independent of u and

h such that

WD'liÚ» * Pu) - u]\\B í Chm-iai £ WD^uU«
i-l

for any index a such that \a\ ^ m and for any k larger than or equal to the greatest

integer contained in \(m 4" 1).

IV. Applications to Approximation Theory. In this section, we will prove a

general theorem on approximation, and then apply the theorem to the special cases

of Hermite and spline interpolation.

Theorem 4.1. Let h be a positive parameter. Assume there is a subspace Smh(R) of

Hm(R) such that, for any function u in C°iR) C\ HmiR), there is an element v ofSm,h(R)

satisfying \\D"(u — v)\\R ^ C/zm_|t"l||zz||„iS where C is independent of h and u and

a is any index such that \a\ ^ zzz. Then, for any u in Hm(R), there is a w in Smh(R) such

that \\Da(u — w)\\R g Chm~la'\\u\\m,Rfor any index a such that \a\ g zzz azzd" C is

independent of u and h. The result also holds for R = EN.

Proof. Let u be in Hm(R), then by the theorem of Section 3, there is a function

uh = *<*> * Pzz (for k ^ [h(m + 1)]) and ||D"(ii - u„)\\R Í Chm-,a,\\u\\m,R.

Since <f>[k) is in C, uh is in C"(R) (~\ Hm(R), so by assumption, there exists an

element w of Sm,h(R) such that | \D"iuh - w)\\R ^ Chm~ia>\\uh\\m,R. Using the Schwartz

inequality on the functions Pzzf«^*']172 and Whk)]1'2, one easily obtains

k(*)| ^ (/    [Puiy)]2[<p[k\x - y)\ dyj ' ■

By Fubini's theorem, we can now obtain ||ha||s ^ C||P«||, where C is independent

of h and zz. Using the same technique on Dauh for all indices a such that |a| ^ zzz,

we have ||Mt||m,s g C||Pzz||m ^ ^1 |wj|m,Ä, where the constants are independent of

h and u. The proof is completed by using the triangle inequality on u — w = u — uh-\-

uh - w.

This theorem proves that any subspace of approximations of the continuous

elements of a Sobolev space is in fact a subspace of approximations of every element
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of the Sobolev space. Thus, interpolation techniques can be used even when there

are discontinuous elements in the Sobolev space.

Consider the case when u is in H2m(R). If u is in C2m'\R), then the zzzth Hermite

interpolate of u, um, exists and \\D"(u — um)\\R ^ C/z2m_|a| X^ex ||-DT«IU, where

K is a (proper) subset of the indices of length 2m. This was proved in [3].

Now, if u is in H2m(R), form uh = 4>lm) * Pu; since uh will be an element of C"(R) P\

H2m(R), the zzzth Hermite interpolate of uh, denoted uhim, exists. In fact, one can show,

using the lemma of Section 3 and the techniques of [3], that

(4.2) \\D°iuh - uh.m)\\R Í Ch2m-,al  22 \\Dru\\R

for all indices a with \a\ ^ 2m and 0 S «,■ | m - 1,
Now, define #(m) as the subspace of cr'l(EN) such that u is in Him) if and only

if m is a polynomial of degree ^ 2m — 1 in each variable in each P¿ and u is in

Cr~\EN). Hlm\R) is the set of restrictions to P of the elements of Him\

Theorem 4.3. Let u be in H2m(R). Then there is an element v ofH<m)(R) such that

\\Da(u - v)\\R ^ Ch2m'lal 22'SK \\D'u\\R where C is independent of h and ufor any

index a with \a\ Sj 2m andO ^ a¡ ^ zzz — I for i = I, ■ ■ • , N. The result holds for

R = EN.

Proof. We note that the set K always contains indices y of the form 7, = 2zzz, y¡ =

0 for i ;¿ j, i, j = 1, • • • , N. Hence,

22\\Dru\\R^   £\\D^u\\R.

Thus, by Theorem 3.1 and (4.2), the theorem follows.

We remark that we could have partitioned EN into rectangles instead of hyper-

cubes. The same type of analysis would give local error bounds in terms of the longest

side of the rectangle in each rectangle. Thus, if the ratio of the longest side to the

shortest side of each rectangle is bounded above and below independently of the

rectangle and if the longest side of each rectangle is bounded above independently

of the rectangle, we would obtain error bounds with the upper bound of the longest

sides replacing h.
In [2], it was shown that if u is in Hk with k > N/2, then there is a spline inter-

polant of order k for u, Sk(x, u) and \\Sk — u\\¡ ^ Chk~' \\u\\k for 0 ^ j s¡ k. So

we obtain the following results.

