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A Comparison of Algorithms for Rational

/ œ Approximation

By C. M. Lee and F. D. K. Roberts

Abstract. Results are reported of a numerical study to compare eight algorithms for

obtaining rational L approximations. The algorithms investigated are Loeb's algorithm, the

linear inequality algorithm, the Osborne-Watson algorithm, the differential correction

algorithms I, II and III, the Remes algorithm and Maehly's algorithm. The results of the

study indicate that the Remes algorithm and the differential correction algorithm III

are the most satisfactory methods to use in practice.

1. Introduction. Let /(x) be a given real-valued function defined on a discrete

point set X = {x,, x2, • ■ • , xN\. Given nonnegative integers m and n, we form a

rational approximating function

/    n

(1) Rix) = Pix)/Qix) = £ PjX* / £ q¡x'.
¿-0 /       j'-0

The rational /„ approximation problem is to determine the coefficients p*¡ (i = 0,

1, • • • , m) and q*¡ (j = 0, 1, • • • , ri) which minimize the expression

(2) max  |/(x«) - R(Xl)\ =  ||/ - Ä||-,
IStáN

subject to the conditions

Qixt) > 0,        t = 1,2, ••• , N.

Since expression (1) is homogeneous in the coefficients p, and q¡, we may impose

a normalization condition, for example max, \q¡\ = 1.

Existence of a solution to this problem is not guaranteed in general. However,

for the purpose of this study, we shall assume that /(x) is such that a best approxima-

tion exists. We shall assume that the best approximation R*(x) is expressed in an

irreducible form, i.e., i>*(x) and Q*(x) do not have a common factor. Uniqueness

of the best approximation and the following characterization theorem are given in

Rivlin [19, p. 131].

Theorem. 7?*(x) = P*(x)/g*(x) is the best approximation to fix) on X if and

only if fix) — R*ix) has an alternating set consisting of at least 2+ma.xin+dp, m-\-dq)

points of X, where dp and dq denote the degrees of P*(x) and ß*(x) respectively.

Barrodale [1] has shown that expression (2) defines a strictly quasi-convex function

on the domain Q(xt) > 0, t = I, 2, • ■ ■ , N, and thus, any local minimum to the
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approximation problem is necessarily a global minimum. Various algorithms have

been suggested for determining best approximations (see for example Cheney and

Southard [7], Rice [18, p. 102], Cheney [4, p. 169]). These fall into two categories.

Algorithms in the first category determine best approximations by using the above

characterization theorem. The algorithms of Remes and Maehly are of this type.

Algorithms in the second category attempt to determine best approximations by

solving the following nonlinear programming problem:

minimize w

subject to

(3)

f(xt) -  £ PiX\ / £ q¡x\
Í-0 t =  1,2, ■••  , N,

E q,x{ è   0
í-o

max \q¡\ = 1.
i

Loeb's algorithm, the linear inequality algorithm, the Osborne-Watson algorithm,

and the three differential correction algorithms are of this type. These methods solve

(3) as a series of linear programming problems.

In this paper, we report results of a numerical study to compare the computational

behaviour of these various algorithms. In the next section, we give a brief description

of the eight algorithms we have selected for the study. The third section contains

details of the study and comments on the results. The fourth section discusses de-

generacy, and the last section is concerned with the conclusions.

2. Algorithms.

2.1. Loeb's Algorithm.   The approximation problem is to minimize

max |/(x,) — Rix,)\,

which may be rewritten as

max \lZTT\ IK*«)ß(*<) - *•(*«). r-
istsN (|y(x¡)| )

Loeb [13] proposes the following iterative scheme: At the fcth stage, polynomials

Pk(x) and Qk(x) are determined which minimize

max W-v  m l/(*«X?(*<) - p(*t)\
lííSiV   s\U       (Xt)\

The term l/|g*_1(x,)| acts as a known weight factor and the problem is a linear

approximation problem which can be solved by the techniques of linear programming.

