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On Integral Groups. Ill: Normalizers

By H. Brown, J. Neubiiser and H. Zassenhaus

Abstract. Methods for determining a generating set for the normalizer of a finite group

of n X n integral matrices, i.e., an «-dimensional crystallographic point group, are dis-

cussed. Necessary and sufficient conditions for the finiteness of such a normalizer are

derived, and several examples of the application of the methods to cases when the normalizer

is infinite are presented.

This is the third in a series of papers dealing with the finite subgroups of GL(n, Z).

In the first two papers [3], [4], we discussed the integral classification of these groups,

and, in this paper, we consider their normalizers in GL(«, Z), which are needed,

e.g., for the determination of the «-dimensional space groups [2], [17]. As in the

previous two papers, the discussion results in a complete determination for the case

n = A. We refer to the first paper for basic definitions and notation.

1. Introduction. For any finite subgroup G of GL(«, Z), i.e., an f.u. group,

it is known that the normalizer N(G) of G in GL(n, Z) is finitely generated [15].

We assume that a representative set of the integral equivalence classes of the

f.u. groups of dimension n is given. For the case n = A, such a representative set has

been determined [7], [8]. As the normalizers of integrally equivalent groups are also

integrally equivalent under the same transformation, we only need determine the

normalizers of such a representative set. In Section 2 of this paper, we show that a

representative set can be so chosen that in fact it suffices to determine only the nor-

malizers of the so-called Bravais groups in this set, as the normalizer of any other

member of this set can be obtained by a finite algorithmic process which we describe.

In Section 3 we determine fairly easily applied necessary and sufficient conditions

for the normalizer of an f.u. group to be finite. For these groups, the normalizer

can be read off from the subgroup lattices of the maximal n-dimensional f.u. groups.

For n = A, these lattices have been computed [7].

In Section 4, we consider "block triangular," i.e., reduced f.u. groups G, and we

give some sufficient conditions for their normalizers N(G) to be of the same block

triangular form.

In Section 5, we give examples of some methods for finding generating sets of

the normalizers when they are infinite. For the case n = A, these methods suffice to

determine all infinite normalizers.

For dimensions 2, 3 and 4, representative sets of the Bravais groups together

with generating sets for their normalizers will be listed in a subsequent paper.
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2. Bravais Groups.

(2.1) Let G be a subgroup of GL(n, Z). The set of all symmetric rational n X n-

matrices X (or, equivalently, «-dimensional quadratic forms) satisfying

(2.11) g'Xg =  X   for allg £ G

forms a Q-vectorspace S(G). Note that (2.11) is valid if and only if it is valid for a

set of generators of G.

The set of all unimodular matrices h such that

(2.12) h'Xh =  X   for all X £ 5(G)

forms a subgroup B(G) ^ GL(n, Z), which we call the Bravais group of G. Note

that G Ú B(G), and that (2.12) is valid for all X £ S(G) if and only if it is valid for
a Q-basis of S(G). Note also that G g H implies S(H) ^ S(G) and that S(B(G)) =

S(G). Hence 5(5(G)) = B(G). Therefore, we can call a subgroup B ^ GL(«, Z) a

Bravais group if B(B) = B.

Let G ̂  GL(«, Z), j> £ NiG) and X £ S(G). Then y~ ' £ /VÏG) and (jgjTV *>»/"'
= X for all g £ G. Hence, g'tj'^g = /JTy, and y'S(G)y = 5(G). For a Bravais

group 5, also the converse holds. For let y'SiB)y = 5(5). Then, for any b £ B and

X E SiB), since y~uXy~x E 5(5), we have (y^byYXiy^by) = /6'(y""*J'"1)*J'
= X, i.e., y~lby £ 5(5) = 5. Hence y £ iV(5). From these two remarks we have

(2.13) Lemma.   Let G < GL(«, Z); then N(G) ̂  N(B(G)).
From now on, we shall confine our consideration to finite subgroups G of GL(n, Z).

As is well known, a subgroup G of GL(n, Z) is finite if and only if 5(G) contains a

positive definite symmetric matrix [16]. Hence, in particular, if G is finite, so is B(G).

From this we have

(2.14) Lemma. Let G be a finite subgroup ofGUjt, Z). Then the index N(B(G)):

N(G) is finite.
Proof. As 5(G) is finite, there are only finitely many subgroups of BiG) which

are Z-equivalent to G. Let O be the orbit of G under transformation by elements

from 7V(5(G)). O is finite and A/(5(G)) is represented as a group of permutations

onQ. NiG) is the stabilizer of G in this permutation representation; hence iV(5(G)):

N(G) is finite.

