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Discrete Green's Functions

By G. T. McAllister and E. F. Sabotka

Abstract. Let G(P; Q) be the discrete Green's function over a discrete A-convex region

a of the plane; i.e., a(P)GXx(P; Q) + c{P)Gvi(P; Q) = - btP; Q)/h' for P G O», G(P; Q) = 0
for P G dSlk. Assume that a(P) and c{P) are Holder continuous over Q and positive. We

show that \D^GiP; Q)\ g Am/Pp>Q and |5<™>G(P; Q)\ g BmdiQ)/p%\ where D™ is
an mth order difference quotient with respect to the components of P or Q, and Í5<m)

denotes an mth order difference quotient only with respect to the components of P.

Introduction. Place a square grid on the plane with grid width zz; grid points

are P = (mh, nh) where zzz and zz are integers. If P = (x, y) is a grid point, the neighbors

of P are the points Px = (x + h, y), P2 = (x, y + h), P3 = (x — h, y), and Pt =

(x, y - h).

Let 0 be a plane region. Let üh be the set of grid points P£fl such that the four

neighbors of P are in Q. Let diïh be that set of grid points in Ü with at least one neigh-

bor in the exterior of 0.

Let WiP) be defined on Qh + düh. Let P E Ö*. Then we make the following

definitions: hWxiP) = W(PX) - W(P), hW±(P) = W(P) - W(P3), hWv(P) = W(P2) -

W(P), hWt(P) = W(P) - W(Pt), Wxi(P) = (WX(P%, Wvi(P) = (Wv(P))t, and

Wxy(P) = (Wx(P))y.

Let a(P) and c(P) be Holder continuous functions on fi; let X and L denote the

positive minimum and maximum of these functions over Ü. Let Q G 0* and let

G(P; Q) be the solution to the problem

aiP)GxtiP; Q) + ciP)GvtiP; Q) = - 5(P; Q)/h2,        P G Í2„

GiP; Q) = 0, ?£ düh;

here difference quotients are with respect to the components of P and 5(/'; Q) is

the Kronecker symbol.

In this paper, we obtain estimates on £)<m)G(P; Q) and D(m,G(P; Q) where D(m>

denotes an zzzth order difference quotient with respect to the components of P and/or

Q and Dím)G(P; Q) denotes an zzzth order difference quotient with respect to the

components either of P or of Q. Basic to our methods of obtaining these estimates

is the discrete analogue of the logarithm function as developed by McCrea and

Whipple [7].

A significance of estimates of the type carried out in this paper is that they may

be used, as in [5], to obtain pointwise a priori estimates on difference quotients of

solutions to linear difference equations and these estimates may be used for the

construction, as in [6], of a solution to nonlinear difference equations. Such a priori
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estimates on difference quotients are also important in showing the convergence of

specific numerical methods, as in [2], and in showing that solutions of difference

equations converge—often these estimates give an order of convergence—to a solution

of the differential equation, as in [9] and [11].

Our results may also be used to obtain estimates on the difference between dif-

ference quotients of the discrete and of the continuous Green's function; e.g. [8]

and [10].
In the first five sections, we consider G(P; Q) only for the discrete Laplacian,

i.e., a(P) = cfP) = 1. In Section 1, we obtain an estimate on G(P; Q) when iïh is a

half-plane. Our estimates are of the type \Dim)G(P; Q)\ g AJ pmPQ and \Dlm)G(P; Q)\

^ Bmd(Q)/p%1 (or \D'm)G(P; Q)\ ^ Cmd(P)/PmP+Qx) where p2PQ is the squared distance

from P to Q plus h2, d(X) is the distance from X to the dQh, and Am, Bm and Cm are

absolute constants—explicitly computed—which are independent of h. Some of

these estimates are similar to those in Widman [12] who considers the Green's func-

tion for the continuous problem. In the discrete case, there are intrinsic difficulties

which are not present in the continuous theory; e.g. we may not use any mapping

techniques for the discrete problem. In Section 2 and in Section 3, we construct

G(P; Q) for an infinite strip and for a rectangular region. From this construction,

we obtain the same type of estimates as in Section 1. As a consequence of these

sections, we may construct the G(P; Q) associated with the discrete Laplacian when-

ever fi is a half-plane, quarter-plane, eighth-plane, strip, triangle or rectangle.

We extend our estimates in Section 4 to general domains which are discrete

/¡-convex (see the text for the definition). Here we discover that second-order dif-

ference quotients of G(P; Q) exhibit a singularity in the neighborhood of an obtuse

corner. The order of the singularity is slightly worse than that predicted in [4] for

the continuous theory.

In Section 5, we consider the general equation in (*) under the assumption that

the coefficients a(P) and c(P) are a-Hölder continuous over 0. These results repre-

sent an extension and an improvement of those in [5].

Some of our estimates implicitly require that the mesh size h be sufficiently small

but still 0(1). These restrictions on zz will be clear from the context. A requirement

on the size of h is not a limitation of the results as the interest is in the case that h

gets arbitrarily small.

1. The Discrete Green's Function for Half-Planes. Place a square grid over

the plane with grid width h such that the origin is a grid point. Let Q = (£, tj) be an

arbitrary but fixed grid point with -q Sï 0. Let P = (x, y) be any grid point with

y Sï 0; we denote the set of all such points by zr+ if y > 0 and by dir+ if y = 0. Let

a and b be arbitrary real numbers and let L(a, b) be the discrete analogue of the

logarithm function given by the relation [3, p. 422] or [7]

...        u 1  |f 1- cos[bX/h] exp[-|«l p/h] dX   , log 8 + 27
(1) Lia,b) = ~yo — 4- log A-

where cos X + cosh p = 2 with p/X —> 1 as X —» 0, and y is Euler's constant.

Let us define the function G(P; Q) by the relation

(2) GiP; Q) - Ux - É, y + r,) - Lix - f, y - »).



DISCRETE  GREEN'S   FUNCTIONS 61

This mesh function is called the discrete Green's function for the upper half-plane.

We shall show in this section that if D(m>G(P; Q) denotes an mth order difference

quotient of G(P; Q) as described in the introduction, then there exist absolute con-

stants Am and Bm such that PpQ \G{m\P; Q)\ £ Am and pJJ1 \Gtm)(P; Q)\ ^ BJiQ)

where p2PQ is the square of the distance from P to Q plus h2 and diX) is the distance

from Zto dzr+; Am and Bm are independent of h.

Now we will prove a collection of results which will be used frequently in deriving

our estimates.

Lemma 1.1. (a)   For each mesh point P G ir+, we have that

AMP; Q) = IGix + h, y; Q) + Gix - h, y; Q)

4- Gix, y + h;Q) + Gix, y - h; Q) - 4C(P; Q)]/h2 = -6(P; Q)/h2

where b(P; Q) = 0ifP^ Q, Ô(P; Q) = 1 if P = Q, and G(P; Q) = OforPE dir\
(b) For all real numbers a and ß, we have that Lia, ß) = Liß, a). In fact, L(a, ß)

is symmetric about the lines a = ß, a = —ß, a = 0 and ß = 0.

(c) For X and p related as in (1), we have that X/sh p ^ sin X/sh p ^ 0;/bz- brevity,

we use sh Xfor sinh X.

(d) IfXE (0, zr), then X/(1.8) ú p Ú X.
(e) The function f(p) = (1 — exp(—ap))/(exp(2p) — 1) is positive and monotonically

decreasing for a ^ 1.

