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A Catalogue of Combinatorial Geometries

By John E. Blackburn, Henry H. Crapo and Denis A. Higgs

Abstract. We include in the microfiche section of this issue a catalogue of all the different

geometric configurations which may be constructed from zz points, zz S 8, by specifying

their points, lines, planes, . . . , colines, copoints, their flats of each rank. It suffices to list

the copoints of each combinatorial geometry G, because the colines of G are the copoints

of a geometry earlier in the list, which may be located by deleting one component of the

designator of G.

1. Introduction. We list, in the microfiche section of this issue, all the different

geometrical configurations which may be constructed with zz points, zz g 8.

Combinatorial geometries [2] are very general, including the projective, affine,

and Möbius (etc.) geometries over various fields, any subgeometry (determined by

a subset of the set of points) of such a geometry, as well as many geometries that

are not so representable. The flats of a combinatorial geometry satisfy the following

simple axioms: Each flat is a set of points, the empty set 0 and the one-point sets

are flats, any intersection of flats is a flat, and

the points not in a flat Y (of rank k, say)

are partitioned by inclusion in the flats of

rank k + 1 which contain the flat T.

The theory of single-point extensions of geometric lattices [1] provides a scheme

for computer generation of combinatorial geometries. Using that scheme, we verified

the catalogue [5] of the 26 geometries on 6 points and of the 101 geometries on 7

points and used it as the input for the next stage in generation. We compared the

resulting geometries pairwise for isomorphism, and retained one representative

of each isomorphism class. Finally, we made the catalogue consistent with respect

to the truncation operation: The colines of any listed geometry are also the copoints

of another listed geometry. This enables us to give complete information about

each geometric lattice, using a single typed line for each geometry.

The information in this catalogue is relevant to a variety of current research

efforts. It is intended primarily as a source of counterexamples.* The theory of
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combinatorial geometries has fortunately progressed now to a point where the

geometries on 5 points, and to some extent the graphically-representable geometries,

no longer suffice for checking conjectures.

Some typical unsolved problems which may become more accessible after a

close look at these small geometries, are the following:

(a) Provide a general coordinatization scheme for combinatorial geometries,

and characterize those coordinatizable over various fields (known for GF(2) and

GF(3)).
(b) Characterize the geometries (or subgeometries of the geometries) A\, the

lattices of varieties of zz-dimensional space over a field F, varieties determined by

polynomials in n variables, degree g k.

(c) Characterize the subgeometries of Dilworth completions of lower zc-truncations

of free geometries (known for k = 0, the free geometries, and for k = 1, the graphic

geometries).

(d) Characterize simplicial geometries.

(e) Investigate the chromatic number, or critical exponent, of a geometry with

respect to a field over which it is coordinatizable.

For a discussion of geometries, and for definitions of terms used in this paper,

we refer the reader to the monograph Combinatorial Geometries [2].

2. Using the Catalogue. Geometries are listed in increasing order by number

of points, then by rank. Geometries of equal cardinality and rank are arranged in

an order reflecting increasing triviality (points in more general position).

The listing for each geometry of cardinality zz and rank k begins with the designator

sequence

1     n    f2    f3     ■■■     fk-x     1,

where /, is the number of flats of rank i. The digit f¡ is followed by a letter if there

is more than one possible configuration with the sequence

1    zz    f2    •••/,•    1.

Following the designator, we list the nontrivial copoints of the geometry, each

copoint being given as a set of points. The trivial copoints in a geometry of rank k

are those consisting of exactly k — 1 points, the least possible number. The con-

cluding entry "mik"x)" in each copoint list indicates for each geometry of rank zc

on zz points, the number of trivial copoints. These can easily be reconstructed by

hand, because every zc — 1 element subset of the point set must be in at least one

copoint. The listing of copoints provides immediate access to the point-copoint

incidence relation which determines the geometry. (Recall that the set-theoretic

complements of the copoints are the bonds of the geometry, i.e., the circuits of the

orthogonal geometry.)

