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An Asymptotic Expansion of  Wh.m(z) with

Large Variable and Parameters

By R. Wong*

Abstract. In this paper, we obtain an asymptotic expansion of the Whittaker function

Wk,m{z) when the parameters and variable are all large but subject to the growth restrictions

that k = o(z) and m = o(zV2) as z —> ». Here, it is assumed that k and m are real and

|arg z\ S T — 5.

1. Introduction. In this paper, we are concerned with the asymptotic behavior

of the Whittaker function Wk,m(z). This function depends on two parameters and

a variable. When the parameters k and zzz are fixed and the variable z is large, it is

well known that a complete asymptotic expansion can be obtained; see [1, Section 7.1].

However, if the parameters k and zzz are allowed to increase without limit, the problem

of finding asymptotic forms for Wkt,fz) becomes much more involved and has been

the subject of numerous investigations; see Buchholz [1], Chang, Chu and O'Brien [2],

Kazarinoff [7], Erdélyi and Swanson [5], Slater [8] and the references given there.

Although a great number of papers have been written on this subject, the treatment

with two parameters and a variable is still incomplete.

In a recent paper [11], Wong and Rosenbloom have studied a certain inequality

(see [4, p. 124]) connecting Whittaker functions and parabolic cylinder functions

Dfz), and shown that this inequality can be improved considerably. However, the

above-mentioned paper contains the restriction that k and zzz be again fixed. The

purpose of this paper is to show that this condition can be relaxed so that k and m

may depend on z. Moreover, we give a complete asymptotic expansion of Wk:rfz)

when the parameters and the variable are all large, i.e.,

(1.1) k, m    and   z —-> oo

but subject to the growth restrictions that

(1.2) k = o(z)    and    zzz = oizl/2)    as z —> °° .

Here, it is supposed that k and zzz are real and |arg z\ ^ zr — 5. The term "asymptotic"

is used in the sense of Erdélyi and Wyman [6], which is more general than the usual

Poincaré sense. This distinction is made clear in the theorems.
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2. Two Auxiliary Results.    It is well known that Hankel functions H^fz) and

Hl2)(z) have the asymptotic expansions

(2.1) H?\z) = (AYV-»/»-/« {'£ (~\)"(v'm) + AÍ»
W (¿ZÍ       (2zz)

and

(2.2) //:2>(z) = (2.Y/,e-<('-"/,-'/« fz ^ + *r
W ^ (2iz)

where

{4,2- 1}{4,2- 3}  •••  j4,2- (2m- 1)2|
(2.3) (¡>, zzz) - -^2nT—,- ,

2    zzi!

(2.4) iv, 0) =  1,

and the remainders /?"' and /?"' are both 0(z~p) when y is a fixed number. For

the results to be obtained, the following estimate is needed.

Lemma 1.   Let arg z be restricted to the interval [—zr/2, 3zr/2], and v be a real-

valued function of z satisfying v = o(z1/2) as z —> <». Then, for i = 1 and 2,

(2.5) Ä<° = 0{iv,p)/zv],    asz^ « .

Proo/.   We suppose first that ? ^ 0 and Re z ^ 0. Under these conditions,

Weber [9, Section 7.33] showed that

(2.6) \R?\ ik 2G2 \iv, p)\ ífn}P + \l       (1-1. 2),
f (2P + 2) |2z|

where

(2.7)

G =    1 -

and \z\ — r.
Since G is clearly bounded when 0¿ ná 1 and z* is sufficiently large, we may

assume that 1 < v ^ z*1/2. A simple estimate then gives

(2.8) i-v - |) log(l - l/2z-1/2) Ú iv + è)A'/2 ^ f

from which it follows that

(2.9) G g (1 - l/2z-I/2)—1/2 ú e'2.

Therefore, a constant A v exists, which is independent of v and z, such that

(2.10) |A¿°| ^   4, |(v,p)|/|z|*        (/=  1,2),

for all sufficiently large values of z. This is equivalent to (2.5).

