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Iteration Methods for Finding all Zeros of

a Polynomial Simultaneously

By Oliver Aberth

Abstract. Durand and Kerner independently have proposed a quadratically convergent

iteration method for finding all zeros of a polynomial simultaneously. Here, a new deriva-

tion of their iteration equation is given, and a second, cubically convergent iteration method is

proposed. A relatively simple procedure for choosing the initial approximations is described,

which is applicable to either method.

1. Introduction. Let P(z) be a monic polynomial of degree n with real or complex

coefficients:

P(z)  = Z" + dz"'1   +   • • •   + C„_iZ + c„.

E. Durand [1, pp. 277-280] and I. O. Kerner [2] independently have proposed an

iteration method for finding all the zeros of P(z) simultaneously. Starting with n crude

approximations to the zeros, their method proceeds by the repeated refinement of all

approximations in a uniform manner, and the order of convergence is quadratic.

Here, we give an alternate way of deriving their iteration equation, and propose

a second method for finding all the zeros of P(z), with a cubic order of convergence.

Both methods were computer-tested on a variety of polynomials, with degrees up

to 20. When the initial approximations were chosen as described below, failure of

convergence was never observed, although convergence toward a multiple zero was

slow. In a later section, it is shown that if the zeros of the polynomial and initial

approximations both display certain symmetries, then the methods may fail. However,

with proper precautions these cases occur with quite small probability.

2. The Iteration Method of Durand and Kerner. Let z,, / = 1, • ■ • , n, be

approximations to the zeros of P(z) just before beginning a cycle of iteration, and

z, + Azj, i = 1, • ■ • , m, be the approximations after completion of the cycle. We wish

to choose Zj + Azj closer to the zeros. Ideally, we would like to have

n

(1) II & - bi + Azj) = Piz),
; = i

for then zt + Az¡ would equal the zeros. Expanding the left side of (1) in powers

of Az, we obtain
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Ùiz-zk)-   ¿ Azj     u     (Z - Zk)

n n

+      E      Az, Az,      Il     iz-zk)-  ■■■  = Piz).

/~\ K = L i=l k^l-.k^

To obtain an iteration equation, we drop all terms in powers of Az higher than the

first:

n n n

u iz-zk)- s az; n & -z*) = ^).
t-1 ¿-1 k-l;k*i

This polynomial equation is easy to solve for Az¡. Set z equal successively to zu ■ ■ ■, z„,

and obtain

•> j-Az,     lj    fe - Zk) = Piz,),        / = 1
k = l;k*i

Finally, if we define ö(z) to be the polynomial given by

(3) Qiz) = fi (z - zt),
i = l

we obtain the equation

(4) Az, = -P(z,)/ß'(z,),        i= I, ■■■ ,n.

If P(z) has the zeros wt, i = 1, • • • , n, so that

(5) P(z) = fl (z - w,),

then we may rewrite (4) in the form

(6) Az,- = fl O* - z,)/   Û    fe - z,).
k-l I      k-l-.k^i

3. Second Iteration Method. As a preliminary to the derivation of the second

iteration equation, we obtain the formula of Newton's method in an unusual way.

We utilize the identification of complex numbers with vectors in the z-plane,

whereby the vector originating at the point z' and terminating at z" is assigned the

complex number z" — z'. The expression

(z  —   H>o)/|z  —   Wp\     =   1/(Z  —   W0)

then defines a vector field such that the vector at the point z is directed away from the

point Wp, and has magnitude inversely proportional to the distance from w0. Because

of the obvious analogy from electrostatics, this field may be called the field of a unit

plus charge at the point w0 (cf. [3, pp. 7-9]). If unit plus charges are situated at the

n points wu w2, • • -, wn, then the resulting vector field is

(7) E V(z - *\) = iP'iz)/Piz)),
¿-i

where Piz) is given by (5). When several of the numbers w, are identical, say w¡ =
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w2 = ■ ■ ■ - wm, so that P(z) has a zero of multiplicity m at w¡, several of the terms

on the left side of (7) are equal, and it is as if there are m units of charge at the point wt.