In order to draw the Hasse diagram of the geometric lattice of a geometry with

designator

1    8    22c    196    1,

say, we start with the unit element "ABCDEFGH" at the top, and list all the copoints
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(including trivial copoints) on a line beneath this. The colines (in this case, the lines)

are given earlier in the catalogue with designator

1    8    22c    1.

The coplanes occur still earlier, with designator

1    8    1,

etc. If each flat is joined to those flats of the next higher rank which contain it, the

Hasse diagram is completed.

To draw the associated geometric configuration, begin with complete information

about the nontrivial flats of various ranks. The nontrivial lines in the geometry

1    8   22c   19/3    1 are listed after the designator 1    8   22c    1:

ABC    AED    DFG.

We begin by drawing these in, as in Fig. 1.

° H

<   F

° D

1    8    22c    1

Figure 1

The geometry will now be completely determined, once we ascertain whether

the lines ABC and DFG are coplanar and determine the position of the point H.

Turning now to the list of nontrivial planes, after the designator 1 8 22c

196 1, we see that ABC and DFG are not coplanar. All the planes such as ABC F

and ABCDE are predictable. The only new information is given by the planes

BEFH    and    CEGH.

If we redraw our 7 point geometry ABCDEFG in such a way that the planes BEF

and CEG intersect in a clearly recognizable line, we may now place the point H

anywhere on that line, just so long as it does not line up with any pair of points.
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1    8    22c    19/3    1

Figure 2

3. Observations.

(a) Representability. Among the 8-point geometries are some that are relevant

to questions on representability. By taking a failed Pappus configuration, we obtain

a geometry on 9 points which is not representable over any field and, by taking a

failed Desargues configuration, we obtain a geometry on 10 points which is not

representable over any division ring. Ingleton [6] had conjectured that every geometry

on k points is representable over some field if k g 8 and over some division ring if

k ^ 9. An inspection of the geometries on 7 or fewer points shows that these are

all representable over some field—indeed, except for the 7-point projective plane

and its orthogonal, they are all representable over the rationals. However, among

the 8-point geometries occur some, such as 1 8 28 17 1, which are not repre-

sentable over any division ring. This is a consequence of the fact that every sub-

geometry G of a projective geometry has the following property: Whenever 4 distinct

lines of G are such that no 3 of the lines are coplanar, but the 4 lines are coplanar

in pairs with the possible exception of one of the 6 pairs, then the 2 lines of this

remaining pair are also coplanar. Since 1 8 28 17 1 fails to possess this

property, it is not isomorphic to any subgeometry of a projective geometry and is

therefore not representable over any division ring. Incidentally, 1 8 28 17 1

may be regarded as the affine geometry on 8 points over GF(2) (1 8 28 14 1)

in which one of the planes has been broken into 4 trivial planes. Richard Rado has

described a similar 8-point nonrepresentable geometry, but with more broken planes.

Another 8-point geometry which has been mentioned in connection with repre-
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sentation problems is 1 8 12a 1. This is one of the classical configurations

and is known to be representable over the complex numbers but not over the real

numbers.

1   8   12a   1

ABECGFHD

XX X

XX X

XX X

XX X

XX X

X XX

X XX

XX x

Figure 3

(b) Geometries with Equal Polynomials. The catalogue reveals many different

geometries having the same Tutte polynomial [3]. The first example is on six points,

where the geometries 1    6    11a    1    and    1    6    lib   1 have Tutte polynomial
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aix, y) = x   + 3x2 + 4x + 2xy + 4^+3^   + v .

(Both these geometries are isomorph ic to their orthogonal geometries, so the Tutte

polynomial has x-y symmetry.)

V       E        F

K      B      C

P

F

B       C
Ö-o-

1   6   lia   1 1   6   116    1

Figure 4

Geometries have the same Tutte polynomial if and only if they have the same

numbers Su of subsets with i points and rank j, for all i, j. Geometries with equal

Tutte polynomials have lattices with the same characteristic polynomials, and so

do their orthogonal geometries. They also have the same numbers of coboundaries

and cycles with kernels of given rank, and images of given size, whenever these

constructions are relevant.

b/   \t>

1    7    13a    1

On seven points, the geometries 1 7 13a 1, 1 7 13/3 1, and 1 7

13c   1   all have the Tutte polynomial

x3 + 4x2 + 6x + 4xy + 6y + 6y2 + 3y3 + /.

