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A Probabilistic Approach to a Differential-Difference

Equation Arising in Analytic Number Theory

By Jean-Marie-François Chamayou

Abstract.   The differential-difference equation

Wit) + u(t - 1) = 0, t > 1,
vit) = 0, t < 0,

vit) = constant,       OS/SI,

can be solved by the Monte-Carlo method, for the initial condition v(t) = e~~>, 0 g / á 1,

where the vit) represent the probability density of a random variable:

n        i

t = lim ¿Z n x/,

where the x¡ are independent and uniformly distributed on (0, 1).

I. Introduction. The function i/-(x, y) is equal to the number of integers less

than or equal to x and free of prime factors greater than y. Chowla and Vijayarag-

havan, Ramaswami, Buchstab and de Bruijn have shown that [1]:

lim *¿^ = vit),
y

where vit) is a function satisfying

tv'it)-\-vit - 1) = 0, t > 1,

vit) =0, f < 0,

oit) = 1, Oái^l.

Many authors have studied the limits and asymptotic behaviour of this equation

[2]; Norton gives an exhaustive bibliography [3]. Highly accurate numerical results

were obtained by Dickman, Bellman, Van de Lune ([4], [5], [6]).

The differential-difference equation solution by the Monte-Carlo method does

not claim to be as accurate as these previous calculations but only shows a probabilistic

aspect of this equation.

II. Stochastic Model. Let u„ be the random variable: un = Xi + XiX2 + • • • +

XiX2 ■ ■ ■ xn, where x¡ are independent random variables uniformly distributed on

(0, 1).
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It may be deduced from the distribution of a product of x¡ variables that if n —> <»,

w„ converges in probability to a limit.

Lemma. Assume that vit) is a function continuous on 0 < t < <» satisfying the

following equation:

tv'it) + vit - 1) = 0,        t > I,

(1) vit) = 0,        i < 0,

ü(í) = C,       0Í(S1.

This function is identical to fit) : the probability density of a random variable:

n i

/= lim 23 IX x¡,

where x¡ are independent random variables uniformly distributed on (0, 1) if the constant

C equals e~y, y being the Euler constant.

Proof* Introduce

CO i CO 1

'» =   S II *i    and    it =  2 II */!
i-l     ¿-1 ¿=2    ¿«2

i„ and tb have the same probability distribution and ta = Xi(l + tb), tb and x, are

independent.

Let Fit) be the distribution function of ta:

F(t) = <Pr[/a ̂  ft

of course, if í < 0, then F(i) = 0.

If t > 0, we have

F(r) = <Pr[r. Û t] = S>r[Xlitb + 1) g, t]

=   Z) <Pr[r6 + 1 ^ r/*](Pr[* g í, á í + *]

=  Yl f(- - l)(Pr[x è xl g x + dx] =   [   fí- - lj dx.

Put (r/x) -1 = 5, then

FW = ' /     t    i   ,-Z ds.J,_i is + 1)

IfO á t è 1, then

F«) = < / = C-í,
•'o

Fjs) ds

is + l)2

where C is a constant. Hence, fit) = F'it) = C for 0 g / ^ 1.

If í > 1, by differentiating once, we get

K0 = (F(0 - Fit - l))/t ^ 0;

by differentiating again, we find tf'it) = —fit — 1), í > 1.

* I am indebted to J. J. A. M. Brands for the correction of my initial proof.
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Table I

10

?r (un .< 1)

Explicit value

0.69315

0.61428

0.58498

0.57246

0.56674

0.56404

0.56273

0.56209

0.56177

0.56146

Monte-Carlo value

(105 - runs)

0.69416

0.61622

0.58350

0.57356

0.57016

0.56303

0.56290

0.56381

0.56030

199

Let h(s) be the Laplace transform of f(t) [7]:

his) = (CoA) exp{-£,(*)},

where

/CO       —2

dz



200 JEAN-MARIE-FRANÇOIS CHAMAYOU

v(t)

Explicit value

Table II

At  =   0.1
Monte-Carlo value (20 000 runs)

Rough value Smooth value
using REINSCH's

(10) program

0 -0.1
0.1-0.2
0.2-0.3
0.3-0.4
0.4-0.5
0.5-0.6
0.6-0.7
0.7-0.8
0.8-0.9
0.9-1.0

0.96801
0.99206
1.03391
0.96890
1.01788
1.01432
1.02233
0.99206
1.01343
0.95733

1.1
1.2
1.2
1.4
1.5
1.6
1.7
1.8
1.9

0.9046898202
0.8176784432
0.7376357355
0.6635277634
0.5945348919
0.5299963708
0.4693717489
0.4122133351
0.3581461138

1.0-1.1
1.1-1.2
1.2-1.3
1.3-1.4
1.4-1.5
1.5-1.6
1.6-1.7
1.7-1.8
1.8-1.9
1.9-2.0

0.95911
0.91547
0.81484
0.69016
0.58419
0.57974
0.50849
0.43992
0.37492
0.31169

0.9624
0.8874
0.8132
0.7403
0.6693
0.6006
0.5346
0.4719
0.4128
0.3578

2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
4.0

0.3068528194
0.2604057802
0.2203571379
0.1857994616
0.1559912639
0.1303195618
0.1082724430
0.08941856572
0.07339158076
0.05987811599
0.04860838829
0.03932296954
0.03170344451
0.02546472387
0.02037177906
0.01622959324
0.01287543418
0.01017283782
0.008006872188
0.006280373062
0.004910925648

