
mathematics of computation, VOLUME 27, NUMBER 122, APRIL, 1973

A Winding Number Algorithm for

Closed Polygonal Paths

By J. V. Petty

Abstract. A winding number algorithm for closed polygonal paths (not necessarily simple)

is derived using classical complex analysis results and techniques. The algorithm is designed

specifically to handle large cases efficiently. The performance of a computer program based

on the algorithm is discussed and compared with the performance of a computer program

which obtains the winding number directly by antidifferentiation.

1. Introduction. The algorithm does not involve the division operation, inverse

trigonometric functions, or integral approximation techniques, making it quite suitable

for computer programs which must process any combination of many polygonal

paths, polygonal paths with many sides, and/or compute many winding numbers.

In addition, if all the complex numbers in a given application are Gaussian integers,

then a computer program based on the algorithm can be written completely in fixed

point mode. The algorithm has proven to be computationally efficient. Results of

efficiency tests of a FORTRAN program based on the algorithm are given in the

final section.

To avoid ambiguity, we define briefly the mathematical terminology which is used.

By a curve, we mean a continuous function C from a closed real interval [a, b] (called

the parameter interval) into the complex plane. C(a) is called the initial point, C(¿) the

terminal point of C. The inverse C of C is given by C(/) = C(a + b — t), a ^ t ^ b.

C is closed provided C(a) = C(è). C* denotes the range of C; i.e., C* = {C(/) | a ;£

t ^ b}. A path is a piecewise continuously differentiable curve. If C is a path and

¿o (£ C*, then the winding number of z0, Wciz0), with respect to C is given by 2xiWciz0)

= ¡c(z - Zp)~l dz.

Given complex numbers z and w, the directed line from z to w is defined by [z, w] =

{(1 — t)z + tw | 0 ^ í ^ 1}. The distinction between a closed real interval and a

directed line in the complex plane is always clear from context. A path P with param-

eter interval [a, b] is called a polygonal path provided there exists a subdivision a =

U < ■ ■ ■ < tN = b of [a, b] such that P([t„-U tn]) = [Pitn-i), P(Q], for each n =

2, 3, ■ ■ ■ , N. The turn-points of P are Pitn), n = 1, 2, • • • , N. For convenience of

notation, we identify a polygonal path by its turn-points; P : pn = xn + iyn, n =

1,2, • • • , N, where pn = P{tn), for each n.

Received March 13, 1972.

AMS (MOS) subject classifications (1970). Primary 65-00, 65D30; Secondary 65E05.
Key words and phrases. Computation of winding numbers, closed polygonal paths, interrogation

of algebraic signs, computer program.

Copyright © 1973, American Mathematical Society

333

334 J. V. PETTY

2. Mathematical Basis for the Algorithm. In this section, we consider the prop-

osition which enables us to define the algorithm so that it employs primarily the

interrogation of the signs of the real and imaginary parts of the turn-points of a

given closed polygonal path. We recall that the winding number is invariant under

translation of the coordinate axes. In particular, if we wish to find Wdz), for a given

closed path C, we may translate the origin to z. Hence, without loss of generality,

we always assume that the origin has been translated to the winding point and consider

only ^(0). In order to emphasize the conditions from which the algorithm is derived,

we make the following

Definition. Let P : pn = xn + iyn, n = 1, 2, • ■ • , N, be a closed polygonal path

with 0 G P*. For each n = 1, 2, • • -, N — 1, let Tn be the point set consisting of the

interior and boundary of the triangle determined byp„, x„+1 + iyn,Pn+¡- Now, define

integers Kn, L„, for n = 1,2, • • • , N — 1, as follows. If 0 G Tn, then Kn = 0 and

Ln = 0. If 0 G Tn, then

(2.1) xn+1 = 0 and yn = 0 imply Ln = 0 and Kn = 1, provided xn and yn+1 have

the same sign, or Kn = — 1, provided xn and yn+1 differ in sign;

(2.2) xn+i = 0 or yn = 0, but not both, implies Kn = 0 and L„ = 1, provided

xn and yn+i have the same sign, or L„ = —1, provided xn and yn+l differ in sign;

(2.3) x„+1 ̂ 0 and yn ^ 0 imply K„ = 0 and L„ = 2, provided xn+1 and yn — yn+1

have the same sign, or L„ = —2, provided xn+l and y„ — yn+l differ in sign.

In addition, for each n = 1,2, ■ ■ ■ , N — I, put

(2.4) /„ = iE(jn+u xn+l) + £(x„, yn)) - <Eixn+l,yn) + Eiyn, xn+1)), where E(a, b) =

Arctan (a/b), if b ¿¿ 0, or £(a, /3) = 0, if b = 0. (Here Arctan indicates the principal

branch of the inverse tangent relation.)