The normalization is accomplished by setting q0 = 1 at each stage. The algorithm

is not guaranteed to converge in general. Computational experience with the algo-

rithm in /,, l2 and /„ norms is reported by Barrodale and Mason [2].

2.2. The Linear Inequality Algorithm. The approximation problem may be

stated in the following way: Find the smallest value of w such that the following

system of inequalities is consistent:
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|/(x() - Ä(*,)| á J

- Qix,) Ú  of

If the approximation is normalized by setting q0

n m

Ifixt) — w] £ q¡x't —  £ P¡*'t è w ■

t = 1,2, N.

- 1, then the system may be written as

fixt)

[-fiXt)  —   W]   £ QjX't   -    £ P¡x\   g   W +  fix,)

-E a¡x\ g 1

t = 1,2, N.

This system of inequalities is nonlinear. However, if w is assigned a fixed value

then the system becomes linear, and the feasibility may be determined by linear

programming. Since the error w* corresponding to the best approximation lies in

the interval [0, max, |/(x,)|], it may be located by the method of bisection. At each

iteration, the value of w is chosen to be the midpoint of the interval obtained at the

previous iteration. If the system is consistent, the search is restricted to the lower

half of the interval. If the system is inconsistent, the search is restricted to the upper

half. The method is due to Loeb [14]. The rate of convergence of this algorithm is

slow since at each iteration, the interval containing w* is only reduced by a factor \.

The normalization q0 = 1 may for some problems conflict with the inequalities

Q(xi) ^ 0, t = 1, 2, • • • , N. In these cases, other normalizations may be used (for

example q0 = —I).

2.3. The Osborne-Watson Algorithm. Osborne and Watson [16] present a

general algorithm for solving the nonlinear /„ approximation problem. Watson

[20] discusses the application of this algorithm to rational /„ approximation. The

algorithm is an iterative scheme which at the fcth iteration determines polynomials

5P*(x) and 5ß4(x) which minimize the expression

(4) max
1S1SW

fix,)
Pk'\xt)       P"

Qk~\xt) ^

\x,) SQix,) - Qh-\x,) SPjx,)

Q    ix,)

The /cth approximation P*(x)/g*(x) is given by

Pkjx) = P^'jx) + \k SPkjx)

Qkix) ~ Qk-\x) + Xk &Q\x) '

where X* is chosen to minimize the expression

(5) max
IStSN

fix,) -
P*-'(x,) + X SPkjx,)

Qk-\x,) + X SQkixt)

Expression (4) is obtained by making a linear approximation to expression (2).

The minimization of (4) can be accomplished by linear programming. The nor-

malization is accomplished by setting q0 = 1. The minimization of (5) is approximately

obtained by searching for values of X on the set 0(.1)1, except where this gives a value

of zero when a more accurate value is obtained. Convergence of the method is dis-

cussed by Osborne and Watson [16].
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2.4. The Differential Correction Algorithm I. The differential correction algo-

rithm was first discussed by Cheney and Loeb [5]. However, in the later literature,

the algorithm is described in a slightly modified form. The later version of the algo-

rithm which is described by Cheney and Loeb [6], Cheney and Southard [7], Rice

[18, p. 116], Cheney [4, p. 171], we shall refer to as the differential correction algo-

rithm I. The original version will be referred to as the differential correction algo-

rithm II.
The algorithm is an iterative scheme. At the fcth stage, an approximation

Pk~ 1(x)/Qk~'(x) is available with error wk-\. The algorithm determines polynomials

Pk(x) and Qk(x) which minimize the expression

(6) max  {\fix,)Qix,) - P(x,)| - w*-,ß(x,)},

subject to the normalization that the coefficients of Q(x) are bounded by 1 in modulus.

This minimization can be accomplished by linear programming. The method is

guaranteed to converge to the best approximation from any initial approximation

with positive denominator in at least a linear rate (Cheney [4, p. 171]).