(2.2) Let U„ be a representative set of all Z-equivalence classes of finite subgroups

of GL(«, Z).
Let 5' be Z-equivalent to a Bravais group BiG) of G g GL(«, Z). Then, there

exists a group G' ^ GL(«, Z) such that G' ~z G and 5(G') = 5'. Hence, we can

choose the set U„ in such a way that it satisfies the following property:

(2.21) If G £ U„ then BiG) £ U„.
From now on, we assume that we have a fixed set U„ with property (2.21). For

a Bravais group B, B E U„, we define its family to consist of all G £ U„ with B(G)

= B. We shall describe in Section (2.3) how we obtained such a U„ for n = 4. Using

property (2.21), we can obtain the normalizers of all groups in U„ from the nor-

malizers of the Bravais groups in U„. Let G £ U„. By Lemma (2.14), Ar(5(G)): NiG)

is finite. Also, the normalizers of finite unimodular groups are finitely generated

[15]. There are efficient procedures [6] to determine from a finite generating set

[gi, • • • , gn\ of 7Y(5(G)) a set of coset representatives 9Î = {ru ■ ■ ■ , rk] of the cosets

of NiG) in NiBiG)). By Schreier's theorem [14],
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NiG) = (rtgj-rjgj1 | / = 1, • • •, n, j = 1, • • •, k)

where r,g¡ denotes the coset representative of the element r,g¡ in the set 3Î. As G is

finite, there is an effective method to decide if a given element is in N(G) and, hence,

since N(B(G)):N(G) is finite, an effective method to determine r,g¡ from r,g¡. All

these procedures have been implemented on a computer.

(2.3) In dimension 4, from the application of existing computer programs, a

listing of the lattices of subgroups of all Dade groups [12] with all Z-equivalence

relations between these subgroups was available [7]. From this, a set U4 of repre-

sentatives of all Z-equivalence classes of finite subgroups of GL(4, Z) satisfying

property (2.21) was determined [8]. For n = A, among the 710 groups in U4, there

are 64 Bravais groups.

3. Finite Normalizers.

(3.1) In this section, we shall find necessary and sufficient conditions for a finite

subgroup G ^ GL(«, Z) to have a finite normalizer in GL(«, Z).

(3.11) Lemma. N(G) is finite if and only ifZiG), the centralizer of G in GL(n, Z),

is finite.
Proof. For y £ NiG), the correspondence <p: y —> y<p £ Aut(G) defined by

giy<p) = y~*gy is a homomorphism from N(G) into Aut(G). Since G is finite, so is

Aut(G), and thus N(G):ker <p is finite. The kernel of <p is precisely Z(G), and the

result follows.

(3.2) We now consider ZiG) for a f.u. group G.

Let CiG) = {Y E MnXn (Z) | Yg = gY for all g £ G ¡, i.e., the commuting ring

of G in Af„x„ (Z). Then Z(G) is the unit group of C(G). Since C(G) is a Z-submodule of

the finitely generated free Z-module MnXn (Z), C(G) has a finite Z-basis which is also

a Q-basis for CQ(G) = { Y £ M„x„ (Q) | Yg = gY for all g £ G}. Moreover, CQiG) =

QC(G) and CiG) is a subring with identity of the Q-algebra QCiG). Thus, CiG) is

a Z-order in the classical sense, and QCiG) is a semisimple Q-algebra [1].

Since QCiG) is semisimple, by Wedderburn's structure theorems,

8

QdG) = © A,
i

where each A¡ is Q-isomorphic to a full matrix ring M/iX/,(/),) for some finite-

dimensional division algebra D, over Q. Also, there exists a maximal Z-order, Omax,

of QC(G) which contains CiG), and Qmax can be decomposed as a ring theoretic

direct sum

(3.21) Qma% S © O*
i

where eachOí is a maximal Z-order in M/jX/,(A) [9].