Theorem 4.4. Let u be in Hk. Then there exists a spline w of order k such that

\\u — w\\¡ :§ Chk~' ||zz||t/oz- 0 g j ^ k with C independent of h and u.

Proof. Form uh = <f>[a) * u, where s is the greatest integer contained in J(zc + 1).

Then, by Theorem 3.1, ||« - za||, ^ Chk~i \\u\\k for 0 á ; á k. So, by Theorem 4.1,

we have just shown that Sk(x, uh) is a spline of order k such that ||Sj¿(-, ¡4) — u»||f ^

Ch"-' ||w|U for 0 Ú j úk.
Hence, let w(x) = Sk(x, uh) and the theorem follows.

Corollary. Let u be in Hk(R). Let S be the set of restrictions to R of splines of

order k. Then there is a v E S such that \\u — v\\iiR ^ Chk~' ||w|U,R for 0 g j ^ k

with C independent of h and u.

Proof. Let Pu be the Calderón extension of u. Hence, Pzz is in Hk. By Theorem

4.1, there is a spline of order zc such that \\Pu — w\\,- ̂  Chh~' \\Pu\\k for 0 g j ^ k.
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Thus, ||h - wlli.fi è \\Pu - w\\¡ ^ Chk ' \\Pu\\k g Chk~' \\u\\k,R by the continuity

of the Calderón extension for 0 £ j £ k. Hence, w restricted to R is in S and the

corollary follows with v taken to be the restriction of w to P.

Thus, we have exhibited two examples of subspaces Smh(R). Notice that the spaces

were formed by interpolation techniques which demand continuity, but by using the

mollifiers of Section 3, we could extend the results to all elements of the Sobolev space.

V. A Problem with Natural Boundary Conditions. We will consider an oper-

ator

N        r)    / r) \

Luix) = — 22  J~ \a"W T~ "Wj + cix)uix),

where a,,(*) and c{x) are real-valued functions with c(x) > k > 0 for all x E R,

a¡jix) = au(x) for all x E R and 23f.i-i fl< *(*)&& > kx |£|2 for any x E R and for
any £ an N vector of real numbers with |£|2 = £2 4- • • • + £¡?. We will assume that

a,, and c are in C\R) where R is a bounded domain in EN.

Consider the problem of finding a generalized solution of

Lu(x) = f(x)    for x in R, f E U(R),

(*) n du(x)
^1   aaix) —— cosiv, x¡) = 0    for x E dR,

ij-i dXj

where v is the outer normal on dR. We define a bilinear form on //'(P) X H\R) by

. r » 5 T"

a(u, v) = J       22   <*<i(x) -fa  (x) — ix) + cix)uix)vix)    dx.

Now, by our assumptions, |a(zz, tz)| ^ min (k, kx) ||u||2fi.

By a generalized solution of (*), we mean a function u in Hl(R) such that

a(u, v) =   /   /(jc)i5(*) rf*    for all v in //' (R).

Now, we will approximate u by a solution of a Rayleigh-Ritz-Galerkin problem.

The Rayleigh-Ritz-Galerkin problem is to find a function <f> in S such that a(<£, w) =

.I* f(x)w(x) dx for all w in S where S is a finite-dimensional subspace of Hl(R). This

problem has a unique solution </> in 5 if and only if the problem \j/ E S, a(\f/, w) = 0

for all w in 5 has \p = 0 as its unique solution. Since \p is in S, we have aty, ^) = 0,

but this means ||^||i,ß = 0. Hence, the Rayleigh-Ritz-Galerkin problem always has

a unique solution <j> which is in the subspace S.

Hence, a(u — <f>, w) = 0 for all w E S. Thus, a(u — <p, <j> — w) = 0 for all w E S

since <j> is in S. Now, a(u, u) ^ Zf2 ||w||2 „ where A"2 = min(k, kx). Thus, by the Schwartz

inequality,

II« - «Id.« II" - w||i.« ^ C \aiu - 4>, u - w)\ = C \a(u - <b, u - 0)|

è CK2 ||« -<i>\\\.R.

Hence,

(5.1) ||« -<¿||,,s Ú CK2 inf ||« - Hl>.«-
t»es
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Now, if the solution u is in H2,(R), choose S as Hll)(R) (the restriction to R of

Ith order Hermite functions formed with respect to hypercubes of side length h).

Thus, S C H\R) for / any nonnegative integer. Thus, by Theorem 4.3 and (5.1),

we obtain \\u — <b\\XiR 5¡ Ch2l~l £reK ||£)TM||fi.

If u is in Hk(R), let 5 be the restriction of kth order splines to P. Since R is a

bounded domain, S is a finite-dimensional subspace of H\R) for k any positive

integer. Hence, by the corollary to Theorem 4.4 and (5.1), we obtain ||u — <b\\x,R ¿

Ch"-1 | |u||t.