Proposition. Let P : pn = xn + iyn, n = 1,2, ■ ■ ■ , N, be a closed polygonal

path with 0 G P*- Then

¡. N-l

r1 / z_1 dz = X) (A + l*ir + £»*■)■

Proo/. Let z = x + iy, z * 0, u(x, y) = x(x2 + y2)~\ v(x, y) = -y(x2 + y2)'1,

F = udy + vdx. Then by [1, 10.10, p. 204], i'1 fP z'1 dz = jP F. Put S„ = [pn,pB+I],

for « = 1, 2, • • • , N - 1. Then fP F = ¿^ij JSn F, so it suffices to show that

[F = In + \Knx + LnX,
•'s,

for each n=l,2, ■,N— I.

Fix an arbitrary n, I ^ n ^ N — l.lfO ^ Tn, put <7„ = xn+1 + />>„, /<„ = [pn, q„],

sn = [Qn, Pn+i]. Now, fSn F = f A„ F + /fi„ F = In, so we have the desired result,

since, by definition, K„ = 0, Ln = 0, whenever 0 G Tn. Thus, we assume 0GT, and

consider three cases: (1) xn+1 = 0 and y„ = 0; (2) x„+1 = 0 or y„ = 0, but not both;

(3)xn+1 * 0andyn^0.

Suppose case (1) holds. Now, by [2, Theorem V, p. 437], JSn F = a, where |a| is

the angle subtended at the origin by 5„. Since in this case xn+l = 0 and yn = 0, we

have \a\ = \x. We observe that 0 < a, if xn, yn+l have the same sign, or a < 0, if

xn, yn+l differ in sign. Thus, Kn is defined properly by (2.1) and we have /Sn F = \Knx.

Moreover, xn+i = 0, yn = 0 imply /„ = 0 and the definition L„ = 0 given in (2.1) is

correct, so the Proposition is satisfied for case (1).

WINDING NUMBER ALGORITHM FOR CLOSED PATHS 335

For case (2), first assume xn+1 ¿¿ 0 and yn = 0. Choose a path C having initial

point pn and terminal point qn = xn+1 + iyn such that C* lies in the upper or lower

half of the plane if pn+i lies in the upper or lower half of the plane, resp. Also, put

D = [<In,Pn*\]. Then, we have jSn F = jcF + J"D F. Now by [2, Theorem V, p. 437],

Se F = a, where \a\ = x, and by antidifferentiation, J"D F = In. Clearly, 0 < a, if

xn, yn+1 have the same sign, or a < 0, if xn, yn+1 differ in sign. Thus, Kn, L„ are properly

defined by (2.2), and we have

[F = /„ + \Kjk + L„x,

as required. On the other hand, if x„+1 = 0 and yn ^ 0, we select a path C having

initial point q„ and terminal point pn+l such that C* lies in the left or right half of

the plane if pn lies in the left or right half of the plane, resp. Let D = [/?„, ?»]• The

desired result is obtained in a fashion similar to the one used above. Hence, we reach

the desired conclusion in either event if case (2) holds.

Finally, suppose xn+1 j¿ 0 and yn ^ 0. Let qn = xn+1 + iy„ C = [q„, pn+l], D =

\ßn, qn]- Now jSnF 9^ Sc F-\- JD F, since independence of path does not hold. However,

ii rn = xn + iyn+u A = [pn, r„], B = [/•„, pn+1], then we have J"s„ F = jA F + J"B F.

Define a path G = A + B+C-\- D. Now G is a simple closed path around the origin,

so /„ F = a, where a = 2x if G is traversed counterclockwise, or a = — 2x if G is

traversed clockwise. We observe that the direction of G can be determined easily:

G is traversed counterclockwise if xn+1, yn — yn+1 have the same sign, or is traversed

clockwise if x„+i, yn — yn+l differ in sign. Consequently, we see that, by (2.3), L„ is

defined properly, so we have

L„*-= [F= f F+ [F+ [F+ [F.
Jo Ja Jb Jc Jd

The desired result now follows easily and the proof of the Proposition is complete.

Now, for a given n,lg,n^N—l, observe that E(yn+l, xn+l) is a summand in In,

and Eixn+U yn+l) is a summand in In+l. Hence, if xn+i ^ 0, yn+1 ^ 0, Mn =

2x~1iE(yn+1, xn+1) + Eixn+U j>„+i)), then Mn = 1, provided xn+1, yn+i have the same

sign, or Mn = —1, provided xn+u yn+i differ in sign. If x„+1 = 0 or yn+1 = 0, then

Mn = 0. In addition, E<xn+l, yn) + E(yn, xn+l) appears in /„. Thus, if

M„ = 2x~1iEixn+u v„) + Eiyn, xn+l)),

then M„ = 1, —1, or 0, depending on xn+u yn in the same fashion. Therefore, we

can determine the contribution made to i~l jP z"1 dz by 2»-' ^ without explicitly

using the inverse tangent; i.e., £i-i 7» = k 23n-î (Mn ~ M'n).