2.5. The Differential Correction Algorithm II. The version of the differential

correction algorithm presented by Cheney and Loeb [5] has recently been studied

by Barrodale, Powell and Roberts [3]. The algorithm differs from the previous

algorithm in that expression (6) is replaced by

m m0v Jl/C*')Q(*'> - p(*')l - *»-iQ(*.)\(7) max S-  t_!      -(■
1SISN  ( Q     ix,) i

With both versions of the algorithm, the constraints Q(x,) > 0, / = 1, 2, • • ■ , N,

are maintained automatically and hence need not be incorporated into the linear

programming formulation of the minimization of (6) and (7). The proof of con-

vergence and the following theorem are given in [3].

Theorem. If N ^ m + n + I, if a best approximation exists, and if the best

approximation is not degenerate, then the rate of convergence of the algorithm is at

least quadratic.

2.6. The Differential Correction Algorithm III. Computational experience with

the differential correction algorithm II indicates that even though the ultimate con-

vergence rate is quadratic, the convergence rate in the early iterations can be slow.

The method can be substantially improved if a good initial approximation is available.

We have therefore tried the algorithm using as initial approximations the poly-

nomials P\x) and Q\x) which minimize the expression

max {|/(x(X2(x() - Pix,)\],
IStsN

subject to the normalization q0 = 1. This linear problem is identical to the first

iteration of Loeb's algorithm, and our numerical study indicates that the solution

frequently yields an excellent approximation. Provided that Q\x) does not change

sign on the discrete point set X, after a suitable normalization, P\x) and Q\x)

may be used as input to the differential correction algorithm II. In the cases where

ß'(x) does change sign, we have initiated the algorithm with the values P\x) = 0,

Q\x) = 1.
2.7. The Remes Algorithm.   This is perhaps the most popular method for ob-
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taining rational approximations. There are many variations of the algorithm (see

for example Rice [18, p. 109], Fraser and Hart [11], Ralston [17, p. 301], Werner

[21]). The version we consider assumes that the best approximation i?*(x) is not

degenerate, and, hence, by the characterization theorem, the error function e*(x) =

fix) — R*ix) alternates at least m + n + 2 times. A reference set Xk is defined to be

a set of m + n + 2 distinct ordered points (y\, yk2, ■ ■ ■ , j4+„+2) of X. The algorithm

is an iterative scheme which is implemented in two stages.

(i) Given a reference set Xk~l at the (k — l)st stage, an approximation Rk(x)

is obtained such that its error function e*(x) = fix) — Rk(x) alternates m + n + 2

times on X*'1.

(ii) The extreme points of the error function e*(x) yield a new reference set Xk.

The second stage of the algorithm is straightforward in the discrete case since

the new reference set can be obtained by a direct search over the N points of X.

The first stage requires the solution of the following system of nonlinear equations

(8) fiy,) - Riy¡) = (-l)'X,        i = 1, 2, • • • , m + n + 2,

or, equivalently,

(9) fiyùQiyù - Piy¡) = (-l)'AOÜO,        i = 1, 2, • • • , m + n + 2.

These equations are normalized by setting q0 = 1, and the solution is obtained by

Newton's method.

2.8. Maehly's Second Algorithm. This method was proposed by Maehly [15].

The algorithm assumes that the error function «*(x) of the best approximation has

exactly m + n + 1 zeros z\,z*2, ■ ■ ■ , z*+n+1. It may therefore be written in the form

m + n+l

e*(x) = G(x)   II   (* - zt),
i-i

where G(x) is a positive (or negative) function. The method is an iterative scheme

which is implemented in two stages.

(i) Let X! < Zi < z2 < • • • < zm+n+1 < xN be estimates of the zeros of the

error curve e*(x). An approximation i?(x) is obtained by solving the equations

(10) Rizi)=fizù,        I = 1,2, ••• , m + n + 1.