(f) IfO ^ s ^ r, thenexp(—r±s)p./(l+exp p)andexp(—r—l-\-s)p/(l4-exp(—^))

are positive and monotone decreasing functions.

(g) The function A(p) = {sh((z- + l)p) — sh(z-/¿)} exp(—sp)/sh p is positive and

monotone decreasing for s ^ r + 1 with s 2ï 0 and r ^ 0.

(h) The following elementary inequalities are true:

if) p. ch p 3ï sh ßfor (iä0;
(ii) sin x ^ xfor x ^ 0;

(iii) a + 2 ^ a exp(—2/i) + 2 exp(a^) where a 2: 1 and ju ^ 0;

(iv) 0 ^ X/sh m ̂  1.3/or X G [0, zr] azzdcos X + ch p = 2;

(v) x exp(—air/ax) g 1 if x ^ 0, a > 0, amia ^ 1.

Fz-oo/.   (a) follows closely the reasoning in [5] and (b) follows from (1).

(c) From elementary considerations,

X/sh p ^ sin X/sh p = ((1 - cos2 X)/((2 - cos X)2 - 1)),/2

= ((1 4- cos X)/(3 - cos X))1/2 ̂  0.

(d) Let giX) = X — p. Since cos X + ch p. — 2 with p/X —» 1 as X —> 0, then

g(0) = 0 and g'(X) = 1 - ((1 + cos X)/(3 - cos X))1/2 ̂ 0. Therefore, for X G [0, r¡],

X è M. Now observe that sh p ^ X(l + X2/24) for X G (0, r). Since ífX/aV =

2 - cos X ch p -r- sin3 X ^ 0, max X/j* = zr/ch"1 (3) ^ 1.8.

(e) Simply observe that f(p) è 0 since a + 2 g a exp(—2/u) + 2 exp(aju).

(f) Set g(/z) = exp(—r — 1 + s)p/(l -\- exp(—/*)); we see that

= {(-z—l+5)exp((-z—14-i)ít)(l + exp(-M))4-exp(-z—14-i)MÎ/(14-exp(-M))2.

Since 0 í£ s ^ z*, g'(,u) ^ 0. The proof of the remaining results follows in a similar way.
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(g)   Since s^ r + 1, we may write s = t + r + 1 with t ^ 0. Hence,

Aip.) = expí-f/Ojexp/z - exp(-f> + l)p) + exp(-2r/z) - l}/(exp(2/x) - 1).

Our result now follows from (e) and (f).

(h) These results follow elementary considerations.

We are now ready to establish the principal result of this section. Before we pro-

ceed with this, however, we must make an obvious remark: If P = (x, y), Q =

(I, v), P * Q, and cPPQ = (x - Ç)2 + (y - r,)2, then l/dPQ g V2/Ppq.

Theorem 1.1. We have the following estimates for the discrete Green's function

for the upper half-plane:

(a) \GiP; 0)| g (4.2)V2 diQ)/irpPQ and |G(/>; Q)\ g (4.2)V2 diP)/irpPQ.

\GviP;Q)\ ^ i4.6)diQ)/p2PQ, \GxiP;Q)\ g iS .6)diQ)/ir P2P0,

(b) \GyiP; Q)\ á H1.5)diQ)/p2Pa, ¡GAP; Q)\ g i2.5)i8.6)diQ)/irP2PO,

\G,iP;Q)\ = \G,iP;Q)\, \GxiP;Q)\ = \G¡iP; Q)\,

\GviP;Q)\ = |G,(P;ß)|, iG.fP; 0)1 = \G((P;Q)\.

(c) |G„(P; ß)| g (2.8) V2/wpPQ, \GxiP; Q)\ í i2.3)V2/irPPQ,

\GviP; Q)\ ú (2.5) \Gy{P; Q)\, \GtiP; Q)\ Û (2.5) \GxiP; Q)\.

\Gx¡iP,Q)\ = |G{f(P;0)| =  |GI{(^;0)| =  \G±$P; Q)\ á 14V2/tP2pq,

id)        |G„(P;0)l =  \G,¿P,Q)\ =  \G„(P; Q)\ =  \G„(P; Q)\ g 2\/irP2PQ,

|G„(P;0)l =  IG^O)! =  \GUP; Q)\ =  \GhiP;Q)\ á i6.9)/irp2PQ.

(e)        \GxuiP;Q)\ ^ U0.9)diQ)/P3PQ, \GxiiP; Q)\ ú i2l.2)diQ)/p3PQ,

\Gv¡iP;Q)\ ú i21.2)diQ)/P3PQ.

Proof   (a) Let r = y/h, s = ij/zz and t = \x - £|//z. Then

\G(p. ö)| = 1 I f sin(rX)sin(.X)exp(-zM) Ä   ^ i f* * exp(-rM) ̂
7T | J0 sh ^ zr Jo sh /i

exp(—r>) ¿X
Jo

- í   exp(-/X)/(1.8) rfX ̂  (2.4)y/zr | x- ¿|;
Jo

q.3> r
zr     Jo

<

here we have used (c) and (d) of Lemma 1.1. By a similar line of reasoning, we may

conclude that \G(P\ Q)\ g (2.4)zj/ir \x - £|.

Now we write, using the symmetry of L(a, ß),

G{p. Q)ms±[' cos^) exP«~* + 'MO - exP(-2,M)) ^    tffj6ji
,„x 2zr Jo sh /i

cos(rX) exp([—r + s],u)(l — exp(—2^))

lit Jo

For r g s, we have

- -L f"
2zr Jo

¿X,    if z- ̂  s.
sh m



DISCRETE   GREEN'S   FUNCTIONS 63

|r.h.s. (3.1)| g
1    r 2 exp[(z- — s)p]rp

\2ir L sh p

li r
g   - 1    r exp[(z- — s)p] dX

\t Jo

dX

¿ (1.8)z-/zr |r - j|.

In a similar way, |r.h.s.(3.2)| ^ (1.8)5/zr \r — s\ for r ^ s. Hence, we have \G\P; Q)\ ^

(l.S)Vzr \y - v\ and \G(P; Q)\ í (l.$)y/ir \y - „|.
Combining the results of these two paragraphs yields the estimate, for P ¿¿ Q,

Ppq \G(P; Q)\ =g i\x - Él 4- \y - n\) \G(P; 0)l =§ '

If P = Q, \G(Q; Q)\ g (1.3)y/«or \G(Q; Q)\ è (1.3)*/*.
(b) We first consider

(4.2)Vzr

and

{(4.2)y/ir.

GviP; Q) = [G(x, y + h;í,r,)- Gix, y; £, 7/)]/A

= [/-(£ - x, -z; — y - h) - L(£ - x, 77 — y — h)

+ Iß - x,-V - y)- ¿(I - x, zz - y)]//z

= [L(í, -s - r - 1) - Lit, s - r - 1) - L(Z, -s - r) + Lit, s - r) ]/h

1
(4)

/Jo

= —2Í"
2irfl     J0

cos(zX)^(m) dX,    for s è z- 4- 1,

cositX)B(ji) dX,     for s ¿ r,

where /4(/i) is given in Lemma 1.1(g) and

Bip) = exp(—z-/i)[exp(—p) — l]shisp)/sh p.

Since ^4(m) is monotone decreasing in p and since, by Lemma 1.1(c), dp/dX =

sin X/sh m ̂  0, we have that A(p) is monotone decreasing in X; let ^(X) denote Aip)

as a function of X. Looking at (4.1), we write

/;
A(X) cos(iX) dX =_ 1  /**

r Jo
^l(X) cos z rfz.

