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Derivatives of Whittaker Functions WK ̂ 2 and MK 1//2

with Respect to Order K

By Bernard J. Laurenzi

Abstract. The Whittaker function derivatives [<3fVK,m/dic],.,, and [dAf„,i/2/d<4_n which

arise in calculations involving the hydrogen atom's generalized Green's functions are com-

puted.

Introduction. Recently, there has been growing interest among chemists and

physicists in the analytical properties of the Whittaker functions [1], [6] W,,x/2 and

Af»,1/2. For example, in quantum mechanics, these functions occur in the hydrogen

atom's Green's function [2]. The derivative of these functions with respect to k occur

in the atom's generalized Green's function [4]. The latter Green's functions are of

key importance in calculating the second-order physical properties of the atom [5].

In this communication, we wish to report some practical methods of computing

the partial derivatives Wn and Mn, i.e.,

(1) Wn = [dW,,x/2iZ)/dK]K.n,       Mn = [OM„1/2(Z)/ÓV],_B.

These quantities have been given [1], [4] only in the case of zz = 0, 1. We treat

the general situation here.

To begin with, we note the infinite series representation [7] for rVttX/2.

-Z/2

W.,U2iZ)
r(i - k)

Tjk + 1 - K)Zk+1

(2) X<¡1      ET

• [«(/c + 1) + «f/c + 2) - In z - «(/c + 1 - «)]}•

Direct differentiation of this form, followed by evaluation at k = 1, gives the simple

result

(3) Wx = e~z/2i-l + ZlnZ),

or in terms of Whittaker functions [1], [6]

(4) Wx = - Wo.uÁZ) + WX,X/2(Z) In Z.

The other partial derivatives can be obtained from Wx with the use of the "recurrence"

formula

(5) Wn+X = -{ZdWJdZ + in - Z/2)Wn +  Wn,x/2},
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which is obtained by differentiating a well-known recurrence* relation for the Whit-

taker function, i.e.,

(6) rF,+1,1/2(Z) =  -{zdW"^2ÍZ) + («- Z/2)W„miZ)

Other "recurrence" formulae can be obtained* from Eq. (12a). The first few deriva-

tives are given below.

Wi = -Wo.m +  WlA/2 InZ,

(?) W2 = W0,1/2 - 3rVx,i/2 +  W2A/2 In Z,

W3 = -2^0,1/2 + 4WX,U2 - 5W2,x/2 +  W3,x/3 In Z,

W, = 6Wo.x/2 - 10WX,W2 + 9W2,x/2 - lW3,x/2 +  WiAn InZ.

An alternate and much less tedious approach to this problem begins by noting that

the differential equation defining WkA/2, i.e.,

(8) Z2W'¿x/2 + {-Z2/4 + kZ} Wk,x/2 = 0,

can be used to obtain the equation

(9) Z2W'n' + {-Z2/4 + zzZ) Wn = -ZWnA/2.

Guided by Eqs. (7), we write the solution of the inhomogeneous equation as

n-l

(10) Wn =   22 Ci Wi,x/2 +  WnA/2 In Z.

Determination of the coefficients in Eq. (10) follows by substituting Eq. (10) into

Eq. (9). We get, with the use of Eq. (8),

n-l

(11) 22 C,in - l)ZWUU2 = (1 - Z)WnA/2 - 2ZW'n,x/2,
¡-0

which can be simplified with the help of the properties

(12a) ZWn.x/2 =   Wn+1.x/2 + 2nWn,x/2 + zz(zz - l)W^x,x/2,

(12b) ZW'nA/2 = in- Z/2)Wn,x/2 + nin - Y)W~-i.w

Using Eqs. (12a) and (12b), Eq. (5) can be rewritten in terms of the Whittaker func-

tions alone, the linear independence of these functions allowing us to find that

C„_, = 1 - 2n,       C„_2 = (zz - l)2,

and

(13)      (/ + 1)(/ + 2)in - I - 2)Cl + 2 + 2U + l)(zz - / - l)Ci + 1 + (zz - /)C, =  0.