(ii) The extreme points xu x2, ■ ■ ■ , xm+n+2 of the error function e(x) = /(x) — Rix)

are then used to obtain corrections 8zlt 5z2, • • • , dzm+n+i to the zeros.

The system (10) is normalized by setting qQ = 1 and may be solved as a system

of linear equations. The corrections to the zeros in the second stage are obtained

by solving the linear equations

m+n+1 «

£   :-^—Z = log |e(x,)| - log |X|, i =  1, 2, • • • , m + n + 2.
l-l    \Xi        z¡)

Convergence of the method is discussed by Dunham [8], [9].

3. Numerical Results. To test the algorithms numerically, we selected 11

data sets (see Table 1), and approximated each data set by rational functions PolQi,

Pi/Qi, P2/Q2, P1/Q3, PJQ2, where the subscripts denote the degrees of the poly-

nomials. The six algorithms which require linear programming techniques were
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solved by applying the revised simplex method (see for example Gass [12, p. 106])

to the dual formulation of the linear programming problem. The two algorithms

which require the solution of a system of linear equations were solved using the

method given in Forsythe and Moler [10, p. 68]. All algorithms were programmed in

FORTRAN and run in double precision arithmetic (16 digits) on an IBM 360/50.

The initial approximations for Loeb's algorithm, the Osborne-Watson algorithm,

and the differential correction algorithms I and II were taken to be -P°(x) = 0, ß°(x) =

1. The initial reference set for the Remes algorithm was taken to be the points of X

closest to the extrema of the (m + n + l)st Chebyshev polynomial shifted to the

interval [xu xN], and the initial zeros for Maehly's algorithm were taken to be the

zeros of this polynomial. The algorithms (except the Remes algorithm) were

terminated when either the relative change in error in two successive iterations was

less than 10"7, or after 50 iterations. The Remes algorithm was terminated when

two successive reference sets were identical.

Complete details of the numerical study appear in the microfiche section of this

issue. Tables 2.1-2.8 record the number of iterations and the central processor time

required for convergence of each of the algorithms, and also indicate the examples

for which an algorithm fails to produce the best approximation. Table 3 of the

microfiche section records the errors of best approximation.

Table 4 attempts to summarize these results. We list the average central processor

time required by each algorithm to solve each of the 55 examples, and also the number

Table 1

Data Sets Used in the Numerical Study

Function fix)

Number of Points
[Xi, xN] iEqually Spaced)

I«? x - e'1 + e

f7:    log(l + x)
f8:    erf(x)

/.:    e~"

ho-  r(x)
U    T(x)

[-1,1]
[-3, 3]
[0,1]
[0, 0.5)
x = 0.5

(0.5, 1]
[0,1]

0,2]
[0,1]

(1,2]
[0,1]
[0,2]
[0,2]
[2,3]
[2,3]

51
21

11

21

51

21

51
21
11

51
101
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of examples for which an algorithm fails to produce the best approximation. We

make the following comments on the results:

Loeb's Algorithm. For the smooth data sets, this algorithm usually converges

very rapidly. However, the algorithm may fail to converge, may converge very slowly,

and may converge to an approximation with a pole in the interval [xu xN]. More

seriously, the algorithm may converge to a pole-free approximation which is not

the best approximation. Conditions under which the algorithm is convergent are

unknown.

The Linear Inequality Algorithm. At each iteration of this algorithm, the interval

containing w* is only reduced by a factor \, and hence the convergence is quite slow.

We encountered one minor difficulty with the algorithm when approximating T(x)

(/io and /„) by P¡/Q3. The best approximation using 101 points (fn) is

-0.04076 - 0.23422x

1 - 1.76828x + 0.64651x' - 0.06983x

The denominator in this expression is negative in the interval [2, 3]. Using the algo-

rithm with the normalization q0 = 1 and the constraints Q(x,) ^ 0, t = 1, 2, • • • , N,

produces an incorrect solution. However, using the normalization q0 = — 1 produces

the best approximation.

