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Bounds on Iterated Coerror Functions

and Their Ratios

By D. E. Amos

Abstract. Upper and lower bounds on y„ = i" erfc(*) and r„ = yn/y„_i, zi Ê 1,

— co < x < co, are established in terms of elementary functions. Numerical procedures

for refining these bounds are presented so that /•„ and yk,k = 0,1,..., n, can be computed

to a specified accuracy. Some relations establishing bounds on r'n and r'f are also derived.

Simple Bounds.   Let yfx) = i" erfc(x), n = — 1, 0, 1, • • • . The basic inequality

(see (31))

(1) Pn(x) = yn-Âx)yn(x) - yl-iix) < 0,      «èl,

expressing monotone decreasing behavior of rn(x) = yn(x)/yn-fx), zz 2î  1, in both

n and x,

(2) rn = 4~ = r" ~ r"~1 < 0,
yn-l(x) Z-n-l

is derived in the Appendix. The utility of this relation follows from the recurrence

formulae for the iterated coerror function,

,-v y-i(x) = z'-1 erfc(x) = 2e-x'/ir1/2,       y0ix) = z'° erfc(*) = erfc(jc),

yn.2 = 2zo-„ + 2xyn.x,        n = 1,2, ■■• ,

to yield

(4) K = 2zzz-2 + 2*z-n - 1 < 0,        zz ̂  1.

This establishes bounds on the ratios r„ = yn/y„-x,

n ^       ^  —x + jx2 + 2nj'2
0 < rn <- = Bnix)

2zz

since the parabola v = 2nt2 + 2xt — 1 is negative between its roots. The upper bound

is of most interest and we write Bfx) in the form

_,,       -x + jx2 + 2zz)1/2
Bnix) =-, X < 0,

(5) n ^ 1,

1

x + ix2 + 2nf
x 2; 0,
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to avoid losses of significance in computation when x is large and positive. Further-

more, if we divide (3) by yn_x and solve for rn-x, we get

(6)
1

r„-i >
1

= Bnix),       n è 1.
2x -f- 2zzz-„      2x + 2nBnix)

Thus, we have (with a shift of index)

(7) Cnix) <rn< Dnix),

and recursion on (7) in the form Cnyn-X < yn < Dnyn-i produces

(8) erfc(*) u Ckix) < yn < erfc(*) Jl »k(x)

where, in this context,

(9) Ck(x) = Bk+X(x)    and    Dk(x) = Bk(x).

Table 1 gives some numerical results for these bounds. Both relative and absolute

errors can be assessed. The number of significant digits in yn is approximately the

minimum number in agreement between Ck and Dk as k ranges from 1 to zz.

Table 1

Cn and Dn of (9) compared with rn

n\x -10

1.005E+01
1.000E+01

5.05OE+OO

5.O98E+OO
5.000E+00
2.596E+00

0

7.0T1E-01
5.6teE-01
5.000E-01

9.808E-02
9.635E-02
9.629E-02

10

¡I-.975E-02
¡K951E-02

4.951E-02

10 1.048E+00
1.0^3E+00

9.566E-OI

5.85te-Ol
5.788E-01
5.389E-01

2.236E-01
2.181E-01
2.132E-01

8.5U1E-02
8.W9E-02
8.1t35E-02

l;.772E-02
1+.753E-02
4.752E-02

20 5.458E-01
5.^38E-Ol

5.218E-01

3.266E-01
3.2ltOE-01

3.139E-01

1.581E-01
1.562E-01
1.5ÍJ-3E-01

7.656E-02
7.598E-02
7.58lffi-02

14-.580E-02
lt,56te-02
4.563E-02

50 a.it-ite-oi
2.^08E-01
2.37te-01

1.618E-01
1.612E-01
I.595E-OI

1.000E-01

9.95OE-02
9.9OIE-O2

6.18OE-O2
6.156E-02
e.itóE-ce

lt.lteE-02
1+.132E-02
¡J-.130E-02

100 I.366E-OI
1.361J-E-01
1.355E-OI

1.000E-01

9.978E-02
9#93¡j.E-02

7.071E-02
7.053E-02
7.036E-02

5.000E-02
Í+.989E-O2
¡1-.983E-02

3.660E-02
3.65l)-E-02

3.653E-02

200 8.O9OE-O2
8.082E-02
8.061E-02

6.1)Olffi-02
6.396E-O2
6.38te-02

5.000E-02
lt.99te-02
¡I.988E-02

3.904E-02
3.899E-02
3.897E-02

3.09OE-O2
3.087E-O2
3.086E-02
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For x 2; 0, the upper bound of (7) immediately implies

t \ / yn-Ax) , yn-iix)