2.0-2.1
2.1-2.2
2.2-2.3
2.3-2.4
2.4-2.5
2.5-2.6
2.6-2.7
2.7-2.8
2.8-2.9
2.9-3.0
3.0-3.1
3.1-3.2
3.2-3.3
3.3-3.4
3.4-3.5
3.5-3.6
3.6-3.7
3.7-3.8
3.8-3.9
3.9-4.0
4.0-4.1

0.29031
0.23510
0.17810
0.17098
0.16208
0.11132
0.09172
0.07748
0.05699
0.05076
0.05165
0.04186
0.02583
0.01514
0.01603
0.00980
0.01069
0.01514
0.00801
0.00534
0.00178

0.3070
0.2608
0.2193
0.1826
0.1506
0.1231
0.0999
0.0808
0.0653
0.0528
0.0425
0.0333
0.0250
0.0186
0.0145
0.0125
0.0121
0.0120
0.0092
0.0053
0.0018

Assuming that fit) is a probability A(0) = J™ f(t) dt = 1, the constant C0 equals

e~y, where 7 is the Euler constant.

Since/(i) = Casi = 0, we obtain the boundary condition: lim, ^,ía(s) = C = e~y.

From fit) = C as t = 1, inverting Laplace transform, it may be deduced again

that/(l) = e~y, so that

fit) = 0,

KO = c"7.

fit) = -fit DA,

t < 0,

0 g t g 1,

t > 1.



A DIFFERENTIAL-DIFFERENCE EQUATION 201

Table II

v(t) explicit value (*) At = 0.1
t

Monte-Carlo value (3.10   runs)

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.3

4.9

5.0

0.38285853

0.29754751

0.23050507

0.17799428

0.13701182

0.10514453

0.80455901

0.61395778

0.46728046

0.35472534

10

10

10"

10"

10"

10"

10"

10"

10"

10"

-2
4.1-4.2

4.2-4.3

4.3-4.4

4.4-4.5

4.5-4.6

4.6-4.7

4.7-4.8

4.8-4.9

4.9-5.0

5.0-5.1

0.39

0.35

0.27

0.165

0.135

0.13

0.095

0.065

0.085

0.08

10

10"

10"

10"

10"

10"

10"

10"

10"

10"

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

6.0

0.268580

0.202822

0.152768

0.114775

0.860192

0.643153

0.479771

0.357089

0.265188

0.196503

.th

10

10"

10"

10"

10"

10

10"

10"

10

10"

-4

-4

(*)Calculated by 4  order TAYLOR'S expansion

(A)Calculated by 5th order TAYLOR'S expansion

^Y dt =   0.62433

DICKMAN result   Monte-Carlo value

= 06238
(1 + t)

III. Numerical Calculations. For t ^ 4, the solution of Eq. (1) is obtained

by explicit expression (see Appendix); for t > A, it is impossible to express the solution

by means of known functions. This explicit expression can thus be used for the well-

known equation of the statistic theory of damage [8].

tu'it) = uit - 1),       t > 1,

"(0 = 0, t < 0,

uit) =1, 0 ^ t g 1.

For / g 4, the function v(t) can be calculated with an accuracy depending solely

on the polylogarithms which are used in its expression [9]. The random variable un is

very easy to simulate by means of the pseudo-random numbers of Lehmer's method.
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It can be seen in Section II that the un distributions achieve rapid convergence as

n increases.

For the calculations, n is chosen so that we cannot discriminate between the

distributions of un and un.¡ because the statistical fluctuations of the pseudo-random

numbers are greater than the discrepancy between them.

IV. Results. Table I gives an illustration of Section II; notice that we get the

Euler constant simulated by — Log|(Pr[«„ £¡ 1]|, n —> <x>.

Table II represents the calculation of the function vit) explicitly and by simula-

tion. Results are smoothed by the spline method [10]. Polylogarithms can be cal-

culated by means of Chebyshev's polynomial expansion [11], [12]; Kölbig gives an

excellent algorithm for the dilogarithm's calculation [13].

V. Conclusion. The main purpose of this paper is to test the ability of the

Monte-Carlo method to resolve differential-difference equations, and, using a classical

example, to justify further studies in the field of the statistical theory of damage and

neutron transport problems [14] which involve the same mathematical data.
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Appendix.

c(0 explicit behaviour,

vit) = 1 - Log r,       l|!á 2,

1*0 = 1 - Log í + [| Log2 t + L2(l/0 + L2i-l)],        2 g ( á 3,

vit) = 1 - Log t + [| Log2 t + L2(l/0 + L2i-l)]

- {\ [4i) - L»((7-=-ï7)] - \(Log3(f - !) - Log3 2)

+ ^ (Log2(i - 1) Log t - Log2 2 Log 3) + ^(73^) Log j-~

- L2(¿j Log (I) - L2(-t4i") LOg(' " 2) + LÁ~l) L°8 3

Vt

+

22 |_ Vl + 2 \22       it - lf]J
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By means of Newton's method, the explicit expression permits easy calculation of

the roots tk

Ditk) = - ,       k = 4, 5, • • ■ , 203.
K

For example, the roots

U = 2.1245966,        h = 2.2571089

are used by Davenport and Erdös [15].
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