Given a polynomial f(z), we may attempt to locate a zero by sampling the field

defined by the right side of (7) at some point zit and by then finding the point where

a single unit charge would be located if it were causing this field. (This amounts to

assuming that there is only one term on the left side of (7), a reasonable approximation

when Zj is near a simple zero.) Sampling at this new point, the cycle then could be

repeated. Calling the new point z¿ + Az,, after taking conjugates, we have the equation

l/izj - iz, + Az,)) = P'izj)/PiZj),

which leads to the formula of Newton's method

(8) Az, = -PiZj)/P'iZj).

Now, if we tried to locate all zeros of P(z) by simultaneously applying (8) to n

different sampling points zu • • • , z„, we would fail, likely as not, since several points

z, could easily converge to the same (simple) zero of P(z). To avoid this, we assign

a unit minus charge at each sampling point. The idea here is that when a sampling

point z, is near a simple zero, the field from the minus charge at z, should counteract

that from the plus charge at the zero, preventing a second sampling point from con-

verging to this zero. After taking conjugates, our iteration equation for the /th

sampling point now is

i = p/m +   J2    -i
Zj   —   (Zj   +   AZ¡) P(Zi) k-l;k*iZi   - zk   '

so that

(9) Az, = Piz,)/[Pizt)    ¿    —l--P'iz,))
I       \ k = l:ky¡i Zj Zk I

In terms of the polynomial Qiz) (cf. (3)), the sum appearing in (9) may be written

as g"(z,)/2g'(z¿). and we obtain

,lnv A_PJzùQ'JZj)

{W) Zi - hP{zi)Q"izi) - P'iZj)Q'iZj)

A purely algebraic derivation of the iteration equation (9) may be arrived at in the

following manner. Referring to the Durand-Kerner formula (4), set R{(z) =

—P(z)/Yl^i (z — zk), i = 1, • • • , n. When Newton's method is applied to the rational

function Riiz) at the point z¡,

Az, =  -RjÍZj)/R'jÍZj),        i = 1, • • • , n,

Eq. (9) is obtained.

4. Choosing the Initial Approximations. Two circumstances that interfere with

convergence come to mind. The requirement that the approximations be distinct is

necessary for either (6) or (9) to be meaningful. However, it is not impossible for two

neighboring approximations to move to the same point after a cycle of iteration,

especially on the earlier cycles when | Az, | is generally larger. Nevertheless, this must
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be an unlikely occurrence, and, in any case, provisions to detect and correct an

accident like this can be incorporated in the computer program.

The other difficulty arises when the zeros of P(z) are symmetrically positioned in

the complex plane with respect to some line L, and the initial approximations happen

to be chosen so they also are symmetrically placed with respect to this line. In this

case, some of the approximations may fail to converge to a zero. For the iteration

method of Durand and Kerner, Eq. (6) for Az, implies that the successive approxima-

tions will preserve their symmetry with respect to the line L. That this is also true for

the second method is apparent from its field definition. Hence, when the number of

the approximations on L exceeds the number of zeros there (counting multiplicities),

the surplus approximations cannot leave L and must oscillate along this line. Similarly,

if fewer approximations than zeros of odd multiplicity are on L, then since approxi-

mations not on L must approach L symmetrically, there must be some zeros on L

which do not have approximations converge toward them. Of course, here small

perturbations of the approximations caused by limited precision, rounding errors

and the like, may act to destroy the symmetry and induce convergence.

The most frequently encountered line of symmetry for the zeros of jP(z) is, no

doubt, the real axis, since this occurs whenever all coefficients of P(z) are real. Ac-

cordingly, we avoided selecting the initial approximations so they displayed this

symmetry. Our procedure for choosing them so they were reasonably close to the

zeros of P(z) was as follows: Set z equal to w — cjn, where cx is the coefficient of

z"'1 of P(z). Then

Piz) = Piw) = wn + c'2wn~2 + • • • + cZiW + cn,

and there is no term in w"'1. Assuming not all coefficients c'k are zero, if r is the positive

zero of the polynomial

Siw) = w* - |c¿| wn~2 - ■■■ - |c¿_x| m- - Kl,

then all zeros of Piw) are inside or on the circle \w\ = r [3, pp. 122-123], and so the

zeros of P(z) lie inside or on the circle \z + c¡/n\ = r. The computer was programmed

to compute r0, a rough estimate of r, and to take n equally spaced points on the circle

\z + d/n\ = r0 as the initial approximations. Thus, our initial approximations were

Zk =  —Ci/n + r0e ,        k =  1, • ■ •  , n,

with the constant a0 taken as x/2n so that symmetry with respect to the real axis can-

not occur. Note that —cjn equals the mean of the zeros of Piz).