Making use of a method essentially due to J. Nitsche [6], we can find a bound for

||u — <b\\R by using bounds we have found for ||u — <t>\\x,R.

If (j> is the solution to the Rayleigh-Ritz-Galerkin problem and u is the generalized

solution of (*), we denote zz — <b as e. Hence, a(e, w) = 0 for all w in S. Let P be the

projection operator from //"'(P) onto S, then for any y in H\R), w = Py =

y — (I — P)y for some w E S where I is the identity operator on H\R).

Since a(e, w) = 0, we have a(e, y) = a(e, y — Py) for all v in Hl(R). Now, e is in

Hl(R), so we can solve

aiy, v) =   I  eix)vix) dx    for all v in H\R)
J «

and obtain y in H\R).

Hence

IM |« =   /   eix)eix) dx = aiy,e) = aiy — Py,e).
J «

Using the Schwartz inequality on a ((/ — P)y, e) we obtain

IHIfig C\\(I-P)y\\x.R\\e\\x,R.

Now, if the domain P is such that the solution u of a(tz, v) = jB fv is in H2(R),

then by choosing S to be one of the subspaces defined previously, we have

||(7 — P)v||!,fi i£ Ch ||.j>||2.fi. If, in addition, the solution of a(«, v) = ¡R fv satisfies

¡¡«Ik« es C ||/||fi, we obtain ||(7 — P)y||i,fi ^ Ch \\e\\R. Hence, under the above con-

ditions, ||e||fi ^ Ch ||e||i,B

Following Agmon [1, p. 128], we define an open set R to be of class Ck for k ^ 1 if

(1) for every x E dR there is an open neighborhood U such that, for

some i, UC\dR has the representation x, = g(x') for x' = (xx, ■ ■ • , x¡^x, xi+x, ■ ■ ■ , xN)

in U' where U' is the projection of U on the hyperplane x¿ = 0 and g is in Ck(U'); and if

(2) U i\ R is contained in the half-cylinder {x | *; > g(x') for x' E U'}.

Now, if P is bounded and of class C2, then the solution u of a(tz, v) = jR fv for

all v in H\R) is in H2(R) and ||«||2.« g C ||/||fi if / is in L2(R). This is proved by

Lions [5, p. 111].

Let u be the solution of a(zz, v) = JÄ fv for all v in //'(/i) and let « in S be the

solution of a((b, w) = JR fw for all w E S. Assume that R is of class C2. Then, using

the splines of order 2 restricted to R as 5, we have

II" -«II,.* =g Ch2-' ||«||2.fi    for; = 0,1.

If we use the Hermite subspace Hn)(R) as S, we have

II« - «II,.* ^ Ch2-' 22 \\DTu\\R    for; = 0, 1,

where K is the set of all indices r of length 2 such that xT is not its own first Hermite

interpolate.
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Furthermore, if tz is in H'(R) using the splines of order / restricted to P as S,

we obtain

||« -«||,.Ä ^ Ch''' H«!!,.«    for; = 0, 1.

If u is in H2m(R), then using the Hermite subspace H'm\R) as S, we obtain

II« - «||,.* Ú Ch2m-< 22 \\DTu\\R    for; = 0, 1.

We can summarize the results of this section in the following theorem and

corollary.

Theorem 5.1. Ifu, the solution of(*), is in the Sobolev space Hk(R), then there are

subspaces Sk,h(R) such that

II« -«Ik* è ch"-1 |Mk*.

where C is a constant independent of h, and <b is the solution to the Galerkin problem

corresponding to (*), using Skh(R) as the subspace ofH\R). Furthermore, if the boundary

of R is C2 and k is greater than or equal to 2, then

||« -«||,,„ g Ch"-' \\u\\k,R    forj = 0, 1.

Corollary. If /, the right-hand side of (*), is zzz L2(R) and if the boundary of R

is C2, then using the splines of order 2 restricted to R as the Galerkin subspace, we have

II" -«II,,* Û Ch2'' ||«||2,fi    for j = 0,1.

If we use the Hermite splines of order 1 restricted to R(H(1)(R)) as the Galerkin sub-

space, we obtain

II« -«II,.* á Cxh2-' 22 \\DTu\\R    for j = 0,1.

Both C and Cx are constants independent of h.

Finally, we remark that the subspaces constructed in Section IV can be applied

in the same manner to problems of elliptic operators of arbitrary order with natural

boundary conditions. They may also be used to solve Dirichlet problems using the

method of least squares due to Bramble and Schatz (see [4]).
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