(10) * + <*+2zz) i2n) „*1,X7>0.

f ■. <■       yn-fx)
yn\X)   = .      ,    2      i      ->xl/2   ,

x + ix   +2)

yn < yn-i can also be established for zz 2: 0 by induction on

(11) y„ix) = f   yn-iit)dt,       n è 0,

and the upper bound in Mill's ratio [4], [14, p. 343]

, v_W2_i" erfcpr)
m\X) 2     i        -.1/2   =    .-1        e   /   \

(12) (zr - 1)* + (*   + ir) i     erfci*)

7r/2
— t    ITTrT t» ,2   ,—:t/2 = M(*),        * 2ï 0.2x + ([(x — 2)*]   + zr)

(See references for other results on Mill's ratio.) With these inequalities, purely ele-

mentary bounds on yn can be given:

2mix)e~x' 2Mjx)e~x*
-172— á y0 è-r/2— ,      x 2; 0,

(13)

^f1 ft Ckix) <yn< 2^)f^ ft Dkix),        ̂ 0,«al.
T Jfc.i 7T t = 1

Elementary bounds for x < 0 follow from the identity erfc(x) = 2 — erfc( — x).

An upper bound on yfx) for x 2; 0 can be obtained from (11) and (12) by induction

(14) ynix) è -In lMix)r+1e-x',        n^0,x^0,
w

using M(t) s; M(x) for / 2î x. Simple backward recursion in (10), followed by (12),

gives complementary forms

ynix) <

2/ir1'2 Mjx)e-X'

2in\

2/irxnMjx)ez*

ix + ix2 + 2)1/2)"

ynix)   S n,2,        1,2 ,

(15) V •> n^ 0,x ^ 0.

While the bounds in (7) were obtained from rn < 0 and are best for large positive x,

Eq. (36), z-„ > —1/zz, represents the other extreme, and bounds from this inequality

would be best for large negative x. They are (7) with

r..        -x + jx2 + 2n- 2f/2
Cnix)   =-   , X   <   0,

(16) ¿n »2:1,

1 - 1/zz
x + ix2 + 2,i - 2)1/2 '

Dnix) = Bnix).

Table 2 shows the results for these bounds.

x 2; 0,
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Table 2

C„ and Dn of (16) compared with rn

n\x -10 -5 0 10

1.005E+01 5.098E+OO 7.07IE-01 9.808E-O2 4.975E-02
1.0Ó0E+01 5.000E+00 5.61)-2E-01 9.635E-02 l)-.95IE-02

1.000E+01  5.000E+00  0.        0.        0.

10 l.OtóE+OO
1.0¡)-3E+00
1.0lt3E+00

5.85^-01
5.788E-01
5.779E-01

2.236E-01
2.181E-01
2.121E-01

8.W9E-O2
7.787E-O2

^.772E-02
1+.753E-02
l+.3lte-02

20 5.J+58E-01
5.1^38e-01
5.Í+37E-OI

3.266E-01
3.2hCM-01
3.23te-01

I.581E-OI
1.562E-01
1.5^-01

7.656E-02
7.598E-02
7.3l)-3E-02

¡1-.580E-02
1Z-.564E-02

4.368E-02

50 2. ¡ate-01
2.U08E-01
2.kOT8-01

1.618E-01
1.612E-01
I.609E-OI

1.000E-01

9.95OE-O2
9.899E-O2

6.I8OE-O2
6.I56E-O2
6.091E-02

l)-.l42E-02
l)-.132E-02
J+.07IE-02

100 I.366E-OI
1. SS^E-Ol
I.363E-OI

1.000E-01

9.978E-O2
9.967E-O2

7.07IE-02
7.O53E-O2
7.O36E-O2

5.000E-02
¡I.989E-02

U.967E-O2

3.660E-Q2

3.631E-02

200 8.090E-02
8.082E-02
8.079E-02

6.tote-02
6.396E-02
6.392E-02

5.000E-02
4.99Í+E-02
¡1-.98TE-02

3.90l(-E-02

3.899E-O2
3.892E-O2

3.O9OE-O2
3.O87E-O2
3.O79E-O2

Bounds on yjyn-k can be obtained by bounding each term of

yjyn-k = zv„-i • • • z-„_¡t+1.