The Osborne-Watson Algorithm. The ultimate convergence rate for this algo-

rithm appears to be quadratic, although, in the early iterations, the convergence

can be fairly slow. We encountered one example where the algorithm converges to

an approximation with a pole in [x,, xN]. When the linear constraints Q(x,) ^ 0,

t = 1, 2, ■ • ■ , N, are included in the linear programming formulation of (4), the

algorithm converges to the best approximation for this example. Also, when ap-

proximating r(x) (jl0 and /„) by P¡/Q3, the algorithm does not converge to the

best approximation. In order to obtain convergence, it is necessary to change the

values of X used in the linear search from 0(.1)1 to —1(.1)1.

The Differential Correction Algorithm I.   The convergence of this method is

Table 4

Summary of Numerical Results

Number of Failures

Average Central Processor       iTotal Number of

Algorithm Time in Seconds Examples = 55)

Loeb 19.2 9
Linear Inequality 46.4 0

Osborne-Watson 17.0 1

Differential Correction I 65.9 0

Differential Correction II 21.5 0

Differential Correction III 12.8 0

Remes 2.8 5

Maehly 3.9 24
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guaranteed. However, the convergence rate is quite slow, and we encountered 13

cases where the algorithm does not converge in 50 iterations.

The Differential Correction Algorithm II. This method is guaranteed to converge

from any starting approximation with positive denominator, and the ultimate con-

vergence rate is quadratic. In the early iterations, however, the convergence can be

slow. The errors obtained in successive iterations, when T(x) (/n) is approximated

by P2/Q2, are typical of the convergence of the algorithm.

Iteration Error                 Iteration                   Error

1 0.100000000 (1) 7 0.463845537 (-3)
2 0.376442069 (0) 8 0.126144341 (-3)
3 0.114598168 (0) 9 0.370570234 (-4)
4 0.435131594 (-1) 10 0.364318280 (-4)
5 0.840774023 (-2) 11 0.364317143 (-4)
6 0.147065926 (-2) 12 0.364317143 (-4)

The Differential Correction Algorithm III. This algorithm appears to be the most

satisfactory of the linear programming methods. For the smooth data sets, the initial

iteration usually gives an excellent starting approximation for the algorithm. We

encountered 11 cases where the initial iteration produces an approximation with a

pole in [xi, xN]. In these cases, the algorithm was restarted from the approximation

Px(x) = 0, Q\x) — 1. We list below the errors obtained in successive iterations

when r(x) (/„) is approximated by P2/Q2.

Iteration Error

1 0.436948626 (-4)
2 0.364453365 (-4)
3 0.364317144 (-4)
4 0.364317143 (-4)

These results are typical of the fast convergence obtained with this algorithm.

The Remes Algorithm. The convergence of this method is very rapid; the ref-

erence set for the best approximation usually being obtained in a few iterations.

The two cases where the algorithm fails to converge are due to degeneracy, cor-

responding to an error of best approximation which alternates less than m + n + 2

times. We encountered three cases where the algorithm converges to a solution with

a pole in the interval [xl5 xN].

Maehly's Algorithm. Of the algorithms we tested, this method is the least success-

ful. For the smooth data sets, the algorithm frequently converges quite rapidly.

In the cases where the method fails to converge, this is due either to an iteration

producing an error function which alternates more (or less) than m + n + 2 times

on X, or the corrections to the zeros lying outside the interval [xi, x^].