Decompose the interval [0, r>], for Z ̂  0, into j[0, ir/2], [zr/2, 3tt/2], • • • , [(2zc 4- l)zr/2,

Ztt]| or into {[0, zr/2], [tt/2, 3tt/2], • • • , [(2k - l)ir/2, (2k + l)ir/2]} where, in the

latter case, we have that (2k + l)ir = 2tir. Observing the alteration in the signum

of the integrand over each interval in either decomposition of [0, tir], we conclude

that (here we are using the estimates r — s ^ —1, and / exp((z- — s)w/6t) <J 1; we

are assuming t ^ 0 and t\ ^ h)

I     />» /.(T/2)i

1     A(p) cos(/X) dX    g 2 / Aip) cos(zX) dX

g (1.8)2 exp[(z- - i)X/1.8]{((z- - s)/1.8) cos(zX) + t sin((z- - i)X/1.8)}|

á (3.6)l> - r+ 1.8]/((r - 5)2 + Z2).
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Therefore,

(5) \GviP; 0)1 è (4.6)d(Q)/P2PQ    if t, £ y + h.

The case t = 0 is treated in a similar manner and we obtain the estimate, assuming

y^y + hoTy= 77 0rr) = Oor;t = £,

(6) \GV(P; 0)| á (3.6) V2 diQ)/irP2PQ.

Now we consider the integral in (4.2). By elementary considerations, we obtain

the identity

/    Bin) cos(zX) dX = —   /    cos(fX) exp[(s — r)p] dX/il + exp p)
Jo Jo

4-  /    cos(rX) exp[(—s — r)p] dX/il + exp p)
Jo

and the inequality

/    Bip) cos(íX) í/X   ^   / cos(/X) exp[(s — r)p] dX/il + exp p)
I Jo Jo

/.t/21

4-  /        cos(zX) exp[ —(r + s)p] dX/il + exp p).
Jo

Hence, if r ¿¿ s,

I r I
/    Bip) cos(íX) dX\

I Jo I

I r
=  \       cos(<X){exp[(s - r)p] - exp[(-s - r)p]} dX/il + exp p)

(l) \->o

II r
á ~    /     {exp[(s - r)p] - exp[(-s - r)p]} dX

â (1.3)[2í/z-V]/2 g (1.3)[s/(r - s)2].

1fr — s (s ^ 1 as we have already treated the case tj = 0), then

/    Biß.) cositX) dX] =    /    cos(fX)[l — exp[—2sp]] dX/il — exp[— 2p])
I Jo I Jo

/.T 8 — 1

=    /    cos(zX) X) exp[—skp]-exp[—p] dX
¡Jo ¡fc=0

/.<r/2)i

g   s / cos(íX) exp[-^] dX   g 2s/(l + t2).
I    Jo

Therefore, when r = s,

(8) |G„(/>; 0)1 Ú vMx - ?)2.

Combining the inequalities in (5), (6), (7) and (8), we have

(9) \GSP;Q)\^(4.6)d(Q)/p2PQ.

Now we turn our attention to an estimate of the term



DISCRETE   GREEN'S   FUNCTIONS 65

GAP; Q) = {Gix + h, y; f, 77) - Gix, y; £, i,)\/h

= {L(x 4- A - £, y 4- 1?) - L(x + h - £, y - 1?)

- L(* - {, y + ij) 4- I(* - {, y - ,)}/*.

Elementary considerations give

GXP; Ö) - A r »i°fr^»°^Xe»p(-/-l)>.-exp(-/M)) Ä>       ¡f , ^ !
ZT« Jo sh p

1    r sin(/X)sin(sX)(exp(-f' + 1)m - exp(-tV))
= — I-tíX,    it / s 0,

7T« Jo sn p

where /' = (£ — x)//z, í = (x — Ç)/h and z-, s are as defined in the proof of part (a).

Therefore,

\GxiP; 0)1 è \ [ ' SX ̂ -'^ - exp(-"» dX,     iff 2 1.
zrZz J0 sh /i

sX exp( —<V)(1 — exp(—p))
^ -7 f ~

zrfl J0 sh /t

Hence,

(10) |G,(P; 0)| ^ (1.8)2(1.3)t,A(x - t)2.

When r = 0, we easily obtain |GX(P; Q)\ g irV/2h2.

Using the symmetry of L(r, t), we may write

GxiP; 0) = {LO + V, x + h - Í) - Liy - r,, x + h - Î)

- Liy + v,x - 0+ Lix - í, y - r,)}/h

= ¿Ä /   («»(' + DX - cos(fX))

• Í exp(— \r — s\ p) — exp(— \r -\- s\ p)} rfX/sh p.

Hence,

|GX(P; 0)1 Ú <~ f   sp exp(s - r)p dX    for r è *,
(11) hT   Jo

(1.3) rT
^ —-— /    z-u exp(z- — s)u <iX    for r ^ i.

«7T     Jo

Elementary considerations applied to this estimate yield

(12) |GX(P;0)| ^ (4.3)7,/zr(y- t,)2.

Applying (10) and (12) to the expression {(x — £)2 + (y — i¡)2} IG^P; Q)\ gives

|G.(P;0)l á (8.6)7,/7rp2=0.

The estimates for GV(P; Q) and GX(P; Q) can be derived, as we did for GXP; Q)

and GX(P; Q), or, we may simply make the following observations: If P' = (x, y — h),

then \GIP; Q)\ = \G(x, y; Q) - G(x, y - h; Q)\/h = |G„(P'; Q)\ ^ (4.6)d(Q)/P2P,Q.
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But d(Q)/P2P,Q Ú (2.5)d(Q)/PPQ. Hence, |G,(P; Q)\ g (2.5X4.6)diQ)P2PQ. A similar

analysis applies to GX(P; Q).

The remaining results of (b) follow easily. For example,

|G„(P; 0)| = U/h) \Lyix, y; £, -77) - L¿x, y; £, t,)|

=  \Lix - S, y + h + r,) - Lix - t, y + r,)

- Lix - t, y + h - V) + Lix - t, y - v)\/h

= |G,(P; 0)1 = mix, y; £, -v) - !,(*, y; f, r,)\/h

=  \Lix ~ Ç, y + v) - Lix - Z, y + r, + h)

- L(x - í, y - v) + L(x - í, y - n 4- /z)|//z.

Note here that care must be exercised when Q is near the boundary. For example,

if Ô = (£> 0), then, clearly, |Gfi(P; Q)\ = |G,(P; Q)\ is not a meaningful relation, in

that Gi(P; Q) is not defined for Q on the boundary. In such a case, we note facts

of the kind that |G,(P; £, 0)| = |GS(P; £, h)\ from which a proper inequality can be

drawn.

(c) For both cases in (4), we have that

J(.(i/2)!
cos(fX) dt = 1/irht

0

as exp(—sp) {sh(r + l)p — sh(r/z)|/sh pep exp(—sp) ch(r + 1)/Vsh p á 1 and

exp(—rp) sh(sp) (exp(—,u) — l)/sh p & I. Therefore,

(13) |G„(P; 0)1 ^ 1/zr |* - £|    for t 96 0,        |G„(P; 0)| á 1/A    for z = 0.

Now observe that

|(4 D| < ± [' exp(-^)[sh(z- 4- Dm - sh(z-/x)] ^

irh J0 sh ,u

(14) = i /   exp((/" ~ iV)[1 + «Pf-^W dX

ú\¡   exp((r - s)X/1.8) dX g 3.6/zr |y - r,\
irn J0

and

iMo\i<r   1    r exp(-z-jx)[sh(5jx)(exp(-M) - 1)]  »  ^ . _,   . .
(4.2)   S — /    -—-dX g 1.8/tt  y - 77 .