Since iv, p) is an even function of v, it follows from the identities [9, Section 3.61]

(2.11) HlJr\z) = eyxiH(fiz), H™iz) = e~vwi Hi2\z)
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and [9, Section 3.62]

(2.12) H^ize") =  -e~'riHl2)iz),

that the restrictions v ^ 0 and Rezè 0 are unnecessary. Therefore, inequality (2.10)

holds for all real values of v and complex z restricted to the sector — zr/2 g arg z ^

3zr/2, as long as v = oizl/2) as z —> œ. This completes the proof of Lemma 1.

Remark. It should be observed that no hypothesis has been made in the estimates

concerning the relative values of v and p; in this respect, Weber's result differs from

that of Schläfli [9, Section 7.4] which was used in our previous paper [11].

In [6], Erdélyi and Wyman have given an elegant proof of a result from which it

is easily deduced that the parabolic cylinder function D_fz) has the generalized

asymptotic expansion

«2,3, zVv.D^¿ÍA;        0j,

as z —> oo in |arg z\ g zr/2 — A, where X > 0 and X = o(z). The meaning of (2.11) is

«■14, !V.,fl.>W_¿<^+„(£)")

asz-> co, for every fixed integer N ^ 0, where the o-symbol is independent of X

and z. Unfortunately, they proved the result only for X > 0, while, for our results,

we want to use all real values of X. Although the conditions X > 0 and |arg z\ ^

zr/2 — A in (2.13) can be easily weakened to |arg X| ^ zr/2 — A and |arg z\ g 3zr/2

— A, their proof does not seem readily adapted to extensions allowing X to be negative.

The following lemma shows that the condition X > 0 is indeed unnecessary.

Lemma 2.   The result in (2.13) is true z/"X > 0" is replaced by "X real".

Proof.   We start with the contour integral representation

z-, k\ iV4n  / -,        r(i     x) r x-i -f/2-zt j.
(2.15) e      D.fz) =-—— /        (-/)    e dt,

2xz       J„

where the path of integration starts at + <», goes around the origin once in the

positive direction and returns to + œ. The integrand is rendered one-valued by

taking —ir g arg (—/) g it.

Since it has already been shown that (2.13) holds when X is finite or X > 0 but

X = o(z), we shall assume that X is large and negative. Let rN(f), N = 0, 1, 2, • • • , be

defined by the relation

N z_nn/2"

(2.16) e~"/2 =  22 V^r + rN(t).

It is evident that, if / is restricted to the path of integration, a constant BN can be

found such that

(2.17) 1^(01 Ú BN |/|2'v+2.

Substituting (2.16) in (2.15) and integrating term by term, we obtain

(2.18) e'V4Z)_„(z) =  ¿ (-'fty^-o+w + r(l - X)e,v(X,z),
t^o      2 -n\
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where

|e.v(X,z)| ̂  -i- f       \i-tf-fNit)e-z' dt\

(2.19)
n       i-(0 + )

<?    Dn    I I.X + 2JV+1   -íl     ..i

by (2.17). Since X is negative, the transformation zt = (— X)r gives

/<0 + , ■.    X+2W+2     f.(0 + )
|.X+2iV+l   -it      ,.| « I .    X+2ÍV+1   Xr     ,    |
|/ e      dt\ =   - I \t e    dr\

when z is real and positive. It is not difficult to see that (2.20) in fact holds when

|arg z\ < tc/2. Hence,

2W + 2 p ,.(0 + ,

I f\ M     *?     Pu      I I     2W+1    X(T+l0gT)       ,      IMX,z)| = — /        [re </t|(2.21)

valid when X < 0 and |arg z| ^ x/2 — A. To the last integral, we apply the method

of steepest descents [3, Section 30]. Hence,

(2.22) f° ' |T2-v+y('+'OBT) dT\ ~e-\-Tll\yn,
J CO

as X —> — oo. Coupling the results (2.21) and (2.22), we obtain

(2.23) z%i\,z) = 0{(-X/z)2A,+Vx(-X)x-,/2},

as z —» oo in |arg z| ^ 7r/2 — A, where the 0-symbol is independent of X and z.

Finally, by Stirling's formula

(2.24) T(l - X)zxe.v(X,z) = 0{i\/z)2N+2\

and so the lemma is established.