4. Degeneracy. Degeneracy occurs when the degrees of P*(x) and ß*(x) are

strictly less than m and n, respectively. The error function fix) — i?*(x) may then

alternate less than m + n + 2 times. This can cause difficulties with the popular

Remes algorithm. Rice [18, p. 77] states "Some of the other computational methods

proposed for rational approximation do not, in theory, encounter these difficulties,
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but this has not yet been verified by actual experiment". To test the algorithms on

a near degenerate example, we consider the approximation of I\x) by Pi/Q2, using

101 equally spaced points in [2, 3]. The best approximation by P0/Qi has three error

alternations, and almost alternates one extra time. The best approximation by Pi/Q2 is

0.49405 - 0.16436X

1 - 0.58424x + 0.08369x5

with error 0.56739 (—2). The numerator and denominator in this approximation

have factors (x — 3.00598) and (x — 3.00604) respectively, and thus the approxima-

tion is nearly degenerate. The Remes algorithm, Maehly's algorithm and Loeb's

algorithm all fail to produce this best approximation. The five other algorithms all

converge without apparent difficulty. The differential correction algorithms II and

III, for example, produce the five error alternations correct to twelve decimal places.

An example frequently quoted in the literature of a degenerate approximation

is the approximation of r(x) in the interval [1.9507, 3]. Many authors state that the

best approximation by P0/Qi has four error alternations in the continuous case,

and thus the best approximation by PZQ2 is degenerate. However, this is false.

The value 1.9507 is obtained by considering the error of the best approximation to

r(x) in the interval [2, 3] by P0/Qi, and then locating the point outside this interval

at which the fourth alternation occurs. Unless this point is identified exactly, however,

the best approximation will only alternate three times. Our calculations indicate

that the correct value (to 10 decimal points) is 1.9507929092. Using the value 1.9507

(or 1.95), for example, produces only three alternations (and nearly four). Thus,

the best approximation by PZQ2 is not degenerate, although it is very nearly de-

generate.

In the discrete case, using 101 equally spaced points in [1.9507, 3], the best ap-

proximation by P0/Qi alternates three times, and almost alternates one extra time.

Thus, the best approximation by PZQ2 cannot be degenerate. In fact, computational

experience with this problem indicates that no best approximation exists! Watson

[20] reports results for the Osborne-Watson algorithm applied to this example. His

results are only recorded to six decimal places and so we have repeated his experi-

ment to obtain more accuracy. The approximation we obtain has a pole at the point

x = 2.98705, which is clearly unacceptable. The five error alternations are obtained

to eleven decimal places. We strongly believe that no (pole-free) best approximation

exists for this problem.

To test the linear programming algorithms on a degenerate problem, we consider

the approximation of /(x) = 3/(1 + 2x) + g(x) using 101 equally spaced points in

[0, 1] by Pi/Q2. The values g(x,) are +1 at the 11th and 31st points, —1 at the 21st

and 41st points, and uniform random numbers in [—§, £] at all other points. The best

approximation by P0/Qi is 3/(1 + 2x) with error 1. This approximation has 4 error

alternations and thus the best approximation by PZQ2 is also 3/(1 + 2x), which is

degenerate with defect 1. Loeb's algorithm does not converge for this problem. The

linear inequality algorithm converges to the approximation (within round-off error)

{3(1 - x)j/{(l + 2xXl - x)|. The differential correction algorithms I, II, III

converge to the approximation {3(1 + x)}/{(l + 2x)(l + x)J. The Osborne-Watson

algorithm experiences some numerical instability for this example. By terminating

the method when the relative change in the error in two successive approximations
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is less than 10 5 (in place of 10 7) produces the approximation

{3(1 - 0.94178x)!/{(l + 2x)(l - 0.94178x)j.

It appears that the three differential correction algorithms are the only techniques

which do not encounter difficulties with this degenerate example.

5. Conclusions. The results of this study indicate that the linear programming

algorithms cannot compete with the Remes algorithm in terms of computer time.

However, it does appear that cases which are awkward for the Remes algorithm do

not present problems for some of the other algorithms. Of these methods, the dif-

ferential correction algorithm III appears to be the most satisfactory.

Acknowledgement. We wish to thank the National Research Council of Canada

for the financial support provided by NRC grant A7143.