7tzz J0 sh p

Combining (13) and (14) and using the inequality dPQ ^ |y — r¡\ + \x — r¡\ gives

|G„(P;0)| á (2.8)V2/zrppQ.

We may also write, using (9) and the fact that |sin x\ á 1,

\GxiP; 0)1 è —u f   exp(-ZM) dX,        x + h 2 Í,
7rZi Jo

á¿|    exp(-í'M)rfX,        í^.
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Hence,

(15) |G,(P;ß)| ^ 1.8/zr \x - ||.

If t = 0, IGXP; ô)| g 1/A. Also, using the symmetry of /_(«, ß),

[cos(z + 1)X — cos zX][exp(— |r — s\ p) — exp(— \r + s\ p)]
dX

s,

^«i-àf sh,

— 2t7Ä i     eXP(^ ~~ ̂ ^ ~~ exP(_2iM)) ¿X,

- ¿Ä J     eXp((r ~ i)M)(1 ~ exp(-2,''i)) dX'        r = s>

^ 1.17V/|ij - y\.

If y = v, \GX(P; Q)| g .9/A. From (15) and (16), we have

|G.(P;0)| ^ i2.97)V2/irPPQ.

(d) We have that

GxiiP; Q) = {Gix 4- h, y; |, i,) 4- Gix - h, y; Ç, z,) - 2G(x, y; £, t?)}/A2

=  {L(x + h - {, y + t?) - ¿(a: + h - £, y - r,) + L(* - A - {, y + A)

- L(x - A - I, y - i;) - 2(L(* - £, y + i») - ¿(a: - £, y - r,))l/A2

(17) = —i I    [cos(r — s)X - cos(z- 4- s)X]
2trh   Jo

■ [exp(- |r 4- 11 m) 4- exp(- |r - 1\ p) - 2 exp(- |z| p)] dX/sh p

= ^2 J    [exp(- |r - s| p) - exp(- |z- 4- s\ p)]

■ [cos(i 4- 1)X + cos(z — 1)X — 2 cos(fX)] dX/sh p.

For the first integral in (17), we have

(18)

\GxxiP; Q)\ Ú ^¡2 j   |exp(-/M)[exp(-M) + exp p - 2] dX/sh p\,   x è {.

= ~jf I    |exp(iju)[exp p + exp(-M) — 2] dX/sh p\,        x ^ £.

Now exp(—/a) 4- exp ^ — 2 = 2 [ch p — 1]. Taking the derivative with respect to p,

using the equality ch p = 2 — cos X and the estimate sh p g p ch p gives the in-

equality 2[ch p — 1] ¡g 3jx2 when X G [0, ir]. Applying this result to (18) gives the

estimate

(19)       |Gt4(P; 0)1 Ú ^2

/    expi-tp)p dX,   x ^ £
•»0

1    exp(</uV dX,       x ^ ?
Jo

£ 3(1.8)7t(* -02.

For the second integral in (17), we have
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|G,t(P; 0)1 á 4 f XJI"P(-|r-J|M)-exP(-k + .|M)] ̂
zr/z   J0 sh /i

13 r
-75 /    X[exp(- |r - s| m) - exp(— \r + s\ p)] dX

(20)
7rA

1     f   (sin(z-4-l)X-sin(z-X))sin(íX)(exp(—z—l)/x-exp(—ím)) „
= —a    /    -r-aX

(211 M

, í á 0,

g (1.3)(1.8)2/7r(y- t,)2.

Combining (19) and (20) gives the estimate \GXX(P; Q)\ g \Ay/2/vP2PQ. From the

equation AAG(P; Q) = — 5(P; 0/A2, we obtain the estimate

|G„s(P;0)| < 21/tP2pq.

Using (9), we may write

|G„(P; ß)| = |G,(jc, y 4- A; 0) - GX(P; ß)|/A

' r (si
Jo

I r (sin(z-+l)X-sin(z-X))sin(iX)(exp(-í'-l)Ai-exp(-í'M)) -
= ~E2   1    -K-"X

7T«   | J0 sn p

á il.Sf/irix-t)2.

From the results preceding (11), we may write

|GW(P; 0)1 = ¿ 1/   (cos« + OX - cos(fX))

(22) • [exp(- \r + 1 - s\ p) - exp(- \r - s| u)

+ exp(- \r + s + 11 /i) — exp(— \r + s\ p)} dX/sh p

á (1.62)/x(y - t,)2;

we note here that |exp(— |r—i+ll p)—exp(—\r—s\ p)\ ^ exp(— \r—s\ pXcxp p — 1),

cos((? 4- 1)X) - cos(iX) = sin[(i + e)X]X with 0 á « Ú 1, and exp(— \r + s + 1| p)

— exp(— \r + s\ p) < 0. Hence,

|Gx„(P;0)| S i6.9)/irp2PQ.

(e) From (21), we have

(23) |Gr„(P; Q)\è~2 fo   X2 exp(-zM) dX á (H^h/ir \x - £|3.

Using (22), we obtain the estimate

|G„(P; 0)1 è "4 Í   XM exp((-r + s)p) dX,        r â s,
(24) *h  Jo

irh2 Jo
Xp expii—r 4- s)p) dX,        r < s.

Hence we have that |GIS(P; Q)\ ^ (11.7)r?/ir |y - r;|3. Combining this with (23)

gives our estimate.

From the first integral in (17), we obtain the estimate



DISCRETE  GREEN'S  FUNCTIONS 69

\r   (v. n\\  <     3    f *?Xm   exp(-tp)
\GxtiP; Q)\ u—2ja   -^-dX, xl>t,

r¡Xp2 expj—t'p)

trh2 Jo
dX,       x g £.

sh p

Therefore, \Gxi(P; Q)\ = |G„6(P; Q)\ Ú 6(l.8)Vir |^c — S|3 for P * Q.
The second integral in (17) allows us to get the estimate

\GxxiP; Q)   S —5  /-dX,        r a s,
tsh   Jo sh p

= ¿í   WX2 exp((—5 + r)p) dX,        r < s,

Henee, |GIf(P; Q)\ ^ 2(1.8)37j/ir |y — r¡\3. Our proof is now complete.

By the methods presented in the proof of the last theorem, we may prove the

following result: If m is any integer, then constants Bm and Cm exist, depending only

on m, such that

\DmGiP; 0)| g BJPpq    and    |5mG(P; ß)| g r,CjpTq

where DmG(P; Q) is any mth order difference quotient taken with respect to the com-

ponents of P. If the difference quotient is with respect to Q, we have \ßmG(P; Q)\ ¿

yDJP%1.
Having examined the discrete Green's function for the upper half-plane, we

may now observe that the same estimates hold for the lower half-plane. If we consider

the discrete Green's function for the right half-plane or the left half-plane, then the

same estimates of Theorem 1.1 hold except that we replace the quantity r¡ by £ in

parts (b) and (c) of that theorem.

For the mesh region described, let us look at the line y = — x. This intersects

grid points at a spacing of V2A. Let G(P; Q) be the discrete Green's function for

the region to the right of this line, i.e., mesh points P = (x, y) such that y > — x.