(c) Isomorphic Extensions from Nonisomorphic Cuts. We generated 8-point

geometries by taking the distinct 7-point geometric lattices one at a time, searching

for all modular cuts on them, and producing the corresponding single-point exten-

sions, in which the added point depends upon the flats which are in the cut. Consider

a situation in which, for two modular cuts M, N on a geometry with lattice L, there

is an automorphism of the geometry (a permutation of the points of L which carries

flats to flats) carrying the cut M onto the cut N. In that event, the associated exten-

sions will be isomorphic (under an isomorphism which fixes the added point). It

seemed reasonable to suspect that if there were no such automorphism, then the
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extensions of the lattice L by the cuts M and N would be extensions of the same

geometry in two essentially different ways, and therefore would be nonisomorphic.

But this is not true.

Before we give a counterexample, let us rephrase the above conjecture in such a

way as to make it appear much less likely. Given two (zz — l)-point subgeometries

H = G — e and H' = G — e' in an zz-point geometry G, consider the modular cuts

M and M' used to extend H and H' to G. There is an isomorphism from H to H',

carrying the cut M onto the cut M' if and only if there is an automorphism of G

which carries H onto H' (that is, if and only if H and H' are conjugate in G). Thus,

the above situation arises precisely when the subgeometries H and H' are conjugate

subgeometries of G. The (false) conjecture then reads: If two (zz — l)-point sub-

geometries of an zz-point geometry are isomorphic, they are conjugate. Put this way,

the conjecture sounds appropriately dubious.

1    6    15    14    1

Figure 6

In the geometry 1    6    15    14    1, we form modular cuts M and N as follows:

M=  {ACE,    BDF,    ABCDEF),

N=  {CDE,    BDF,    ABCDEF}.

No automorphism can carry M into N, because the planes in N intersect, those in

M do not. The extensions are both isomorphic to the geometry 1 7 21 23c 1,

as indicated in Fig. 7.

We have a geometry on seven points, containing two 6-point subgeometries which

are isomorphic but not conjugate.

id) The Number of Geometries. Tabulated below are the numbers of non-

isomorphic geometries of rank k on zz points, for 1 :£ k ^ n t= 8.
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8        7        6        5        4        3        2       1

pts     pts     pts     pts     pts     pts     pts    pt

rank 1  .......   1

2 1111111

3 68  23  9   4   2   1

4 617  49  11  3   1

5 217  22  4   1

6 40  5   1

7 6   1

8 1

We note that geometries of rank equal to or just greater than zz/2 soon

predominate, as zz increases. An enumeration of the catalogue entries 1 8 28 /3 1

also reveals that among the 617 geometries of rank zz/2 on zz = 8 points, 322 have

only trivial colines. These are the geometries associated with Hartmanis partitions

of type 3, in [2].
Doyen [4] has given the number of plane geometries on nine points as 383. Doyen

has proved that these are at least 2" nonisomorphic planes on zz points, for zz ̂  10.

Welsh [9] conjectures that

Jm+n   ^*   7m' In

where /„ is the number of nonisomorphic pregeometries on zz elements. This is surely

correct.

This catalogue exhibits the rapid growth of the number g(zz) of geometries on zz

points. Piff and Welsh [8] have now replaced the Crapo-Rota estimate [2]

g(n+l)~(g(n))3/2,       g(«)~zc((3/2,")

by proven asymptotic lower bounds /3X, for any X < 1,

(3 N, Vzi >  JV)    gin) > Kin) = 2(2^,

which is even closer to the absolute upper bound 2<2"' for structures which are

determined by families of subsets of a set. Piff and Welsh give an even larger asymp-

totic lower bound

iJN, Vzx > N)    gin) > „(2"/(",/a>\

It is unlikely that a complete tabulation of 9-point geometries will be either

feasible or desirable, as there will be many thousands of them.** The recursion

g(9) = (g(8))3/2 predicts 29260. We must caution projective plane theorists that

this program is not recommended for the construction of a projective plane on 111

points !