Improved Bounds. The simplicity of the previous bounds is appealing; however,

they are not very sharp near x = 0. The results of this section improve this situation.

Relation (35) in the Appendix is

r'n = 2ziz-2 + 2xrn — 1  < —r\, x ^ 0,

< —r\ exp{— x2},        x < 0,

n 2; 1.

Following through as before, we get (7) with the bounds

_2zz + 2 + expi-*2!
Cn(x)

2x expj-*2} + (2zz + 2)/Dn+1ix)

2« + 3

>  Dn+fx),        x < 0,

x ^ 0,

(17)
(2zz + 4)x + (2zz + 2)Cx2 + 2n + 3)1/2 '

nM       -x + jx2 + 2/z+ exp{-*2|)1/2
Dn(x) = -—-¡-2,- ,        x < 0,

2zz + exp{ — x J

_1_
x+ix* + 2n+ l)1

^0,
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Table 3

C„ and D„ of ill) compared with rn

n\x -10

1.005E+01
1.000E+01

5.050E+00

-5

5.098E+OO
5.000E+00
2.596E+00

5.77^-01
5.642E-01
5.590E-01

9.717E-02
9.635E-02
9.632E-02

10

963E-02
95IE-02
95IE-02

10 l.O^E+OO 5.85l)-E-01 2.182E-01 8.tô7E-02 ¡¿.762E-02
1.0l)-3E+00 5.788E-OI 2.18LE-01 8.W9E-O2 l(-.753E-02
9.566E-OI      5.389E-OI      2.180E-01      8.M1-3E-02      l).,752E-02.

20 5.U58E-OI
5.438E-01
5.218E-01

3.266E-01
3.240E-01
3.I39E-OI

1.562E-01
1.562E-01
1.56IE-01

7.62OE-O2
7.598E-02
7.593E-02

1+.572E-02
h.56kE-02
h..56^E-02

50 2.1+lUE-Ol
2>08E-01
2.37^-01

1.618E-01
1.612E-01
I.595E-OI

9.950E-02
9.950E-02
9.950E-02

6.163E-02
6.156E-02
6.153E-02

¡M36E-02
¡K132E-02

U.131E-02

100 I.366E-OI
I.36I+E-OI
I.355E-OI

l.OOOE-01

9.978E-02
9.934E-02

7.053E-02
7.053E-02
7.053E-02

U.992E-02
l(-,989E-02
1)..988E-02

3.656E-02
3.65^-02
3.654E-02

200 8.090E-02
8.082E-02
8.061E-02

6.40l)-E-02

6.396E-02
6.38^-02

^.99l)-E-02
J+.99Í1-E-02
lt.9914.E-02

3.900E-02
3.899E-02
3.899E-02

3.088E-02
3.087E-02
3.087E-02

whose derivatives of order 2 or greater are discontinuous at x = 0. (The other half

of (35) leads to Cfx) in (9).) Table 3 shows these results for some numerical values.

Notice also that for x < 0, £>„+1 is a lower bound on rn. While these bounds are

relatively good at x = 0, they can be made sharp by observing that

(18) rn = 2zzz-2 + 2xr„ - 1 ^ r„(0) = 2zzz-2(0)

is exact at x = 0, where

r((zz + i)/2)

1, x > 0

(19) Z-n(O)   = 2IW2 + 1)
Z! >  0.

The inequalities in (18) follow from (38) which shows that r„ is monotone increasing

in x. The roots give

(20a)

Dnix) =

Cnix)

—x -\- jx   -f- 2nanf

2zz

an

x + ix2 + 2nan)U2 '

where an = 2zz^(0) and, with (6),

x < 0,

x 2; 0,
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,,, v       -x + ix2 + 2jn + 1K+1)'/2
C„ix) =-—-;——— -, X < 0,

(20b)

Dnix)

2(zz + l)an+x

l

x + ix   + 2(zz + !)«„+,)
x 2; 0.