Let Q = (£, i?) be a mesh point in this half-plane. Let Q' be the reflection of this point

about the line y = — x; i.e., Q' = (—v, — £). Then we have that

GiP; 0) - L(x - £, y - 11) - Lix + v, y + Ç)

=   f   exp(-|/| M)[cos((y + ?)X/A) - cos((r - s)X)]
Jo

+ cos((y + £)X/A)[exp(- \x + v\ p/h) - exp(- |z| p)] dX/sh p.

As these integrals are similar to those already estimated, we may state the next

theorem.

Theorem 1.2. If m is a nonnegative integer and if GiP; Q) is the discrete Green's

function for the mesh region to the right or to the left of the line y = x or y = — x,

then there exist absolute constants D„ and Em such that

\D(m)GiP;Q)\ ^ Dm/PPQ

and

|ß(m>G(P;0)l ^ Em\H+v)/2\/PmPà1.
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2. Some Other Irrfinite Regions. Let S be the strip bounded by the lines

y = 0 and y = a; we assume with no loss of generality that a/A is an integer. Let

GS(P; Q) be the discrete Green's function associated with the operator Ah and the

set Sh; Sh is the set of grid points in the interior of S. We have the following result.

Theorem 2.1. If G"(P; Q¡) is the discrete Green's function for the upper half-

plane with singularity at Q¡ = (£, 77,), then

00

(1) G\P;Q) =  Z(-1)'G"(P;0,),
1=0

where Q = Q0 = (£, v), Qx = (£, 2a - v), Q2 = (£, 2a + v), Q3 = (£, 4a - 7,),

04 = (£, 4a 4- r,), • • • , Qtl = a, 2ja + v), Qn+i = (£, 2(j + l)a - v), • ■ ■ .
In fact, there exist absolute constants Hm, Jm and M, each independent of A, such

that

(2) \D(m)GsiP; Q)\ :g Hm diQ)/p%1,        zzz = 1, 2, 3, • • • ,

(3) iD'-ViP; 0)1 ^  JJPpq, m = 1, 2, • • • ,

aztd

(4) 0 g G\P; Q)ú M minidiP), diQ))/PPQ,

where d(X) is the distance of X to dSh.

Proof. We first establish the convergence of (1). If \x — £| A-1 = t, 5, = 77,/A,

y/h = r, then we may write (1) as GS(P; Q) = GE(P; Q) + ¿°°_, (-l)'GB(P; ß,).

But

¿ (-1)'G"(P; 0,) = 2 ¿ (-1)'   [   LositX) exp[(-S, + z- - l)p] £ e'2""} dX
i-l 7-1 •'O       I. K-0 )

where S, satisfies these relations by virtue of the definition of the 77,.

Now we will show that, for any K, the series

£ i-l)' f   cos(X<) exp[(-5, + r - 1 - 2K)p] dX
7»1 Jo

is convergent; hence, any finite sum of such series is convergent. Let X(t, X, p, S,, K)

be the integrand of the series above. Let a, = J0 3C dX and b, = /' 3C dX where

€ G (0, zr/4z]. Then we will show that
00 CO

ZAK)= Zi-D'a,    and   Z2iK) =  £ (-1)'*,,
¿-i ¿-i

is convergent.

We have that a, — ai+1 ^ 0 as S, < S)+l. Also,

lim a¡ g lim /    exp[(-5, + r - 1 - 2/sT)X/3] z/X = 0.
,-00 i-»   Jo

Therefore, Z^ÄT) converges.

Now we have

Z2iK) = ¿ (-1)' í   /,(X) dX =  í        ¿ (-i)7,(X)   ¿x
7-1 Ji Jt/41    L7-I J

with /, = cos (rX) exp [(—S, — 1 + r — 2K)p]. The family Í/,(X)} is a uniformly
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convergent sequence of continuous functions for X G [e, t]. In fact,

|/,(X)| Ú exp[(-5, - 1 4- r - 2K)p] ^ exp[(-5, - 1 +r - 2K)pie)]

with pie) > 0 the value of p at X = e. Hence, Z2(K) converges and we may write

Z2iK) = f   jcos(zX) exp[(r - 1 - 2K)p] £ (- l)'e-s"'| dX.

Therefore, (1) is well defined and we have

r-l

GsiP;Q) =  2Zz2(K) + ct
K-0

where « > 0 and O^ci 1; this last term is due to the fact that ZX(K) 5¡ e.

Now we show that GS(P; Q) = 0 for P G dS^. This is clear when y = 0. Now we

look at the case that P is on y = a. Let S^ be the Mh partial sum of GS(P; Q). Re-

arranging the entries, we have

Sjv = {G'iP; Qo) - G'iP; Oo) 4- • • • 4- (-If+1G'(P; Q'N.2)

+ (-lf+I[L(P;0;-i)- LiP;Q'N)]}

where ß' = (£, — tj,) and G'iP; Q'/) is the discrete Green's function for the lower

half-plane with boundary y = a. Now, alongy = a, we have that |S,v| = \L\P; Q'N_X) —

L(P; Q'N)\; this approaches zero as N—» ». This may be seen by considering L(P; Q'N-X)

— L(P; Q'N) as the discrete Green's function for the half-plane with boundary midway

between Q'N_X and Q'N.

From the uniform convergence of the series representing GS(P; Q), we have that

AhGsiP; Q)=  £ (-1X-1)' 5iP; Qd/h2 = -i(P; 0)/A2.
1-0

Therefore, GS(P; Q), as we have constructed it, is the discrete Green's function

for the strip.

We now verify the estimate in (2). We have that

|Gs<m)(P; 0)1 ^ £(-l)iGHlm)(P;Qi)
+ 2Z   (-iyG"(m\P;Q,)

Let WX(N) (and W2(N)) be the first (and second) summand in the expression above.

Then we have that

I rV2iN)\ ^ C   £    \/PrQ\, = Oil/N).
i-N+l

By simple rearrangements, we may write

Wim\N) =   V[m\N)    and     W2m\N) =   V(2m\N)

where

V[m)iN) =      ¿    [G2iiP; $, r,2i) - G2'iP; {, -i,2,)]

(ÍV-2Í/2

E    ÍG2iiP; ¿, V2i) - G2iiP; f, -r,2,)] 4- G*(P; f, t,^)

A/odd,

TV even,
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and

Vim\N) =
(iV-2)/2

G"iP; l, v) +    £    [G2,+1(P; f, 7,2i+1) - G2i+1iP; f, -*,„)]

TV even,

(Y-31/2

z
1-0

Gff(P; í, i») 4-    Ê    [G2i+1(P; Í, 7,2i+1) - G2i+\P; g, -*,«)]

gV; g. i»»)  ,

A/odd,

where

and

G'(P; f, 7,,) = LiP; f, i7, + 1) - L(P; £, ,,-)

G'iP; £, -t,,) = LiP; t, -i,I+I) - LiP; £, -,,).

We will now estimate the summands in V[m\N) and V(2m)(N). With the aid of

Lemma 1.1, we have that

y-k

\G2iix, y; Z, 772i) - G2iix, y; £, -ii2))| =

But

A  2Z Gl'\x, z; Q2i)

G2\x, y; £, zz2l) = G2\x, y - (t?2, + 772i+1)/2; £, t?2i - (t72j + t?2, + 1)/2)

= GHix, y'; £, (t72j+1 — 772,)/2)

where y' = (t;2j+i + Va)/2. Hence,

\G2i(m\P; Ö2,)| ^ Bmia - V)/ppZ,        |G2i(""(P; ß2))| g  ¿„/p?«,.,.

By a similar analysis, we have

\G2i+Um)iP; Q2!+x)\ á WpKU. |G2i+1(™>(P; 02; + ))| Ú  AjPmPQ,i+,.