In general, if O and Q' are two orders over Z of equal (finite) rank such that

Q Z) O', then, trivially, the unit group U(d') of Q' is contained in the unit group

t/(G) of O. Also, we have in this case:

(3.22) Lemma.    Í/(0):Í/(C) is finite.
Proof. Since Q and C are of equal rank, 0:0' is finite. More precisely, if

O = ©J Za, andO' = ©Î ZZ\ where b¡ = ¿Î c^a,, thenQ:Q' = |det(Ci,)|. Let
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Au ■ ■ ■ , A, be representatives of the isomorphism classes of Z-modules of order

G: G'. Each submodule of G of index G: G' occurs as a kernel of a Z-epimorphism

from G to one of the A,. Since O is free of finite rank, there are only finitely many Z-

homomorphisms from G to each A¡. Thus, there are only finitely many submodules of

G of index Q: G'. Left multiplication of these finitely many submodules by elements

of i/(G) induces a finite permutation representation of f/(G). Since G' is unital,

the stabilizer ofG' in t/(G) is precisely i/(G'), and hence i/(G):t/(G') is finite.

By this lemma, we have in our case Z(G) = U(C(G)) is finite if and only if t/(Gmai)

is finite. As a consequence of (3.21),

a

t/(Gmax) s © t/(G,),
i

and thus ZiG) is finite if and only if each i/(G,) is finite. There exists a maximal

Z-order Gi of Af/iX/<(A) such that M/jX/i(Z) Ç Q{, and thus GL(/„ Z) Ç i/(G{)
[9], [10]. Since G, andGi are both maximal Z-orders in Af/iX/<(A), G<: G< H O,

is finite. Also, if /, > 1, GL(/,, Z) contains elements of infinite order. Hence, we have

as a necessary condition for the finiteness of ZiG) that f¡ = 1, i = 1, • • • , s. Note

that in this case eachGi is a maximal order in Dt.

(3.3) We now seek conditions for the unit group [/(G¡) of the maximal order

G¡ in the finite-dimensional division algebra D¡ over Q to be finite.

(3.31) Theorem [5]. Let D be a finite-dimensional division algebra over Q, and

letO. be a maximal order in D. Then £/(G), the unit group ofO, is finite if and only

if D is Q-isomorphic to Q, an imaginary quadratic extension ofQ or a positive definite

quaternion algebra over Q.

It follows from this theorem that i/(G,) is finite if and only if QG¿ is one of the

permissible types.

(3.4) In order to apply these criteria to the unit group of CiG), we consider the

behaviour of the natural representation

A : g->g

of G with respect to its reduction over Q. Let

A = © fjAj

be a full reduction of A over Q where the A¿ are inequivalent irreducible representa-

tions of G over Q with multiplicities /, > 0. Such a reduction can be obtained using

character theory. It follows from a generalization of Schur's lemma [11] that, in the

Wedderburn decomposition of QC(G),

8

QCiG) S © MfiXfiiDd,
i

the division algebra D, can be chosen as the commuting algebra of A(, i = 1, • • • , s.

Thus, the previous results yield

(3.41) Theorem. The unit group of CiG), and thus the normalizer of G in GL(«, Z),

is finite if and only if
(a) fj = 1, /' = 1, ••• ,s.
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(b) Each D¡ is one of the following three types:

I. Q.
II. An imaginary quadratic extension of Q.

III. A positive definite quaternion algebra over Q.

Let n¡ be the degree of the irreducible representation A, of G over Q. The algebra

QA,(G) is a simple subalgebra of MniXn,(Q) [I]. The centre of QA,(G), Z¿, is a finite

extension of Q, say of degree z¡, and QA,(G) is isomorphic to a full ring of matrices

of finite degree r¡ over a division algebra 5, of dimension m\ over Z,. Here, m¡ is

the Schur index of A,. The numerical relation

«< = Zjmsi

holds [4]. From the theory of algebras, it is known that the dimension of the com-

muting algebra, D¡, over Q is equal to z,w¿. In fact, D¡ is anti-isomorphic to 5¿ [1].

Thus, condition (b) above is equivalent to

(V)    I. m, = l,zt = 1.

II. m{ — 1, Zj = 2, Zi imaginary quadratic.

III. m¡ = 2, z, = 1, 5, positive definite quaternion algebra.

In the special case n = A, the above criterion is very easy to apply. Trivially,

for ttj = 1, (b') is always satisfied; and using the methods of [4], one has

n¡ = 2: (b') is always satisfied.

n, = 3: (b') is satisfied if and only if A,G is not a cyclic group.

n, = 4: (b') is satisfied if and only if A;G is not a cyclic or a dihedral group.

For n = A, of the 64 Bravais groups in the list U4 of representatives of all integral

classes, 38 have finite normalizers in GL(4, Z).