Table 4 shows the partial improvement over Tables 1, 2 and 3. Bounds analogous

to those in (10) and (15) can be formed for x 2; 0 by setting x = 0 or zz = 1 in Dfx)

of (20b). The largest lower bound and the smallest upper bound among the formulae

listed would be the best over the range of interest in zz and x.

Iterative improvements, generating upper and lower bounds at each step, can be

made by recurring backward on (6), starting the continued fraction approximants

with some C„ and Dn (see also the next section on numerical computations).

The connection between these bounds and Mill's ratio can be established by

taking (6) with zz = 1 and applying the expressions for Cfx) or Dfx). (20a) for x 2; 0

gives the upper bound quoted in the NBS handbook [1, p. 298] while (5) for x 2: 0 gives

the lower bound in the same reference. (20b) gives Boyd's [4] lower bound (12).

The bounds in (12) are fairly sharp with maximum relative errors of 1.17% and

0.91%, respectively. Best results are obtained with M(x) for x ^ 0.85 and mix) for

x > 0.85, with an overall maximum relative error for this combination of about 0.86%.

Table 4

Cn and Dn of (20) compared with rn

n\x -10 0 5 10

1 1.003E+01
1.000E+01
6.1+16E+00

5.O63E+OO
5.000E+00
3.280E+00

5.642E-01
5.61J-2E-01
5.642E-01

9.70te-02
9.635E-02
6.287E-02

1I.96IE-02
Í4.951E-02

3.173E-02

10 1.0^5E+00
1.0^3E+00

9.989E-OI

5.818E-OI
5.788E-OI
5.605E-01

2.181E-01
2.181E-01
2.I8IE-OI

8.1rô6E-02
8.1A-9E-02
8.176E-02

U.762E-02
4.753E-02
1K550E-02

20 5.M)8e-oi
5.438E-01
5.334E-01

3.250E-01
3.240E-01
3.200E-01

1.562E-01
1.562E-01
1.562E-01

7.619E-02
7.598E-02
7.502E-02

lf.571E-02
J+.564E-02
¡Í-.ÍJ-76E-02

50 2.ÍJ-11E-01
2.ÍJ-08E-01
2.39te-01

1.6llffi-01
1.612E-01
1.6OÓE-01

9.950E-02
9.950E-02
9.950E-02

6.I63E-02
6.I56E-O2
6.I36E-O2

l|-.136E-02
ÍJ-.132E-02
l(-.107E-02

100 I.3S5E-OI
1.364E-01
I.36IE-OI

9.983E-O2
9.978E-02
9.967E-O2

7.O53E-O2
7.O53E-O2
7.O53E-O2

4.992E-02
4.989E-O2
U.983E-O2

3.656E-O2
3.654E-02
3.61i6E-02

200 5.085E-02
5.082E-02

K076E-02

6.398E-O2
6.396E-02
6.39te-02

U.99te-02
4.99te-02
¡J-.99l*E-02

3.900E-02
3.899E-02
3.898E-02

3.088E-02
3.087E-02
3.085E-02
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Numerical Computation of z*„ and yk, k = 0, 1, • • -, n. In [5] and [6], Gautschi

shows that forward recursion on (3) is appropriate for x g 0 while an iterative back-

ward technique on (6) (which generates continued fraction approximants) is appro-

priate for x > 0 for stability. It would be hard to improve on the simplicity of the

forward recursion for x ^ 0 but some improvement is possible for x > 0 because

the continued fraction approximants are slowly convergent for x close to zero. The

results developed above are exploited to get accurate values of rn so that the ratios