Therefore,

(W-D/2

P-Í"°(7V)| g     £    2y(a - r,)Bm+x/p^ + 2 |G0(m,(P; ß„)|, TV odd,
i-i

(¡V-2)/2

á     Z    2y(a - u)B.+I/p?S;( 4- 2 |G0("'(P; Oo)| + IG^ÍP, 0)1,

TV even.

i-l

Observe that G\P; Q) * G\P; Q) and \G°(x, y; {, v) - G\x, -y; {, i,)| =g 2\G°(P; Q)\.
Now use the estimate

(AT-n/2

S     !/p!po!í =  1/P™02 + ir/2-\/2aPPQ ,
i-l

considering separately the cases Ppq 3ï a/2 and Ppq < a/2, to get
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I V{m\N)\ ^  {2Bm + 4.2Bm+x}ia - r,)/pTo   + Oil/N).

By an analogous method of reasoning, we have

I V(2m\N)\ g  {Bm + 9.5Bm+x}r,/PrQ1 + Oil/N).

Combining our results, we have that

|GS<""(P; 0)1 è {2Bm + 9.5Bm+l} mm{r,, a - v}/ppq1-

This establishes (2).

We will now prove (3). If Ppq ^ a, then Ppq ^ d(Q). Hence, 1/Ppq è ¿(ßVp^1

If Pp q < a, then

¿ GH(m)iP; Q2i) - GHlm)iP; Q2i+X)
g 1027+1 - Q2i\ £ aJpTq\,

i-l

g 2(a - 7,)/im7r/2V2ap™0 Ú irAm/\/2PPQ.

Therefore, (3) is proved with Jm = max {irAm/y/2, Hm}.

We now proceed with (4). Here we need only show that 0 ^ GsiP; Q) ¿ Cd(Q)/pPQ

since GS(P; Q) = Gs(ß; P) by Lemma 1.1. Both of these estimates follow easily from

the following result: // AhH ̂  0 z'zz Sh, if limP^œ HiP) = 0, and if H(P) ^ 0 on dSk,
then H(P) ^ 0 in Sh + dSh. Now let H = G"(P; Q) - GS(P; Q), with G"(P; Q) the
discrete Green's function for the upper half-plane y = 0 or the lower half-plane

y = a, to conclude the proof of the theorem.

3. Rectangular Regions. Let R be the rectangular region determined by the

vertices (—c, 0), (b, 0), (b, a) and (—c, a); here a, b and c positive numbers. We assume,

with no loss in generality, that a/A, b/h and c/h are integers. Let G(P; Q) be the

discrete Green's functions associated with Rh and Ah. We then have the following

result.
Theorem 3.1. If i is a nonnegative integer, then we define £¿ to be the ith element

of the sequence 0, lb, 26 4- 2c, 4/3 4- 2c, Ab 4- 4c, 6/3 4- 4c, 6/3 + 6c, • • • , azzi/ if i is a
negative integer, then we define £, to be the ith element of the sequence —2c, —(2/3 -f- 2c),

-(2/3 4- 4c), -(4/3 + 4c), • • • . Let GS(P; Q) be the discrete Green's function for

the strip Sh determined by the lines y = 0 azzd y = a. If we take Q = (0, tj) azzd Q{ =

(£.) v), then we have
CD

(1) GRiP;Q)=   2Z  (-D'Gs(P;Oi).
t ■= —oo

The case of the general Q = (£, tj) is handled by a simple translation. Moreover, there

exist absolute constants Km, Lm and C which depend upon the diameter of R, such that

(2) |Z><m)GB(P;0)| ^  Km/PmPQ,

\D(m)GRiP;Q)\ Ú LmdiQ)/PmPQ\

and

GBiP; Q)ÛC mmidiP), diQ))/PPQ,

where d(Z) is the distance of X to dRh.
Proof   We first show that the sequence in (1) is convergent. Let i ^ 0. Then we
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easily have that lim^„ GS(P; ß.) = 0. We also claim that GS(P; Q,) ^ GS(P; Qi+X)

for every P G Pa- To see this, let T - {(x,y): (x, y) G S, x ^ (£, + £, + 0/2|. Along

the line x = (|¡ + £,+,)/2, we have that GS(P; ß.) = GS(P; ßi+1). This is also true

along the dSh. Therefore, GS(P; ß.) - GS(P; ß,+1) ^ 0 in Rh by the extended mono-

tonicity theorem which was stated at the end of the proof of Theorem 2.1. The

series in (1) is therefore convergent as it is a monotonically decreasing alternating

series with its terms tending to zero. A similar analysis applies to the case i ^ — 1.

Now we show that G(P; Q) = 0 for P G dRk. This is clear on y = 0 or y = a.

Let P G dRh with x = b. Then

n —n'

G(P; 0) = Z (-1)'GS(P; Qd + ffi.+1 +  E (-iyGs(P; 0.) + flU'-i-
.'-0 i = -l

Now |(R.+1| g GS(P; ßn+2) and IdU^I g GS(P; ß_(s.+1)). Therefore,

G(P; 0) = GS(P; ß0) - GS(P; &)+•••+ (-1)"+1[GS(P; ß,+1) - G(P; ß_J]

4- ((R,+I 4- (R-„-.).

Now the midpoint of £_„ and £„+1 is x = b and GS(P; ßn+1) = GS(P; ß_n) along this

line. Therefore, for P = (/3, y) G dP,,, we have G(P; Q) = 0. A similar analysis applies

to the line x = —c.

By methods of Section 2, we easily have that AhG(P; Q) = - 5(P; ß)/A2.

We can also write Gñ(P; ß) as the sum of the discrete Green's functions G'(P; Q'¡)

for the strip S'h bounded by the lines x = — c and x = b. That is,

GB(P;0) =   ¿  (-l)'G'(P;O0,
im —CO

where G'(P; ß') is the discrete Green's function for S'h and ß, is an element of the

sequence tj, 2a — 77, 2a + 77, 4a — 7?, 4a 4- 77, • • • for i = 0, 1, 2, ■ • • and an element

of the sequence — 1?, —(2a — 7/), —(2a 4- 77), —(4a — 77), —(4a 4- 77), • • • for i =
— 1, —2, —3, ••• .

Now |G'<m>(/>; ßOl ^ JJÍ'{Q)/p7q\' and |GS(m)(P; ß,)| ^ Jmd(Q)/P%\ where
o"(ß) = min (z3, c), ¿(ß) = min (77, a — 77), and min (o"(ß), d(Q)) is the distance from

ß to dP*.

We also have the estimates, from the two different representations,

|Gs<m)(P; ß)| Ú \GS{m\P; 0)| 4-

^  |G'lm,(P; 0)1 4-

¿     (-l)'Gs<ra>(P;0,)

:-oo;,V0

Now proceed as in the proof of Theorem 2.1.

To prove (2.3), we may suppose that d(P) ^ d(Q). Then place a half-plane //

along the side of dRh whose distance to P is minimal. The maximum principle shows

that G"(P; Q) dominates GR(P; Q). Our proof is complete.

The results of this theorem are a significant improvement over the estimates in [5]

where the order of the singularity in the zzzth order difference quotient was Ppq~'

with e > 0.

The rectangle formed by rotating the above rectangle through any integer multiple
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of 7r/4 has a discrete Green's function which satisfies the same estimates as in Theorem

3.1.
In our next result, we obtain slightly stronger estimates on the discrete Green's

function for a rectangle.