4. Block Triangular Normalizers.

the natural representation of G. Say

Ag =

Let G be a reduced f.u. group and A: G —> G

Aig

0 A2g}

For u E NiG), let a be the automorphism of G induced by u, i.e., ga = u~1gu.

Then u~1Agu~1 = Aiga) for every g in G. Thus, A is Z-equivalent as a representation

to Ä where Ag = Aiga).* Let A¡iga) = A¡(g), í = 1,2, and

«11        "12

«21        W22

be block decompositions of u and u"1 corresponding to the block pattern of A.

It follows directly that A2(g)u21 = M2iÄi(g) and A2(g)u'21 = u'2lAx(g) for every g

in G. Hence, from a generalization of Schur's lemma, we have that if At and Ä2

or Ai and A2 have no Q-constituents (as representations) in common, then u21 =

u'21 = 0, i.e., u is block triangular.

* Note that the equivalence of two faithful representations A and Ä of a group G is a more restric-

tive condition than the equivalence as groups of the images AG and ÄG. If A and Ä are equivalent

representations, then, clearly, AG and ÄG are equivalent groups; but if AG and ÂG are equivalent

groups, all that can be said is that for some a G Aut(G), A ° and Ä are equivalent representations.

Here A »(g) = A(ga).
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For i = 1, 2, let xa<, xá¡ be the Q-characters of A, and Ä,, respectively, and let

k¡ ic¡

Xi,    =    ©«.íXá,;, XÁ,    =     ©«,/XÎ,-(
;'-l i'-l

be their reductions into distinct irreducible Q-characters with positive multiplicities.

By the definition of Ä,, xa, and xâ, must have the same reduction pattern, i.e., k¡ = k,

and the irreducible characters can be ordered such that n¿¡ = ñ¡¡ and dim xa,¡ =

dim xiij-
For a in Aut(G), let A°(g) = A,(ga). From the above comments, we have

(4.11) Theorem.   If, for each a in the subgroup of Aut(G) induced by NiG),

Xa,, 5* Xa 1  < j S t„ 1  á  I S fc

then NiG) is block triangular.

The hypothesis of (4.11) is satisfied if A fulfills the following condition:

(4.12) (i) Ai and A2 have no Q-constituents in common.

(ii) Whenever dim Al8 = dim A21, then nu ¿¿ n2„ 1 :£ s ^ ku 1 ;* t íá k2.

To show this, assume, e.g., that A,, ~0 A21 = Ä2t and nu > n2t. Since A and

A" = Ä are Z-equivalent representations, the Q-constituents of A and Ä must be

Q-equivalent in some order. Also, A\ and Ä2 have no Q-constituents in common.

From «,, > n2„ it follows that Alt ~Q Alr, some I Ik r ^ ku or Ais ~Q Ä2„, some

v 9a t. Hence, Ä2, ~Q Älr or Ä21 ~Q A2„v ^ t. This is a contradiction.

The above condition is easily applied, particularly in the case n = A. Of the 26

classes of Bravais groups with infinite normalizers, 12 have block triangular nor-

malizers and, in fact, satisfy this condition.

5. Computational Methods for Determining Generators for Infinite Nor-

malizers. Some Examples.

(5.1) There are 26 classes of Bravais groups in 4 dimensions which have infinite

normalizers. Of these, one is the group ( —74) which has normalizer GL(4, Z); three

of these classes consist of irreducible groups which do not satisfy (3.41) and hence

have infinite normalizers; 12 have reduced representatives which satisfy (4.11) and

hence have block triangular normalizers; and 10 classes consist of reducible groups

which do not satisfy (4.11) and do not have block triangular normalizers.

In three cases ZiG), the centralizer of G, is naturally isomorphic to GL(2, R)

where R is the ring of integers in the 4th or 6th cyclotomic field. For these cases,

the following lemma is useful:

(5.11) Lemma. Let a £ C be an algebraic integer of degree m such that Z[a]

is a Euclidean domain. Let U be the unit group of Z[a]. Then GL(2, Z[a]) is generated

by the elements

g =

tu   =

0    1

-i   o

u'1    0

h, = i = 0,

0 WJ

m 1;

u.

Proof   GL(2, ZH) = [A £ M2X2(Z[a]) | det A £ U\. The map <f>: GL(2, Z[a]) ■
U given by A<f> = det A is an epimorphism.
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Let 77 = ker <f>. Then the elements g, /z, and tu are in 77, and GL(2, Z[a]): 77 = | í/|.