.5
(21) rk-x =       ,   .     ,        k = zz, zz - 1, ••• , 1,     x > 0,

x + krk

can be computed for the relation

-   -i"      k

(22) y„ = -W u 'o        zc = 0, 1, 2, • • • , zz,     x > 0.
zr        i-o

The method which has proved successful in computing rn is based upon a restatement

of (21) with k replaced by k + 1,

[2(k + l)irk,i/rk)rk + 2x]rk =  1,

in the form

(23a) '» = x + ix2 + 2ik + l)Rk+xf2 '        Rk+1 = IT

Then, with Dk of (20b) as an initial approximation to rk for k Sí zz (see Table 4),

the algorithm becomes

(23b)      r\ = 2   ,   „,,    ,   ,,-T^SZm ,    k = n, n + 1, ■ • - , zz + v, x 2ï 0,
x + ix   + [2(/e + l)zvf,(0)] )

where z-t(0) is defined in (19), and

Rt+i = rk+x/rk, k = n,n + 1, • ■ ■ ,n + v — m — 1,

(23c)
m +1   _   _l_   n    1     O 1

rk      —       i   , 2   ■   *,„    ■   ,m>ib   si/2 >     m — \), v, ¿, • • •  ,v       i.
jc + (jc   + 2(A: + l)/?t+i)

r\, k = n, n + 1, ■ • ■  , n + v,

approximate

values of r„,

rZ, m = 0, 1, ■ ■ •

X     X

<8>

Figure 1

The iteration diagram is shown in Fig. 1. rn is the approximate value of rn, and only

two successive diagonals need be stored.

Although the convergence proof below does not show that rmk decreases monotoni-

cally to rk on the columns of Fig. 1, the numerical results were all of this character.

If this were true in general, it would follow, on using (21), that
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v 1 ¿r ~*       P
c    =   -   ^- r    ^  r

" i     _i    if    _L  1\ "-1   —    " "'2x + 2(zz + l)rn+1

and the error criterion

k„ - z-„|/r„ g  |z-„ - c„|/c„ ^ e

could be used to terminate the process to guarantee a relative error «. Even if the

monotonicity is violated, this is a sensible method of termination since r"n~+\, and

hence c"n, can be expected to be slightly less accurate than rn. The construction of

rigorous bounds using (23a) is shown in the convergence proof of the algorithm.

Some experimentation shows that if zz < 25 (say) and x < 2, n should be increased

to 25 before the iteration is started to increase the rate of convergence. Upon com-

pletion, the backward recursive step in (21) is applied followed by (22). Notice that

for x = 0, r\ = z-t(0) and v = 1. With a relative error e = 5 X 10"9, extensive evalua-

tion of this procedure showed that v ^ 5 (a maximum of 6 applications of (23b)

and 15 of (23c)) held for x 2: 0 and 0 ^ n g 100. For zz 2î 50 the maximum value

of v was 4, but the number of steps in (21) to reduce the index when the starting index

is small diminishes this advantage somewhat.

Straight backward recursion with (21) starting with C200 or £>2oo of (9) gave only

4 significant digits in erfc(O.l). The corresponding computation with C200 or D200 of

(20a) or (20b), which are accurate at x = 0, gave 6 significant figures. This amounts

to iteration of these bounds according to (6) or (21). It is common to avoid underflow

problems by scaling yk by ez' in (22).

The forward recursive loop for x < 0 is started with y-fx) and y0(x) where

y0(x) = 2 — erfc(|x|) for x < 0. The scheme for x 2i 0 is used to compute erfc(|x|).

If x < Xo (X0 = — 6 for a CDC 6600 computer), y0(x) = 2 to the word length of the

machine and the erfc (\x\) computation can be avoided.

The methods exploited here have concentrated on recursion, primarily for sake

of computation. However, the differential inequalities developed in the Appendix

can be integrated for other types of apprxoimations.

Convergence of the Algorithm.

Theorem. If x 2ï 0, the sequence rmk generated by (23c) converges to rk as m —> «>

for each k 2; zz 2; 0.

The proof consists of constructing monotone sequences of upper and lower bounds

on rmk which converge to rk. Let D°k = r\. Using (20b) and (21), we have

(24) Cl = J »     g rk á rl =  D°k.
2x + 2(k + l)Dk+1

Substitution of these bounds into the expressions rk+x/rk and r°k+x/r°k yield

CO n0 f-,0 o no
*+i  ^ rk + x        LZjt+i j     w+i        rk + x        J->k+i

(25) —ö- = - = —s     and   —5- = —o- = -—¡r-
Dk rk Ck Dk rk Ck

Another substitution of the bounds in (25) into the denominators of (23a) and (23c)

for zzz = 0 give new bounds D\ and C\,

Dl è rk £ Cl,        Dl £ rl £ C\

where
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(26)

Dl = x + ix2 + 2ik+l)C°k+x/Dl)ir2    and     Cl = x + ix2+2ik+l)D°k+x/C°k)

Notice that equality holds throughout for x = 0. Continuing in this way, we can

inductively construct sequences of bounds Dnk and C" on rk and f\. However, con-

vergence is obtained by showing monotonicity of each sequence,

DZ+1 á  DZ    and    CZ+1 ̂  CZ, zzz = 0, 1, 2, • • • .