Theorem 3.2. Estimates of the following type for the discrete Green's function

over a rectangle, or triangle may be derived:

(a) |G*(P; ß)| ^ Cdv(P)dx(Q)dy(Q)/pU,
(b) G\P; Q) g Cdx(P)dB(P)dx(Q)dfQ)/pPQ,

(c) |G*(P; Q)\ ̂  Cdx(P)dx(Q)dfQ)/Ppo,
(d) \GR(P; ß)| í Cdy(P)dx(P)dx(Q)dv(Q)/PpQ,
(e) |G*(P; ß)| ú Cdx(P)dx(Q)dv(Q)dx(Q)/P%Q,
(0 \GR(P; ß)| Ú Cdx(Q)dXQ)/PPQ,

where dx(P) or dv(P) is the distance, in the x or y direction, of P to the boundary. Esti-

mates of a similar type are valid for difference quotients in Q.

Proof   The argument proceeds briefly as follows:

(a) From Section 1, we have |Gf?,(P; ß)| g d„(P)/PpQ. Hence

\Gsx(iP; 0)| =
- r   0.Z+. II

E  * Z  g"i¿p; Zj)
i-o L    z,-o,,- J

Z Gf£(P;0,)(- 1)'
7=0

00

á C E 4,(0K(P)/ppo„ è CdviQ)dviP)/pPQ.
7=0

Now we obtain our result from the estimate

\GxiP; 0)1 =

i +»  r    Qu+t -||

=    Z   \h    Z    GsxiiP; Wt)\\Z  Gf(P;0,)(-D'
i = — CO

+ 00

Ú C  E   dxiQ)dviQ)dviP)/PPQ2i ú CdxiQ)dviQ)dviP)/pipQ.
i = —CO

(b) Let P' be the point on dRh nearest P in the x direction. Then

p'
GRiP; Q) = GRiP; Q) - GRiP'; Q) ^ h E  |G?(Z; ß)|

Z-P

^ C■ dxiP)dviP)dxiQ)d¿Q)/Ppq .

The remaining parts of the theorem are proved similarly.

The above results may be used to improve Theorem 1.1 as seen in the next theorem.

Theorem 3.3. Estimates of the following type, for the discrete Green's function

over a half-plane, are valid:

(a) G"(P; Q) è Cd(Q)d(P)/P2PQ,

(b) |G^(P; ß)| ^ Cd(Q)d(P)/P3PQ, \G»(P; Q)\ =g Cd(Q)d(P)/PpQ, etc.,

(c) \G»(P; Q)\ ^ Cd(P)d(Q)/PpQ, \G»(P; Q)\ g Cd(P)d(Q)/PpQ, etc.
Here C is an absolute constant which is independent of A.

Proof. As an example of the method of proof we will establish (c). Let R be a

square in the half-plane Hh one side of which is coincident with the boundary of Hh.

Construct Rk such that the distance from P or ß to the three sides of Rh, none of

which is on dHh, is greater than max (d(P), d(Q), Ppq); here d(X) is the distance from

X to the dHh. Then
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GRÁP; Q) - G"x¡iP; 0) = A    E    G\Z; Q)GRxi(P; Z)
zedRh'

where dR'h = dRh — (dRh C\ dHh) and the subscript zz denotes a normal difference

quotient with respect to the moving variable. Hence,

|G*(P; 0) - G"xtiP; 0)1 è CdiQ)diP)/PpQ,

and

\GHxiiP;Q)\ Ú CdiQ)diP)/PPQ.

Many additional properties of the discrete Green's function may be simplified

by our next result.

Theorem 3.4.    Over a rectangle Rk, the discrete Green's function G"iP; Q) satisfies:

GBxiiP; Q) = GfiiP; Q)    and    GRvtiP; Q) = GR¿P; Q).

Proof. Let U(Z) = GRiZ; Q) and V(Z) = GR(P; Z). Since we may make, by

reflection, U(Z) = 0 on dRh, our result follows by an application of the discrete

Green's identity; see [5].

The above results are apparently not valid over other simple regions such as

bounded L-shaped regions or knife-shaped regions.

We will now state a final improvement of earlier results; the proof is similar to

that of Theorem 3.3.

Theorem 3.5. Estimates of the following type are valid for the discrete Green's

function over an infinite strip.

(a) 0 g GS(P; Q) ^ Cd(Q)d(P)/P2PQ,

(b) |GSX(P; ß)| 5¡ Cd(Q)d(P)/P3PQ, \GSV(P; Q)\ Ú Cd(Q)d(P)/P3PQ, \G%P; Q)\ £

Cd(Q)d(P)/P3PQ, |GS,(P; ß)| ^ Cd(Q)d(P)/P3PQ,

(c) |Gi(P; ß)| Í Cd(P)d(Q)/PpQ, \GXSU(P; Q)\ ^ Cd(P)d(Q)/PpQ, \GX%P; Q)\ è
CdiP)diQ)/PpQ, |G/,(P; ß)| ^ CdiP)diQ)/PpQ, etc.,

where diP) is the distance of P to the boundary of Sh and C is a generic constant in-

dependent of h.

4. General Domains. Let Q be a plane region. Place a square grid on the plane

with grid width A. We say that a grid point P E 0* if P and the four grid neighbors

of P are in Q. Let dük be those grid points which are in Ü but not in Qh.

Let A„ be some sequence tending monotonically to zero as n tends to œ. Then

we call Q a discrete h-convex set if for each zz and for each P E dühn at least one of

the lines through P, which is parallel to a coordinate axis or makes an angle of zr/4

with a coordinate axis, has the entire set Í24„ to one side of this line. Examples of

discrete A-convex sets are triangles, rectangles, circles, ellipses and knife-shaped

regions (e.g. the region formed by the coordinates (0, 0), (c, 0), (c, 2c) and (0, c)).

The concept of discrete A-convex is essential for our estimates in this section.

We shall assume that our regions satisfy this condition and, when we write 0ft, we

mean an element of the sequence {Qh„} where the sequence {hn\ is that sequence

used in the definition.

We remark that the estimates we have obtained to date hold for half-planes,

quarter-planes, eighth-planes, strips, triangles and rectangles.

We will now state and outline the proof of our first result.
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Theorem 4.1. Let ti be a discrete h-convex set and let G(P; Q) be the discrete

Green's function associated with Qh and Ah. Then there exist absolute constants M0,

Mx, No, Nx, all independent ofh, such that

(1)

diP)

|G(P; 0)1 Ú MA  or

diQ)¡

\GwiP; ß)| g MX/PPQ;

Ppq;        \GiP; Q)\ ^ N0diP)diQ)/p2pq    and

G<u(P;0)| Ú NxdiP)/P2PQ.

Proof. We take the discrete Green's function for a half-plane determined by any

point P G dfit. The Monotonicity Theorem and the results of Section 3 give the

estimate in (3.1).

For the estimate in (3.2), we proceed as follows:

Case 1.   min {diP), d(Q)} ^ Ppq.
Construct, about Q, a square Sh of (approximate) sidelength Ppq. If this is not

possible, as in the case Ppq = A, construct the square of sidelength 2A or 3A; our

argument will proceed in a similar way. Let G(P; Q) be the discrete Green's function

for Sh. We will use the following form of the discrete Green's formula:

A2  E   Í UiR)AhRiR) -  ViR)Ah ViR)\ = A   E    Í U(R) V,(R) ~  Vn(R) UiR)}.
RESh

Substitute G(R; Q) = U(R) and G(P; R)

(2)

Hence,

R£ds>,

V(R) to get the representation

G(P; Q)= -h   E   Gn(R; Q)G(P; R).
R€dSi,

|G(1)(P; 0)1 = A   2-   Grip; 0)Gu(P; P)
seas»

g max{C-hiPPQ/h)idiR)/hP2PQ)idiP)/PPQ)} ^ NxdiP)/P2PQ.
R

Also, we have that

|G(P;0)| ^ maxíCA(ppO//z)(í/(PM0)//zp2=o)(í7(P)/ppa)}
R

¿ MxdiP)diQ)/P2PQ.