For any ¿ = rj   >] £ 77,

and

naw¿ =

IK^Y'^

a — c 2j ^,a'

a

m-l

+ a ^ kiO*    *
i-O

Now {a0, ■ ■ • , am_*} forms a Z-basis for Z[a], Thus, by premultiplication of A

with matrices of the above type which are determined by the quotients in a Euclid's

algorithm scheme for a and c, we can transform A into a matrix of the form [„ "].

Since the premultiplication matrices and A are in 77, [„ "] must also be in 77, i.e.,

xz = 1. Hence, x £ U, say x = u, and z = u~\ Premultiplication of [J "] by r„

transforms it into a matrix of the form [¿ []. Since the elements hZg, i = 0, • • • ,

m — 1, generate all matrices of this latter form, g, and A¡ and the tu generate 77.

The set {vu \ u £ U) is clearly a set of coset representatives for 77 in GL(2, Z[a]),

and the result follows.

In several cases, ZiG) is naturally isomorphic to a subgroup T of GL(2, Z) where

the entries of the matrices in T must satisfy certain congruence conditions. For these

cases, the following two lemmas are useful:

(5.12) Lemma. Let a, b E Z, b ^ 0. If a — b = 1(2), then there is a Euclid's
algorithm scheme for a and b in which all the quotients are even.

This lemma is easily proved by noting that for two integers c, d with ¿^0 and

c — d = 1(2), if from the division algorithm we have c = dq + r, 0 < r < \d\ with

q = 1(2), then c = d(q + d/\d\) + (r - \d\) with 0 < \r - \d\ \ < \d\, and d -

(r - \d\) = 1(2).
(5.13) Lemma. Let a,b £ Z, b 5^ 0. Then there is a terminating Euclid's algorithm

type scheme for a andb in which the quotient in each odd numbered step is a multiple of 3.

Proof. Choose q, r £ Z such that a = bq + r, 0 f¿ r < \b\, say q = 3t + k,

kE {-1,0, 1). Set q, = 3i and rx = r + kb. Then a = bq, + ru 0 á N < |26|.
If r, ?í 0, then

and

6 = kr, + r2    with 0 ^  |r2| <  |6| if k ^ 0

< \b\ ifk = 0.b = ib/\b\)ri + r2    with 0 g |r.|

Continuing in this manner, since \b\ > \r2\ > |r4| > • • • , we get the desired result.

(5.2) Let G be a representative of one of the three irreducible 4-dimensional

Bravais classes not satisfying (3.14). The reader is referred to [4] for the verification

of the following observations about G.

The centre of the Q-enveloping algebra of G is a real quadratic extension of Q,

and G is a dihedral group of order 16, 20 or 24, say \G\ = 2m. The cyclic subgroup

of order m, SG, of G is also an irreducible f.u. group. Since there is only one Z-
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equivalence class of the irreducible cyclic groups of order m, we may assume 5G =

{A ) where A is the companion matrix of the /wth-cyclotomic polynomial.

Let K = QiA). Then K is isomorphic to the wth-cyclotomic field. The ring of

integers in K is Z[A] ÇZ MiXi(Z). Let UiA) be the unit group of Z[A]. From the

Cayley-Hamilton theorem it follows that UiA) = K (~\ GL(4, Z). Also, K is its own

commuting algebra in MiXiiQ). Thus, U(A) = \X £ GL(4, Z) | XA = AX\.

The Galois group GK/Q of K over Q can be faithfully represented in GL(4, Z)

in such a way that for any 5 £ GK/Q, the action of 5 on K is the same as conjugation

by the matrix corresponding to 5. Moreover, this representation can be determined

constructively. Let 77 be the group of matrices corresponding to GK/Q, and let N £ 77

be the matrix corresponding to the element of GK/Q induced by A —> A'1. Since

TV2 = 74 and N~1AN = A'1, we may assume that G has concrete representation

G = (A, N).
IÏXE N(Sa), then X~lAX = 8A for some 5 £ GK/Q. Hence X~XAX = T~lAT

for some T £ 77, and XT'1 £ U(A). Thus N(S0) = U(A)H.

(5.21) (a) \G\ = 16.
UiA) = </l,74 + /l + /r1) [13].

77 = (N, M) = C2 X C2 where Ni is the matrix corresponding to A —> /I3.

Thus/V(50) = (G, #,, 74 + A + A'1}. Now AW, = N,N and A/(74 + /i + A'1) =

(h + A + A~')N. Hence NiG) = N(Sa).