Remark.   The above analysis can be used to give similar expansions for the

derivatives of D_fz) with respect to z. In particular, we have

(2.25) ölx(z)~ (-£)zI-\f'v\    asz^ oo in |argz| ^ ir/2 - o,

where X is real and X = o(z).

3. Main Theorem.    It is known that the Whittaker function has the integral rep-

resentation [1, Section 5.3]

,•->    |S 77/ f   2. !'/2t(»+l/2-l)ti      1 -«'[,(l,n       x    24     ,
(3.1) W*,m(z ) = ze e     H2m(2zu)u    du,

J -co

where the path of integration runs from — oo to oo and passes above the singularity

at the origin. If we substitute (2.1) for H22, we obtain

(3.2) Wk,m(z2) = 2,/4"Vz {£ (W2)f ^—'^(^2) + £,(*)}

where the remainder is given by
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Í1   1\ E- /  \ *,k-l/i   (l/4-*)T! + 2V2     / -»'t2¡!«,!l-l/2„(l)n      x     ,
(3.3) Eviz) = —7- 2       e I    e u        R„  \2zu)du.

Vzr J-«»

This result is well known [4, p. 124]. When k and zzz are fixed, it was shown in [11, (3.1)]

that£„(z) = 0(e~*'/2z2k~2p~17'2), uniformly in arg z, as z-> œ in |argz| ^ zr/4 - A.

When k and zzz are functions of z, we have the following lemma.

Lemma 3.   Let k and m be real-valued functions of z for which k = o(z) and

m = o(z1/2) as \z\ —> œ. If\m\ ^ 5 > 0 then

(3.4) E,(z) = 0{2y*-1/V"/2(m/z)2»}.

//|zzz| g 6 then

(3.5) £p(z) = 0{2V2V2z2t-2!,-I/2|.

Both results hold uniformly in arg z,asz^> 00 /« |arg z\ ^ zr/2 — A, and the constants

implied in O-symbols are independent ofk, m, and z.

Proof.   Returning to (3.3), we let

/I    /-\ T I -U3+2ÍZU     2k-l/2T,(l)/r, \     j
(3.6) I =   I    e u        Rp  i2zu)du.

In [11], it was shown that by a change of variable u = zu' followed by a deformation

of the contour,

/">   "7\ I 21+1/2     / -î'd'+l), 1       ;\2k-l/2D(l)f~_2f^      i       .....     ,
(3.7) I = z je ix + z)        Ä„  (2z (* + ()) czx,

v —00

the path of integration now being a straight line joining — 00 to œ. By Lemma 1,

(3.8) |/| ^  Av\i2m,p)\ \e-"z2k-2v+W2\J,

where

(3.9) J = f    \e-"x\x + ¿)2t-p"1/2 dx|

and the constant Av depends only on p. Since x is real, we have \x + i\ ^ 1, and so

(3.10) / = 2 Í   e-(R"s,xV + 1)* dx.
Jo

We consider separately the cases k ^ 0 and zc > 0.

When /cgO,

(Mo j s 2 [ .-<-*>' ** - (¿,)"!.

Hence, 7 = C(z" ') for z restricted to |arg z\ 5Í zr/4 — A.

When k > 0,

(3.12) 7 ^ 2  f   e-<R"a-*'^ </*

provided that the integral exists. Since k = o(z) as \z\ —* œ,
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(3.13) Re(z2) — k = \z\2 cos(arg z2) — k è  |z|2 Vk,

for sufficiently large z in the sector |arg z\ ^ zr/4 — A, where i\k is a positive finite

number and independent of \z\. Therefore, we again have J = 0(z~l), as z —> oo in

|arg z\ ^ 7r/4 — A.