Department of Computer Science

University of Alberta

Edmonton, Alberta, Canada

Department of Mathematics

University of Victoria

Victoria, B. C, Canada

1. I. Barrodale, Best Rational Approximation and Strict Quasi-Convexity, M.R.C.
Report 1157, University of Wisconsin, Madison, Wis., 1971.

2. I. Barrodale & J. C. Mason, "Two simple algorithms for discrete rational ap-
proximation," Math. Comp., v. 24, 1970, pp. 877-891.

3. I. Barrodale, M. J. D. Powell & F. D. K. Roberts, The Differential Correction
Algorithm for Rational h Approximation, Math. Report No. 54, University of Victoria,
Victoria, British Columbia, 1971.

4. E. W. Cheney, Introduction to Approximation Theory, McGraw-Hill, New York,
1966. MR 36 #5568.

5. E. W. Cheney & H. L. Loeb, "Two new algorithms for rational approximation,"
Numer. Math., v. 3, 1961, pp. 72-75. MR 22 #12692.

6. E. W. Cheney & H. L. Loeb, "On rational Chebyschev approximation," Numer.
Math., v. 4, 1962, pp. 124-127. MR 27 #2088.

7. E. W. Cheney & T. H. Southard, "A survey of methods for rational approximation,
with particular reference to a new method based on a formula of Darboux," SIAM Rev.,
v. 5, 1963, pp. 219-231. MR 28 #1754.

8. C. B. Dunham, "Convergence problems in Maehly's second method," /. Assoc.
Comput. Mach., v. 12, 1965, pp. 181-186. MR 31 #5312.

9. C. B. Dunham, "Convergence problems in Maehly's second method. II," /. Assoc.
Comput. Mach.,\. 13, 1966, pp. 108-113. MR.32 #6116.

10. G.  Forsythe &  C.  B.  Moler,  Computer Solution of Linear Algebraic Systems,
Prentice-Hall, Englewood Cliffs, N.J., 1967. MR 36 #2306.

11. W. Fraser & J. F. Hart, "On the computation of rational approximations to con-
tinuous functions," Comm. Assoc. Comput. Mach., v. 5, 1962, pp. 401-403.

12. S. I. Gass, Linear Programming. Methods and Applications, 3rd ed., McGraw-Hill,
New York, 1969. MR 42 #1509.

13. H. L. Loeb, On Rational Fraction Approximations at Discrete Points, Convair Astro-
nautics, Math. Preprint No. 9, 1957.

14. H. L. Loeb, "Algorithms for Chebyshev approximations using the ratio of linear
forms," 1. Soc. Indust. Appl. Math., v. 8, 1960, pp. 458-465. MR 22 #10147.

15. H. J. Maehly & C. Witzgaix, "Methods for fitting rational approximations. II, III,"
/. Assoc. Comput. Mach., v. 10, 1963, pp. 257-277. MR 28 #707.

16. M. R. Osborne & G. A. Watson, "An algorithm for minimax approximation in the
nonlinear case," Comput. J., v. 12, 1969/70, pp. 63-68. MR 39 #6625.

17. A. Ralston, A First Course in Numerical Analysis, McGraw-Hill, New York, 1965.
MR 32 #8479.



ALGORITHMS  FOR  RATIONAL  /„  APPROXIMATION 121

18. J. R. Rice, The Approximation of Functions. Vol. 2: Nonlinear and Multivariate
Theory, Addison-Wesley, Reading, Mass., 1969. MR 39 #5989.

19. T. J. Rivlin, An Introduction to the Approximation of Functions, Blaisdell, Waltham,
Mass., 1969. MR 40 #3126.

20. G. A. Watson, "On an algorithm for nonlinear minimax approximation," Comm.
Assoc. Comput. Mach., v. 13, 1970, pp. 160-162.

21. H. Werner, "Tschebyscheff-Approximation im Bereich der rationalen Funktionen
bei Vorliegen einer guten Ausgangsnäherung," Arch. Rational Mech. Anal., v. 10, 1962, pp.
205-219. MR 26 #1993.