(b) \G\ = 20.
U(A)= (A,A + A~l) [13].

77 = (Ni) ^ C4 where A^ is the matrix corresponding to A —> ̂7.

tf(G) = W(50) = <¿,/< + ^-I,7V1).

(c) |G| = 24.

U(A)= (A,h + A) [13].
77 = (N, N¡) = C2 X C2 where /v-! is the matrix corresponding to A•—> ̂5.

7V(G) = AT(50) = (0,^,7, + ^).

(5.3) Let G ?í (—74) be a representative of one of the ten classes of reducible

Bravais groups not satisfying (4.11). From direct inspection of the list of 4-dimensional

Bravais groups, G is a cyclic group of order 4 or 6, a dihedral group of order 8 or

12 or a Klein 4-group.**

(5.31) Let G be cyclic or dihedral. By inspection of the Bravais group list, the

natural representation A of G may be assumed to have the form

A     TA^   *Ag =

_ 0      A2g_

where Ai and A2 are Q-equivalent irreducible 2-dimensional representations of G.

QA^ and QA2G are Q-isomorphic simple algebras over Q. By Wedderburn,

QA,G = MrXr(B) where 5 is a finite-dimensional division algebra over Q. Let F

be the centre of 5, say B:F = /, and let s be the Schur index of 5. Then the relation

2 = fs2r holds [1].

If G is cyclic, QA¿G is commutative, and we have f = 2, s = r = I. Thus QA.G

~ F, where F is an wth-cyclotomic field, m = A or m = 6. If G is dihedral, then

** A list of the Bravais groups in dimensions 2, 3 and 4, as well as their normalizers and other

related information will be published in the near future.
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QA,G is noncommutative, and we have / = s = 1, r = 2. Thus QA.G = Ai2x2(Q).

For any subgroup 77 < GL(«, Z), let C(77) denote the integral commuting algebra

of 77. The centralizer of 77 in GL(«, Z), Z(77), is the unit group of C(77). From the

general theory of algebras, we have QC(A,G) is anti-isomorphic to 5 and from a

generalization of Schur's lemma QCiG) = Af2X2(5).

In the case G is cyclic, QC(G) S M2X2(F) where F.Q = 2. Hence QC(G):Q = 8.

In the case G is dihedral, CiG) S M2X2(Q), and QC(G):Q = 4.

(5.32) The Cyclic Case. Let \G\ = m and let a be a primitive wth-root of unity.

Let G = (g). We may choose G such that A[g = A2g = A where A is the companion

matrix of the wth-cyclotomic polynomial.

By direct computation,

72 0

0 0.

A    0

0 I2

0 0,

0    A

0 0

_72 0.

0     0

J)     0J       |_0     0J       LA    0J       L0     A_

are in CiG), and since QCiG):Q = 8, they form an integral basis for QC(G). Thus,

CiG) = \ixtiI2 + yuA) | 1 Ú i, j Û 2, xu, yu £ Z}.

CiG) is isomorphic to A72X2(Z[a]) under 72 —» 1, A —» a; and Z(G) £g GL(2, Z[a]).

Now Z[a] is precisely the ring of algebraic integers in Q(a), and for m = 4 or

m = 6, Z[a] is a Euclidean domain [13]. Applying Lemma (5.11), we obtain a set

of generators for Z(G).

The natural homomorphism from A^G) to Aut(G) has kernel Z(G). Also |Aut(G)|

= 2. Thus A/(G):Z(G) ̂ 2.
For m = A, the matrix

T =
Ti    0

.0      7Y

r,
0    1

.1    0_

is in 7V(G)\Z(G), and /V(G) = <Z(G), T). For m = 6, the matrix

A'
#!        0

0        A/,.

tfi =
1 1

0    -1

is in 7Y(G)\Z(G), and /VYG) = <Z(G), JV).
(5.33) Examples of the Dihedral Case.   Let G = (A, B \ Am = B2 = iAB)2 = 74).

(a) By inspection of the list of Bravais groups, in one dihedral case of each of

the orders 8 and 12, we may choose G such that

Ag
Aig      0

. 0      A2g_

with Ai = A2.

0     0

0    72

0    0

0     0

h    0_

0    0

.0    72J
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are in C(G), and since QC(G):Q = 4, they form an integral basis for QC(G). Thus

CiG) = lixul2) | 1 £ UJ-á 2,x,¡ E ZJ.