Thus, for zzz = 0, we need to establish D°k 2: D\ and Cl ^ Ck before going on to

the induction. D°k 2; D\ follows by showing that

gtx) = Cî+i „ Rk+A0)jx + jx2 + 2jk + l)Rk+xjO))U2)_

^2Rk+3iO) - Y^\x + |i| ix2 + 2ik + 3)Rk+3iO)Y/2

in the denominator of D\ is greater than

(27) Rk+xi0) = rk+xi0)/rki0) = 2(/c + 1>2+1(0)

in the denominator of D\ for x > 0. (The last expression in (27) is obtained from (6)

with x = 0 and C°+1 is obtained from (24) by rationalizing the denominator of D°k+2.)

This inequality, g(x) 2: Rk+X(0), can be proved by showing monotone increasing

behavior of g(x) together with g(0) = Rk+X(0). g(0) = Rk+X(0) follows from (25) and

(27) and the fact that equality holds for x = 0 in (25). The positivity of g'(x),

l( v_Rk+Á0)
8 {X) ~ (x2 + a)1/2ix2 + c)l/2

jab — cd)jab + cd)x2 + acjab2 — cd2) + bxja -

Aix)idx + bix2 + a)1/2)2

a - c)Ajx)l

where

a = 2ik + 3)Rk+3i0), c = 2ik + l)Rk+xiO),

b = ik + 2)/ik + 3),        d = 2Rk+3iO) - b,

Aix) = abix2 + c)1/2 + cdix2 + a)1/2,

will follow if the quantities a — c, d, ab — cd, ab2 — cd2 are shown to be positive.

A direct application of (33) and (39) for x = 0 gives a > c since

Rkix) =  1 + r'kix),        r'k+xix) > r'kix) =* Rk+fx) > Rkix).

On the other hand, d > 0 follows from (33), (35) and (7), with (9), for x = 0 since

2 k + 2      t
Rk+3(0) = 1 + z-¿+3(0) è 1 - 2rí+3(0) > 1

2(k + 3)      k + 3

implies d > b > 0.

In order to deduce the signs of ab — cd and ab2 — cd2, we first express Rk+3(0)

in terms of rk+f0) by means of (27) and (6),

(28) Rk+3i0) = 2(/c + 3>L3(0),        ri+3(0) = |^| rt+1(0).
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Then, with (27) and (28),

ab -cd= 4frî+1(0)[(* + 2)2 + ik+ l)2 - 4(/c + l)\k + 2>2.+i(0)],

ab2 - cd2 = 4b2r2k+xi0)(i2k + 3) - 4(/c + 1)(* + 2>L>(0)]

•[1 + 4(/c + l)(/c + 2>Li(0)].

If we use (19) for zvi(O) together with T(z + 1) = zr(z) in the denominator, we get

i   /m 1        r2(/c/2 + 1)
r"+lW ~ ik+ l)2 T\ik + l)/2) '

and the upper bound of [18],

zz1- g ff" + ^ èin + s)1-,       h>0,0|s|1,
r(zz + s)

with zz = fc/2, s = 1/2, suffices to establish the sign of ab — cd,

ab- cd^ 4br2k+xi0)^2k2 + 6k + 5 - 4(/c + 2)(^-!jJ = 46r|+1(0) > 0.

However, sharper results are needed to show ab2 — cd2 > 0 for k 2ï 0. The results

stated in (45) can be applied, for k 2; 4,

r2(/c/2 +o*i      i_L +«.       ¿>4
r2((/c + l)/2)      2 ^ 4 ^ 16/c       32/c2 "*" 5/c3 '

and this yields

•* -«' > *%f[l - i -3 -f ]"+*+"<* + *»«» > »
for /c St 9. Direct substitution was used to verify a/32 — cd2 > 0 for k = 0 through

zc = 9. Thus, D\ 2; Z>" with strict inequality for x > 0.