Thus, given a closed polygonal path P with 0 G F*, we have that WPi0) =

1]C»-i (M" - M'n + Kn + 2L„). This follows easily from the Proposition and the

above observations.

3. The Algorithm. Let R : rn = sn + itn,n = 1, 2, • • -, N, be a closed polygonal

path, a + ib a complex number for which we are to compute W«(a + /ft), or determine

that a + ib E R*. For each n = 1, 2, • • • , N, put xn = s„ — a, j>„ = r„ — ft. Then,

P : p„ = jc„ + />„,« = 1, 2, • • • , A7', is a closed polygonal path and we are concerned

336 J. V. PETTY

with computing WPiO), since WPiO) = Wz(a + ib), or determining that 0 E P*.

For each n = 1,2, • • • , N — 1, let Sn, Tn be defined as in the preceding section.

The algorithm consists of carrying out the four steps listed below for each ti =

1,2, • • • , N — 1, defining K„, L„, Mn, M'n as indicated.

Step 1. Determine if 0 G Sn; if so, terminate the process; if not, carry out

Step 2 whenever 0 G Tn, or Step 3 whenever 0 G Tn.

Step 2. Put Kn = 0, L„ = 0. Now carry out Step 4.

Step 3. Define K„ = 0, 1, or — 1 and Ln = 0, 1, —1, 2, or —2, according to

which of the conditions (2.1), (2.2), or (2.3) is applicable. Now, carry out Step 4,

except when (2.1) is applicable; in this case, put Mn = 0, M'n = 0 and start the process

again at Step 1 with n + 1.

Step A. Put M„ = 0, if xn+1 = 0 or yn+l = 0; Mn = 1, if xn+1, yn+1 are nonzero

and have the same sign; Mn = —1, if x„+1, yn+1 are nonzero and differ in sign. Put

M'n = 0, if xn = 0 or yn+l = 0; M„ = 1, if xn, yn+1 are nonzero and have the same

sign; M'n = — 1, if xn, yn+i are nonzero and differ in sign.

If 0 G ^*> then all the Kn, L„, M„, M'„ are defined after going through the algorithm.

By the Proposition and the concluding remarks of the preceding section, we have

N-l

WA0) = \ Y, Mn - M'n + Kn + 2L„.
n-l

Since WPi0) is obtained by division by 4, a power of 2, division can be avoided

in a computer program by using a shift of two bits on the sum. (Most optimizing

FORTRAN compilers expand shifts as in-line code, as opposed to treating them as

subprograms, hence shift operations are very efficient.) Also, it is trivial to determine

if 0 G S», 0 G Tn without using division. Therefore, division need not be employed

at all in a computer program based on the algorithm. This is desirable since division

is a relatively slow operation in a computer. Moreover, if a + ib, rn, n = 1, 2, • • • , N,

are all Gaussian integers, then it is evident that a computer program based on the

algorithm can be written completely in fixed-point mode. This too is desirable, since

fixed-point operations are faster in a computer than floating-point operations.

4. The Computer Program. A FORTRAN IV program based on the algorithm

has been tested for efficiency on several cases. The program was compiled using the

highest level of optimization available at the installation used by the author. A typical

test case consisted of a closed polygonal path P having 25 turn-points and 22,000

points for which the program computed the winding numbers or determined that

points were on P*. All points (including the turn-points of P) were Gaussian integers.

Of the 22,000 points, 5,000 were on P*, 5,000 were inside P*, and 12,000 were outside

P*. Hence, on this test case, the program was required to carry out the algorithm

completely 17,000 times, but had to carry out the algorithm only partially for the

5,000 points which were on P*. The program required 21.52 seconds of task time on

an IBM 360/65 to process this test case.

As a basis for comparison, a program was written in FORTRAN IV which

computed the winding number by evaluating the required integral using antidif-

ferentiation. (The FORTRAN inverse tangent subprogram was employed.) This

program (compiled using the highest level of optimization) required 149.54 seconds

of task time on the same machine to process the above test case.

WINDING NUMBER ALGORITHM FOR CLOSED PATHS 337

Similar results were observed on all other test cases attempted. The program based

on the algorithm processed all test cases at least seven times faster than the other

program, and in some cases, ten times faster.

Design Automation Department

Texas Instruments, Inc.

Dallas, Texas 75222

1. W. Rudin, Real and Complex Analysis, McGraw-Hill Series in Higher Math.,
McGraw-Hill, New York, 1966. MR 35 #1420.

2. A. E. Taylor, Advanced Calculus, Ginn, New York, 1955.