CiG) is isomorphic to Af2X2(Z) under 72 -» 1, and ZiG) S GL(2, Z). Generating

sets for GL(2, Z) are well known.

Let 5 < Aut(G) be the subgroup of Aut(G) induced by NiG). From A^(G)/Z(G) S

5 it follows that Z(G) together with a set of elements from NiG) inducing 5 generate

N(G). Since 5 must contain the inner automorphism group, Inn(G), of G and Aut(G):

Inn(G) = 2, we must have 5 = Aut(G) or 5 = Inn(G). In both of the two above

cases, we have by direct computation that the outer automorphism

* : is not induced by NiG).

[B A3B

Hence N(G) = (Z(G), G).
(b) m = 6 and G can be so chosen that

Ag =
Alg     0

. 0      A2g_

with

A! .4 = A2A

A,B =  —A2B =

0 -1

1 1

0 1

1 0

Using the technique of case (a) above, we have

dG) =

xl2

zT

yT

0112

T= [_2   _JJ.*.**.«€

CiG) is isomorphic to R = {[* I"] \ x, y, z, co £ Z} under the map indicated by the

notation. Thus, to determine ZiG), we need only determine the unit group t/(5)

of R. Note that U(R) = R H GL{2, Z).
Using Lemma (5.13) and the same technique as in the proof of Lemma (5.11),

we can show that

and hence obtain a generating set for Z(G). As in (a), to determine A/(G) from ZiG)

it suffices to see if

* M
u ^35

is induced by A/(G).

In this case, 'i' is induced by T = [?, i'J. Thus AT(G) = (ZiG), G, T).
(c) w = 4 and G can be so chosen that
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AA =

0 -1

1 0

A5 =

0

0 1

1 0

0

0 -1

1 0.

1 0

0 -1

0 1

1 0.

Using the technique of case (a), we have

CiG) =

CiG) is isomorphic to

x     y

-y    x

2y      0

0    2y

z

-k

2k + x

y

-y

2k + xj

x, y, k,z E Zr

R =
x    2z — y

y   2k + x

x, y, k,z E Z

under the map indicated by the notation. U(R) = RC\ GL(2, Z), and if we let t

2z — y, u = x + 2k, then

UiR)
-t:]

E GL(2, Z) o) = xi2),   y = í(2)

Using Lemma (5.12) and the technique of the proof of Lemma (5.11), we can show

that

and hence obtain a generating set for ZiG). Since

* is induced by    T =

[B -> A"B

0        10        1

-1        0-1        0

1-1        0-1

1110.

N(G) = (Z(G), G, T).
(5.34) Example of the Case of a Klein A-Group.   Let G = (A, B \ A2 = 52

G45)2 = 74>.
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(a) G can be so chosen that

If for X E M4X4(Z), we partition X into 2X2 blocks, say

X =
Xn      X}

X2\     X22 ]■

then by direct computation, X £ C(G) if and only if X2l = 0 and 2Xl2 = Xu — X22.

If X E ZiG), then we must have Xu, X22 £ GL(2, Z) and Xn = X22(2) or, equiv-

alently, XnX~2\ = 72(2). Hence we seek the group

H = l\au    °12] E GL(2, Z)
(La21    a22J

au = a22 = 1(2),    a21 = al2 = 0(2)

Using Lemma (5.12) and the technique in the proof of Lemma (5.11), we can

show that

» - <G .] • [à ?] • [i -í\ -*)■

«»*»-<& i]-ti !]-B -.]>•
Thus, since

Z(G)
<

0 1

1 0

0    1

i   o

1    2

0    1

1   1

0    1

o

o

0    1

o  o

1   1

0    1

1 o

2 1

1        0

0    -1

o

0 o

1 o

1      o

0    -1

1       o

0    -1.

o     o'

0    -1

o

-h
I

>■

Since A is in the centre of GL(4, Z), the only possible nontrivial automorphism of

G induced by A/(G) is

* :

and N(G): Z(G) ^ 2. * is induced by

[B -» AB

T =
-2I2

and hence N(G) = (Z(G), T).
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(5.4) Examples of the Block Triangular Normalizer Case.   Let G be a repre-

sentative of one of the 12 Bravais classes satisfying (4.11).

(a) G = (A, B | A2 = B2 = (AB)2 = 74).

G is a Klein 4-group. G can be so chosen that

A = -h,        B =

.0    0    0 -1

For X E N(G), X has the block form

[•^11 X12   \

o      *22J

where A"u is a 3 X 3 matrix and X22 is a 1 X 1 matrix, say Xn = (a,,) and X22 = id).