Case 2.   min {d(P), diQ)} < Ppq.

If diQ) 2: pPQ, then we will proceed as in the case above.

If diQ) < Ppq, construct a square S'h of sidelength d(Q) about Q. Now let Sh be

the region formed by the intersection of Qh and S'h. If we have d(Q) 5S Ppq/2, the

boundary of S'h and düh are coincident. From (2), we obtain the estimate

|G(I,(P;0)| = A   E   GU)(R; Q)G(R; P)
«sas»

< max{hCidiQ)/h)idiR')/hp2R0)idiR)diP)/p2BP)} ^ NxdiP)/P2PQ,
R

where we observe that d(R) g 2d(Q) and |G^U(P; ß)| = |G(1,(P'; Q)/h\, with R' a

grid point A units from the boundary of Sh. Our proof is easily completed.
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At this point, we remark that the estimates in (1.2) were obtained as a result of

the estimates in (1.1). The estimates in (1.1) were completely dependent on the assump-

tion that Ü is a discrete A-convex set.

In our next result, we will see that an obtuse corner on the düh produces a compli-

cation in establishing estimates on difference quotients for general regions. These

complications are present in the continuous theory but not quite as bad as our esti-

mates predict in the discrete case; see [4]. This situation seems to indicate that our

estimates may only be slightly improved; at least with reference to the five-point

approximation of A.

Theorem 4.3. Let Qk be a discrete h-convex set and let G(P; Q) be the discrete

Green's function for Ah over üh. Then there exists an absolute constant N such that

|G(2)(P; 0)| g NdiQ)/d'iP)P2PQ,

where d'(P) is the minimum of Ppq and the distance ofP to the nearest obtuse angle ofüh.

Proof. The argument proceeds as in the proof of Theorem 4.1. Construct a

square Rh, with center P, of (approximate) sidelength Ppq. Extend GiP; Q) to all

of Rh by reflection. This is always possible if Rk does not contain the vertex of an abtuse

angle. By the use of Green's Theorem, we have

GiP; 0) = A E GRiP; Z)GiZ; Q).
z

Thus,

|G(2>(P; ß)| Ú A   E  |GB<2)(P; Z) | GiZ; Q)
ZedRh

^  N-h   E   (l/p3pz)(d(Q)/PzQ) Ú  NdiQ)/P3P0.
ZEdRi,

If Rh contains a vertex of an obtuse angle, a discrete harmonic extension of

G(P; Q) to all of Rh is impossible. Hence, we construct a square of sidelength equal

to d'iP) the distance of P to the vertex of the obtuse angle. We then have

|G(2)(P;0)l ^  Nh   E   (l/p3pz)(diQ)diZ)/P2ZQ) =S  NdiQ)/d\P)P2PQ.
ZHdRs

This follows from the fact that the perimeter of the square is 4<f (P) and d(Z) < 3d'(P).

Combining these two results, the theorem follows.

5. Discrete Green's Functions and Variable Coefficients. Let R be a rectan-

gular region with one side parallel to a coordinate axis. Let G(P; Q) be the solution

to the problem

(1) a(P)Gxi(P; 0) 4- c(P)GvviP; Q) = - Ô(P; 0)/A2,        P G Rk,

GiP; 0) = 0, PE dRh,

where difference quotients in (1) are with respect to the components of P and where we

assume that, for all PER, there exist positive constants X and L such that

(2) X ^ {aiP),ciP)} g L.

In this section, we shall indicate how we may extend the analysis of the preceding

sections to obtain estimates on the solution to (1). We shall only consider rectangular



DISCRETE  GREEN'S  FUNCTIONS 79

domains; modifications necessary to extend the results of Section 4 will be clear from

this case.

Our estimates, in this section, on the orders of growth of difference quotients of

the solution to (1) will be an improvement and an extension of the results in [5, p. 31].

Our proof will rest heavily on the method of proof in [5, Theorem 3]. We will also use

a result of Bramble and Thomée [1, Theorem, p. 585] on the rate of growth of GiP; Q);

in particular, their result says that {G(P; Q)\p is summable for any power p 2: 0.

Theorem 5.1. Let G(P; Q) be the solution to (I). If a(P) and c(P) are a-Holder

continuous over R with common Holder constant La and if the condition in (2) is satisfied,

then there exist constants Sm and Tm, which depend upon L, X, La, diam R and a but

are independent of A, such that

(3) |£>(m)(P, 0)1 g SjPmPQ;        \D(m\P;Q)\ g  Tm mm{diP), diQ)}/P%\

Proof. We reflect G(P; Q) into a region Û'h D Ö with ti'h described in [5]. About

ß G tih and each of its reflected images, we construct squares Mh(Q) of sidelength

NQh where 7VQ is independent of A and Q. Let P0 G ß* but not in any of these squares

Mk(Q). About P0 construct a square Kh(P0) C &L — ! ß I where {Q \ is the set ß and

its reflected images. Let Ci and C2 be positive numbers in (0, 1) such that

(4) pp„q â C2PPaQ ^ diam(^(P0)) è ClPi>o0

and, for every R E Kh(P0),

(5) pRQ i£ (1 — C2)PPaQ;

note that NQ will depend on Cx and C2. Let G'(P; Q) be the solution to the problem

,_ aiPo)GUP; Q) + ciP0)G'iP; Q) =  -5(P; 0)/A2,        P G ^(Po),
(")

G'(P;0)=U, PEdK„iPo).

Then we have the representation

(7) GiP;Q) = A2      E      G'iP; W)FiW) + HiP),
IPE/YKP.)

where F(W) = [aiP0) - a(W)]GxiiW; Q) + [ciP0) - c{W)]Gv¡liW; Q) and HiP) solves

the problem aiP0)HxiiP) + c(P„)fl-„6(P) = 0 for P G ^(P0) and i/(P) = GiP; Q)

for P G dKhiPo)- Now we may estimate difference quotients of the solution to (6),

as we did in Theorem 3.1, but now we must account for the coefficients; note that if

L{x — £, y — 77) is as defined in (1) of Section 1 but with a ch p -\- c cos X = a -f- c,

then the discrete Green's function for the operator in (6) over 7r+ is given by

{U.x - ?, y 4- i?) - L[x - S, y - n)}/a.
Let

M2(G: P; 0)

■ maxjp2^ |GIf(P; 0)|, P2PQ \GvviP; Q)\, P2PQ \GxyiP; Q)\ : P, Q E Rh} ■

Suppose the diam R is so small that

(8) 12(diam R)aHaü + N2Q)K2 ¿ a

where K2 is derived from (6) as in Theorem 3.1. Then we may estimate M2(G: P; Q)

and prove our theorem.
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Now let us remove the constraint in (8). Let R be a rectangular domain. Then

MJfl: P; Q) occurs at some point in Rh; call the point P0. About P0 draw a square

of diameter equal to min(d0, Pp, 0/2) where d0 is a number which when substituted

for diam R in (8) produces an equality. Our theorem now follows.
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