The solution of the three-term recurrence equation is easily found [3] and is

* Since Whittaker functions satisfy three-term recurrence relations, alternate recurrence formulae

can be obtained for W„. Equation (12a) yields the result

nin - 1)WV, + (2/z - z)W„ + Wn+i = -2Wn - {2n - \)Wn.x;

however, there is no special advantage inherent in this equation over Eq. (5). This is especially true

since a closed form for Wn is given in Eq. (15).
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cia\ r        (     ixn+i (zz_^^l)[ (zz_+J)(14) C.-(-l)     —ij—^TÖ-

the final expression for lF„ being

(15) ÍF„ = (-l)"(n - 1)! £ (~1} (" + ° WlA/2 + Wn.l/2 In Z.
¡_o     »! (n       t)

Finally, we treat the second Whittaker function MK,X/I. We proceed as in the

case of the W function, i.e., direct differentiation of the infinite series representation

n« m      <7\ e~Zn     f (^ + 1 - K)Zk+1

(16) M„x/2iZ) - r(1 _ k) ¿,     (/t + 1}! ft|      ,

to obtain Mi followed by the use of a recurrence relation. We get, in the case k = 1,

(17) Jf?,(Z) =  M0ll/2(Z) -  Í-T + 1 + g(Z)|M1,1/2(Z),

with g(Z) = Ei(Z) — In Z, where y is Euler's constant (.57721...) and Ei(Z) is the

exponential integral. The corresponding "recurrence" relation is

(18) (zz + l)Mn+x = ZdMjdZ + in- Z/2)Mn + A/„.1/2 - M„+1,1/2,

and follows from the recurrence relation [1], [6]

(19) (k + l)M,+1.1/2 = Z dMK,i/2/dZ + (k- Z/2)M,,i„.

The first few Mn functions are:

Mx = M0,m — (~7 + 1 + g)Mx,x/2,

2M2 =  lt/o.i/2 + (3 - ez)MXA/2- - (-27 + 3 + 2g)M2,1/2,

(20) 3A?3 = Mo'1/2 + (2 ~ ^Mj.w

+ (5 - ez)M2,x/2 - (-37 + 11/2 + 3g)Ma.1/2,

4M4 = M„.1/2 + (5/3 - 5e2/3)Mlil/2 + (3 - 5ez/3)M2,x/2 + (7 - ez)M3A/2

- (-47 + 25/3 + 4g)Mi,l/2.

Although the differential equation satisfied by Mn has the same form as in the Wn

case

Z2M'n' + i-Z2/4 + zzZ}A7„ =  -ZM„,1/2,

the solution has the form

n-l

(21) M„ =  22 («i + biez)MlA/2 - [fin + 1) + giZ)]Mn,x/2.

As before, we find with help of the recurrence relations [8] for the M functions that

the a coefficients are given by

_ 2zz - 1 _ zz - 1
an~x — ,        an-2 — ,

zz n

and

(22) (zz - 1 - t)al+x - 2(« - Da, + (zz + 1 - /)„,_, = 0.
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The solution [3] to this equation is just

(23) a, =--•
zz (zz - /)

The b coefficients satisfy the equations

1 . 3 — 2/1
»»-i   —-. On-2  =  ~,-77 . ba  =   0,

zz zz(zz — 1)

and

(24) 2(/ + l)6i+2 - (zz + 5/ + 1)¿>¡ + 1 + 2(zz + 21- l)b, - (zz + / - 1)6,., = 0.

This four-term expression can be reduced by the substitution

(25) A, = 2Ü + l)bl+2 - in + I + l)bl + x,

to the simpler three-term form

(26) Al+X - 2At + A^x = 0,

whose solution [3] is

(27) At = in + I + l)/n.

The b coefficients are obtained from the inhomogeneous equation

(28) 2lbl + x - in + l)b, = in + l)/n,

and are given by

n   t-o   (< + zzljt
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