By direct computation, X is in CiG) if and only if

Xi2 —

flis/2

a23/2

L(fl33 - d)/2.

Thus X E ZiG) if and only if X £ CiG) and

(i) Xu E GL(3, Z),
(ii) d = ±1,

(hi) a13 = a23 = Oil),

(iv) a33 = d(2).

The first three conditions imply condition (iv), i.e., condition (iv) is redundant.

Using Lemma (5.12) and the technique as in the proof of Lemma (5.11), we can

show that

{ U = («„) £ GL(3, Z) I uiZ = «23 = 0(2)}

10    2

<
= \N =

Nt =

0 1 0

.0 0 1.

1 0 0

0 1 0

0 1 1.

w2 =

1    0    0

0    1    0

AT* =

N7 =

1 0    1_

0 1    0

1 0    0

0 0    1

1    0 0

0    1 0

0    0 1

N3 =

1    0    0

0    1    2

N, =

Ng

0 0    1

1 1 0

0 1 0

0 0    1

1 0 0

0 1 0

0    0-1

I
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Thus

ZiG) ■<
N, N, N, N*

N,

0

An

0 1

fV,

0

N.

0

0

0

-1

1 0 1.

As in Example (5.34), to determine A^G) from Z(G),we need only check to see if the

automorphism

is induced by A(G).

B -> AB

By direct calculation, ^ is not induced by A/(G). Hence, A^G) = Z(G).

(b) G = </<, 5, C | /Í2 = 52 = C4 = (5C)2 = [A, B] = L4, C] = 74). G is iso-

morphic to C2 X 7)8. G can be so chosen that

A = -h,       B =

For X E NiG), X has the block form

0 1

1 0.

C =

0 -1

1 0.

[•^11 -<tl2

0      X22\ '

where each X¡¡ is a 2 X 2 integral matrix, say Xn = (a,,).

By direct computation, X £ C(G) if and only if X22 is a scalar matrix, say X22 =

ö?72, and

flu + öi2 — rf   on + a12 — d

a2l -\- a22 — d    a2l + a22 — c/.

Thus X E ZiG) if and only if X £ C(G) and
(i)d= ±1,

(ii) On + a12 = a2l + a22 = 1(2),

(iii) Xn E GL(2, Z).
For Z„ £ GL(2, Z), condition (ii) is equivalent to

(ii') an = a22(2) and a12 = a2i(2), and an and a21 must be of opposite parity.
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As in Example (5.33Xc),

[(«„) £ GL(2, Z) | un m u22{2),    «xa = u21(2)}

-<[-: n Mi ?]>■
Hence,

ZiG)

i

-<

0   1

-1   0

0

0      0

-1  -1

1        0

0    -1

0

0

-1

0

1  1

0   0

.0 -72

I

Let 5 be the subgroup of Aut(G) induced by A^G). Since A is in the centre of

GL(4, Z), it remains fixed under the action of A/(G). G is the direct product of its

subgroups (A) and (5, C). Thus every element of G can be expressed uniquely as

A"BbCc, a » 0, 1; b = 0, 1; c « 0, 1, 2, 3. The elements of G with a = 0 and a = 1
are of the forms

[o     l\    and     _  0/2    ;] , respectively.

Since A^G) is block triangular, no element of the first form can be transformed into

an element of the second form and conversely under the action of N(G). For if

\xn    Z12]|"72    *~|       \-I2   *~\\xn    X12~\

L 0     z2JLo    *J      L 0     *JL 0     X22\ '

then Xn = 0, a contradiction.

Hence, under the action of N(G), 5 and C must go to elements of (5, C). There-

fore, 5 is isomorphic to a subgroup of Aut(7)12) ^ D12. Since 5 contains Inn(G)

and Aut(A2):Inn(7)12) = 2, to determine NiG) from ZiG), it suffices to check if the

outer automorphism

¥:< B —> CB is induced by NiG).

C ->C

By direct computation, * is not induced by A/(G). Thus, 7V(G) = (Z(G), G).

The technique used in the above example to determine A^(G) from ZiG) is also

applicable to several other Bravais groups, in particular, to a Bravais group of

isomorphism type C2 X Dl2. In this case, any attempt to directly determine A^G)

from ZiG) would be extremely difficult as |Aut(C2 X Di2)\ = 144.
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