For C¿, we take the defining equation (26) and substitute (24) for C°k to get

.i = _Î_   = 1 = ro
'*      x + ix2 + 2(zc + 1)Z>2+1(2* + 2(/c + l)ö°+i))1/2       2x + 2(/c + l)D°k+x

To summarize the situation for zzz = 0, we have

(29) D°k Sï  D\ è r» è C\ = C*°    and    Z>2 £ Z>J £ rí £ Cl = Ci

Now, we repeat the induction steps (24) through (26) for zzz =  1. Thus, (29)

applied to rk+l/rk and r\+x/r\ yields

Ck+i    ~ rk+x        Dk+X Ck+X       rk+x        Dk+X
~n7" — - — ' fi       an"    ~~ñ>~ — —r —     /-i   '

Dk rk Ck Dk rk Ck

These expressions with (23a) and (23c) for zzz = 1 give new bounds D\ and C\,

Dl^rk^ C2k, D2k Sî rl Si C\,

where

2      _ l 2 i
Dk —      ,   , 2   .   -,.—.   .,„i—, „Ki/2    and    Ck =

* + ix2 + 2(/c + l)CLi/0*)1/2 *      x + ix2 + 2(/c + l)fli+1/Ci)'
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Then, by (29),

Cfc+1    -^    W + l „1    s     p.2       „     j        uk + l    ^    uk+l  _.   /-.2   ~s.    /-.I
~rr è -rr => Ö* 2; Z>t    and   —3- s —„- => C* 2t C*.

Thus, for zzz = 1 we have

Dl* Dl*  DlZ rk St C¡£ C\ = C»°   and   Z)° St ßl St flf St ,* St C2 St ci = C¡

with strict inequality in C\ St C* for x > 0 because D°k > D\ for x > 0.

Continuing in this way, we compute inductively a sequence Dmk which is bounded

and monotone decreasing while Cmk is bounded and monotone increasing with rmk and

rk between these bounds. Each sequence therefore has a limit Dk and Ck such that

_1_ 1
"fe i      ,   2      i      *•.       .      -x« / ~   xl/2   i ^k

x + ix2 + 2ik + l)Ct+1/Z),)1/2 ' x + ix2 + 2ik+ l)Dk+1/Cky

Solving for each of these radicals and squaring gives

(30) °k = 2x + 2(* + 1)C4+I '        Ck = 2x + 2(/c + l)Dk+x

and combining the relations in (30) produces

„1 1
ß* = -—,   ,,.   ,   ..-,       Ck =

2x + 2ik + 1) ' 2* + 2(/t + 1)

2x + 2(* + 2)Z)*+a 2x + 2(/c + 2)Ci+2

Each of these lead to the continued fraction for rk which can be developed similarly

by repeated application of (6). Therefore, Dk = Ck = rk and rmk converges to rk.
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Appendix. Some Relations Involving rn, rn and r'f. We start with the selfad-

joint differential equation

~7t(e'y«) = 2ne'yn,        n St  —1,

and apply Green's theorem to the relation

f   [fn-i jt ie'y'n) - ynjt ie''y'n-i)\ dt = 2 f  e''ynit)y^xit) dt

to get

yn-iy'n — yny'n-i = — 2e~x'  /    e'ynit)yn-ft) dt,        zz St  1,

Jx

or with (11),

(31)        ynix)y„-2ix) - y2n.fx) =  -2e"1'   f   el'yn(t)yn.ft) dt < 0,        zz St 1.
J x



424 D.   E.   AMOS

Therefore,

(32) rnix) = y-yr^ - 1 = —^- \   e"ynit)yn.xit) dt < 0,
yn-¡ yn-iix) Jx

(33) rnix) = — - 1 < 0    and    0 < — < 1,        zzStO.
rn-i r„_!

The recursion relation (6), reciprocated and differentiated, provides the recursion

relation for rn,

(34) z-„_, =  -2z-2_!(l + nr'n),

which shows that r'n >  —2r\. On the other hand, a direct estimate of (32) using

exp{/2 - x2} St  1        for    / St .* St 0,

St e~x     for    / St x    and    a: < 0,

and the differential form of (11) gives

,0-, —2rl < r„ < —r\, x St 0,

< —z-2 expj— x2},        x < 0.