We have thus proved that a constant A'v exists such that

(3.14) |/| g  ^ |(2zzz,p)e-8z"-2,-I/2|,

for large values of z in |arg z| ^ zr/4 — A. The region of validity can be extended to

|arg z\ g zr/2 — A by a standard argument. We rotate the path of integration in (3.7)

through an arbitrary angle y, where — zr/4 < y < ir/4. When z is positive, use of

Cauchy's theorem easily shows that (3.7) is valid if the upper and lower limits are

replaced by ooelT and — <*>e'y respectively. With this change, (3.7) holds when

|arg (ze'y)\ 5? zr/4 — A. A repetition of the proof (with some slight modifications)

then shows that (3.14) is also valid in this angle. By varying y, it follows that (3.14)

holds when |arg z\ ^ zr/2 — A.
Since jE:e(z) = (l/V^)2k-1/4en/4'k)wi+"/2I, by (3.14),

(3.15) Eviz) = 0{2*(2zzz, p>f'vy*-2«-,/2}

for all large values of z restricted to the sector |arg z\ ^ zr/2 — A. When \m\ ^ 8,

(3.15) is certainly equivalent to (3.5). When \m\ ̂  8 > 0, (3.4) follows from (3.15) in

view of the fact that (2zzz, p) ~ (2m)2v/p !.

Main Theorem.   Let k and m be real-valued functions of z satisfying conditions

(1.1) and (1.2). Then, for any N ^ 0,

2*-1/iWk.miz) = D2k-U-{(:

(3.16)
Z)^_,/2((2z)'/2)

~r 1/4

->[r?+^)-}]

as z —> oo in |arg z| g it — 5, uniformly with respect to arg z. The coefficients as and b,

depend on k and m, and are explicitly given in (3.24).

Proof.   Clearly,   ¡(zzz2/z)2nj   is an asymptotic sequence under the hypothesis

zzz = o(zl/2) as \z\ —> oo. Let N be an arbitrary but fixed positive integer, and set

(3.17) S =   Z' Srfíh D2M/2U2z)l/2).
r„o  (2(2z)     )

The following lemma is given in [10].

Lemma.   For each r ^ 0 we have

(3.18) i-lYi-XlD^fz) =  Dxiz)Priz) + Dx(z)ßr-i(z)

where Pr(z) and Qr„fz) are polynomials of the form

ir/2]

(3.19) P,iz) =   22 Pr,szr~2\
s-O

[<r-l)/21

(3.20) Qr-i(z)=   E .?,-i.y-(2,+1).
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The coefficients pTiS and qr-x,, can be successively determined from the recurrence

relations

(3.21) Pr + 1iz) = zP,iz) + (-X + r - l)Pr-iiz),

(3.22) Qfz) = zßr-,(z) + (-X + r - l)ßr.2(z),

with P0(z) = 1, Pfz) = z/2, Q-fz) = 0 W g0(z) = 1.
Now, let \k\ ^ 7Y + 1 so that 2k - \ j* 0, 1, • • • , 2N + 1, and hence (| - 2k)r

9a 0 foi r = 0,1, ■ • • , 2N + 2. It follows from (3.17) that the sum Scan be rearranged

in the form

N+l N ,

(3.23) 5 =  Z)2*_1/2((2z),/2) 22 ~. + D'2k.x/2((2z)U2) E -^
s=0   Z 8=o Z

where

(3.24)

Therefore

1  2^2 j-l)rj2m,r)

a* = T Srra-2k)r p>- and

,_L     v    (-0 (2m, z-)
O,   —    .8 + 1/2       Z^       -r,l    _    »,,       <7r-l,8

^ 1-Ï2S + 1    *•  \2 ¿K)r

(3.25)

Wk,M) = 21/4-V/4{z)2t_1/2((2z)I/2) E^f
l 8-0  z

+ ö2t_1/2((2z)1/2) E^f72 + E2N+3iy/z)\
8-0 z j

for any fixed integer N ^ 0.

Now, it only remains to consider the remainder E2N+3. By Lemmas 2 and 3, we have

(3.26) Eilf+3iVz) = 0((m2/z)2'v+3ö2*_,/2((2z)1/2)},

and, similarly,

(3.27) E2N+3iVz) = 0{im2/z)2N+3z-W2D'2k-U2ii2z)U2)\

by (3.26). Both results hold uniformly with respect to arg z, as z —> oo in |arg z\ ;£

■k — 8.

We have thus proved that, for any integer N ^ 0,

Z>2*_1/2((2z)1/2) p£
2""1/4lft,m(z) = _1/4

(3.28) Z
,    D2,-1/2((2z)1/2)

"T ,1/4
Z

as z —+ oo in | arg z| g x — S, uniformly with respect to arg z, which certainly implies

the required result.
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