4. On the Program. Of the three stages in the production of the catalogue:

search for modular cuts, construction of the corresponding lattice extension, and

isomorphism check, the first stage requires the most computer time. We tried in a

** The Piff-Welsh lower bound gives no information concerning g(9), because it asserts merely

that g(8) ê 19, g{9) ê 103.
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variety of ways to reduce that time demand, and evolved a number of procedures,

two of which we now describe.

At one stage in the development of the program, we thought it advisable to

search through all subsets of the copoint sets of the 7-point geometries, generating

from each the smallest modular cut containing that subset. We could eliminate all

subsets which generate modular cuts containing any point, because the associated

extensions leave the geometry unchanged (merely doubling a point, or placing a

point in the closure of the empty set). Once such a subset is found, it is clearly futile

to aspect any subsets containing it.

This sort of situation occurs frequently in combinatorial problems. We wish to

follow a circular path through 2" points (representing the subsets of an zz-element

set), but wish to omit those points which represent supersets of sets at which we

have already obtained trivial results. Consider the following flow diagram. Subsets

of an zz-element set are indicated as usual by zz-place binary numbers. Choice "A"

is made 0 or 1 in accordance with the last digit in the binary number. Choice "B"

is made 1 if the subset just checked gave trivial results (so that all larger subsets

should be ignored).

«.v tat
O0---OI

"A"
(cvx¿s «n)

PROG-R.ArA

LOOf

ÇTA^to at

1 Vo o

\o  -oo

cU-r^e Ust \0
p^x*-   to   \\

I
tl^'lO   Vo   01

Figure 8

On the Boolean algebra diagram, below, we indicate the path followed if choice

"B" is always 0 (nontrivial). From any set C, the path proceeds through all supersets

of C before going to any other set.
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1111

Figure 9

If the set 1110 produces a trivial result, the next set is 1101 (which must be checked

next because it is a superset of 1100). If 0100 is trivial, the next set is 0010. It is clear

that the time saved will be substantial whenever all fairly large subsets give trivial

results.

We were eventually forced to discard this procedure, in preference for the method

we now describe, in which we complete partially-determined cuts to modular cuts

in all possible ways. We read from left to right on each level of the lattice, and then

upwards by levels. We proceed by assigning labels 0 (not in the cut) and 1 (in the

cut) to each flat. Labels which are assigned by free choice are set at 1 first, and are

indicated 1' ("tagged"). Having made a free choice, we work out the consequences

of that choice as follows:

(a) Any flat containing a flat labeled 1 must also be labeled 1.

(b) If a flat is labeled 0, and is covered by a flat labeled 1, then all other flats

covering it must be labeled 0 (because the cut must be modular).

(c) If a flat is labeled 0, then all flats contained in it must also be labeled 0.

Having worked out the consequences of our free choice, we proceed to the next

unlabeled flat, and make a free choice 1'.

When all flats have been labeled, a modular cut is determined. We read it out,

and proceed to determine the next modular cut by resetting the last freely-chosen 1'

equal to 0, erasing all labels beyond that point, and proceeding as before.

The procedure is initiated by labeling all points 0, and making a free choice of
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1' on the first line (i.e., the first flat of rank 2). It terminates when all flats have been

labeled 0.

The other subroutines, being less wasteful of computer time, are more con-

ventional. The lattice extensions are produced from modular cuts by the procedure

outlined in [1].

To see whether two geometric lattices are isomorphic, we list the copoints of

each in decreasing order of cardinality, and extend these lists to include the points

in some order. We endeavor to rearrange the copoints and the points in the second

list until each pairwise intersection of flats in the second list agrees in cardinality

with the intersection of those flats in the same positions in the first list. This can be

accomplished if and only if the point-copoint incidence relations are the same, that

is, if and only if the two geometries are isomorphic.
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