From these starting positions on the bounding circle, the observed general behavior

of the successive approximations was about the same for both of the iteration methods

described. Typically, the successive approximations moved inward in the direction

of a nearby zero. Often, two approximations approached the same simple zero, with

one moving off on later cycles toward a "free" zero. A multiple zero eventually

attracted as many distinct approximations as its multiplicity, and in the complex

plane the approximations tended to assume symmetrical positions around the zero,

advancing slowly toward it.

As an example of the computations, suppose P(z) is the polynomial

z5 - 10z4 + 43z3 - 104z2 + 150z - 100,
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with zeros 1 ± 2/, 2, 3 ± /. Setting z equal to w + 2, Piw) is then w5 + 3w3 — 6w2 +

lOw. The polynomial Siw) is w5 — 3w3 — 6w2 — lOw, and testing the value of this

polynomial at the successive positive integers 1, 2, 3, • • • , we find S(2) < 0, S(3) > 0.

Taking r0 as 3, the initial approximations are

Zk = 2 + 3e*((2'/5,(A;-1) + */10),        * =  1, 2, 3, 4, 5.

With these initial approximations and high-precision computation, the first iteration

method gives approximations whose real and imaginary parts are within 10"10 of

the corresponding parts of a zero after nine iteration cycles. To attain the same accur-

acy, the second iteration method requires only six iteration cycles.

5. A Bound on the Error of the Approximation. In a recent article [4], Brian T.

Smith gives a useful bound on the error of the approximations z{ to the zeros of a

polynomial Piz). He shows (Corollary 1) that if the circular regions I\ are defined by

r,: \z - Zj\ g n \PiZj)/Q'iZj)\,        i= 1,2, ■■■ ,n,

then the union of these regions contains all the zeros of Piz). Any connected com-

ponent consisting of just k circles contains exactly k zeros of Piz). For the method of

Durand and Kerner, a slightly superior definition of the regions I\ may be obtained

from the first equation on p. 664 of Smith's article:

r,: \z - iz, + Az,)| ^ in - 1) |AZ,[,        i = 1, 2, • • • , n,

with Az, given by (4).

If e equals the maximum of the radii of the circles I\, and these circles do not

overlap, then each r, centerpoint is a zero approximation with error ^ e. If the

overlap of the circles is not investigated, the more modest bound (2m — l)e can be used.

6. Orders of Convergence. If we define the point Z as (zu z2, ■ ■ ■ , z„), both

iteration methods may be written as

z\ = Zj + Az, =  F,iZ),        i =  1,2, ■■■  , n,

for appropriate definitions of the functions F¡. When all zeros W; are distinct, these

functions may be expanded in a Taylor series about the point W = (wuw2, ■ ■ ■, wn),

obtaining

t.,* ^bFjiW), ,   ,    1   -A   d2F,iW),
F,iZ) = Wj + £      :V      izj - Wj) + -  E    ■)    \      (Zi - w,)(z, - wk) + ■■■ .

i-i     ozj I }-,fc_i   az,- ozk

Previously, Kerner showed that for F, defined from (4), all first partials are zero, but

not all second partials, so the successive iterates converge quadratically for an initial

approximation point Z sufficiently close to W. Similarly, for F, defined from (10),

all first and second partials are zero but not all third partials, so, in this case, the

successive iterates converge cubically. Moreover, convergence is assured if the point

Z is sufficiently close to the point W.

To estimate the slower rate of convergence toward a multiple zero, we make the

following assumptions: F(z) has a single multiple zero, which, for convenience, we

take to be at the origin. Approximations converging toward a simple zero have
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reached their zero, and approximations converging toward the origin have reached

positions which are evenly spaced on some circle \z\ = p. These assumptions amount

to setting Piz) = zm, where m is the multiplicity of the zero at the origin, and ß(z) =

zm — pme'ß. Referring to (4) and (10), we find that the approximations converging

toward the origin will move directly toward this zero on each cycle, always reducing

their distance away by the fraction l/m for the first method, and 2/(m + 1) for the

second.
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