(34) in the form

-z-„_,/(2z-2_1) = 1 + nr'n > 0

also shows that

(36) r'n > -1/n,

which is better for large negative x than (35). The recursion relation for r'f follows

from (34) by differentiation,

(37) zvid + 2zzr„_1z-„' = 2(r„_,)2.

The positivity of r'f can be obtained from (32) as follows:

yls" = yn-2\ynyn-2 — yl-il — y»[y*-iy»-a — yl-t]

/»<X> «CO

=  -2y„-2ix)e-x'  /    e'V„«K-.(0 dt + 2ynix)e'^  \    e'yn.xit)yn.2it) dt
*■ X « X

= 2e-x'  \   e'°yn-xit)(yn-2(t)yn(x) - yn-2(x)yn(t)] dt.
Jx

This gives, after factorization,

(38) ^ - *~" [ '''«M^hftUi - rlà^x-)} * > °-

This not only implies monotone increasing behavior of rn in x, but differentiation

of (33) establishes monotone behavior in zz as well,

Zn-iZVi   + rn^xrn = rn       z"„-i > 0

or
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(39) 0>ri>rU.

Upper bounds on r'f can be obtained from (37) using r'f > 0. r'f > 0 also establishes

(40) r'n/rn > rU/rn-i

through differentiation of (33),

ti rn   lrn      z"„_! \
r„   = -I-J

r„-i V„      zv-i/

and with (33) again,

l/r„-i — l/rn > l/z-„_2 — l/z-,-1.

That is, second differences 52(l/z-„_i) are negative,

(41) S\l/rn-x) < 0,        zz = 2, 3, • • •  .

(39) together with (33) also establishes the monotone decreasing behavior of the

differences r„_i — rn,

0 < rn-X — rn < (r„-2 — z-„-1)z-„_1/z-„_2 < (/n_2 — rn-x)

and hence

(42) 52(z-n_!) > 0,        zz = 2, 3, • ■ •  .

The expression in (31) is the numerator of

(43a) -y-2 In yn(x) = ^"^ 7 ^ < 0,        zz St  1.
dx yn

For zz = 0 this works out to be

fAiu\ <?  i       t \ 2y-xix)yxjx)
(43b) —2 In yoix) =-í¡-- < 0.

dx yoix)

Thus we have also established that w = In i" erfc (x) is concave down for all x and

all n St 0.

A Sharp Upper Bound on a Gamma Ratio.    We start with the asymptotic ex-

pansion [1, p. 257]

in Tiz) = (z - i) in z - z + \ in 2* + ¿ - ^ + R

for z > 0 and estimate R by the next term \R\ g l/(1260z5). The application of the

final results dictated this accuracy. This expression can be applied for z = x + 1

and z = x + | to yield

('+J-('+i)1
(>+r-('+¿n—

(44) + ¿

1

360jc:í
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|Ä,| ^ 1/(1260*5), |ä2| ^ 1/(1260*5).

Now, the following alternating series for x St 2 can be used for terms up to and

including x~4 in (44),

_ 1_1_ , _1_1_       il\

x      2x        3x        4x4 \x/

1-í+^+í.i

' + ;'   li +

4a:

5x

x

3

Then

where

i  r2(^ + D

111 T2ix + |)
In x +-Tj-3 + E

4x      96x

« - «.(1) + 2*© - *«.(¿) + ¿ [*© - *(¿)]

180*

and

|£| < 1/jc4

+ 2/Î! - 2/?2

x > 2.

For consistency, terms of degree three or less are carried accurately in estimating

the exponential

r2(x + 1)

V\x + k)
.+«+i+°7+E«7;

<x(i+a + °L + °L + ±p)

< x(l + a

2 3

+  -  +  -  +T  2 T  6 T 4
! (1 - a)/

where

a =  1/(4*) - l/(96*3) + £, 0 < a < 3/16,    * St 2.

Now we expand the powers of a and bound terms of higher order,

*-• g x-'/r j St 5,* St 2,

to obtain
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r2(* + i) ^  /   ,   i   ,    i i    ,   6 \

(45)       i^hT) < H1 + * + 32? ~ i»? + *?J •     x^2-

This expression is asymptotically correct in all terms except the last.
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