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On the Numerical Computation of Parabolic

Problems for Preceding Times

By B. L. Buzbee* and Alfred Carasso**

Abstract. We develop and analyze a general procedure for computing selfadjoint parabolic

problems backwards in time, given an a priori bound on the solutions. The method is

applicable to mixed problems with variable coefficients which may depend on time. We

obtain error bounds which are naturally related to certain convexity inequalities in parabolic

equations. In the time-dependent case, our difference scheme discerns three classes of

problems. In the most severe case, we recover a convexity result of Agmon and Nirenberg.

We illustrate the method with a numerical experiment.

1. Introduction. Beginning with Hadamard, who drew attention to such prob-

lems, many analysts have been attracted to the study of improperly posed problems

in mathematical physics. A recent survey by Payne in [22] lists over fifty references.

Further references are to be found in [15], [16], [14], [3], [10], and [1]. The two best

known examples of ill-posed problems are the Cauchy problem for Laplace's equation

and the Cauchy problem for the backward heat equation. Some remarks concerning

practical interest in such questions can be found in [7, p. 231], [15], [27] and [28].

From the viewpoint of numerical analysis, this ill-posedness manifests itself in the

most serious way. We have discontinuous dependence on the data. Consequently

[24, p. 59], every finite-difference scheme consistent with such a problem, and which

is implemented as a marching process, is necessarily unstable. On the other hand,

as was observed by John in [12] and Pucci in [23], continuous dependence can often

be restored by requiring the solutions to satisfy a suitable constraint. Typically,

one asks for nonnegative solutions or for solutions which satisfy an a priori bound,

obtainable from physical considerations. The problem then is one of incorporating the

constraint in the algorithm used for computing the solutions. One such successful

method is the linear programming technique developed by Douglas in [9] and [10].

See also [4]. Computational experiments, using this method for the backward heat

equation, have been described by Cannon in [3]. While quite good results are obtained

in [3], it is not clear how one would extend this method to more general parabolic
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mixed problems with time-dependent coefficients. In the above papers, essential use

is made of the integral representation of the solutions in terms of the Green's function,

and explicit knowledge of the latter seems to be necessary in order to perform the

computations described in [3]. Another method is proposed by Douglas in [10] and

Miller in [21], for problems where the solutions can be obtained by separation of

variables. This method is based on expanding the given data in a truncated Fourier

series, and requires knowledge of the eigenfunctions of the spatial operator.

In the domain of "general" linear parabolic problems, an interesting idea is

discussed by Lattes and Lions in their recent book [14] along with several numerical

experiments. This is the so-called "quasi-reversibility" or Q.R. method. Applied to

the backward heat equation, this method consists in singularly perturbing the spatial

operator by the addition of a higher-order term. The sign of the extra term is chosen

so that the perturbed problem is well posed in the direction of decreasing time.

Integrating backwards from the terminal data u(x, T), one obtains an "initial-function"

ut(x, 0). This function does not converge as e —> 0, as pointed out by the authors. It

is one of infinitely many possible "initial functions". However, if it is used as initial

data in the unperturbed forward problem, the corresponding solution vf(x, t) has

the property that, at time T, v,(x, T) —* u(x, T) as e —> 0. Again, vt(x, t) does not

converge if t < T. As the authors make clear, their aim is to solve a "control problem"

associated with parabolic equations rather than approximate the solutions of the

backward problem.

In this paper, we develop a finite-difference scheme for computing the solutions

of linear selfadjoint parabolic problems backwards in time, given an a priori bound M

on the solutions, and given the terminal data to a known accuracy 5 in the L2 norm.

We make no hypotheses regarding the "power spectrum" of either the terminal data

or its error component. (See [28], [29].) Moreover, explicit knowledge of the analytic

solution operator is not required. The scheme is applicable to problems with variable

coefficients depending on time and is implemented as a "jury" procedure rather than

a time-marching method. It is based on the "backward beam equation" previously

discussed in [5] and [6]. In the case of the continuous backward problem, the un-

certainty in any of its solutions can be bounded in terms M and 8, using certain

convexity results. See for example [25] and [11, p. 182]. The error bounds in our dif-

ference scheme differ from this fundamental uncertainty only by the contribution due to

truncation. The time-dependent case turns out to be rather interesting in this con-

nection.

In Section 2, we develop some preliminary results associated with the backward

beam equation. In Section 3, the connection between parabolic problems and the

backward beam equation is explained. There, we write down the difference scheme

as it applies to second-order parabolic problems in rectangular regions, in two space

dimensions, with Dirichlet boundary conditions. More complicated problems can

also be treated. For expository reasons, the discussion in Section 3 is not specifically

oriented towards the backward problem. The latter is considered in Section 4, where

the previous results are tied together. Section 4 contains the main results of the paper.

Finally, in Section 5, we describe the results of a computational experiment on a

one-dimensional problem whose exact solution is known. More extensive calculations

on two-dimensional problems, together with a discussion of methods for solving the

difference equations, will appear in a later report.
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Because this paper is rather long, we offer the following guide to the reader.

It is probably best to first skim through Section 2, and then proceed to Section 3.

The main result of Section 2 is motivated in the remark following Theorem 1. Since

most of the machinery is developed in the previous sections, the exposition in Section 4

is unhindered. Thus, Section 4 is the easiest one to read.

While this work was in progress, we had the pleasure of the advice and encourage-

ment of many people. We particularly wish to thank R. Hersh, P. D. Lax, S. V. Parter,

R. D. Richtmyer and Joel Spruck.

2. The Abstract Backward Beam Equation. In this section, we develop some

preliminary results relating to an abstract situation, namely, a two-point problem for

an ordinary differential equation in Hilbert space. The main result of this section,

Theorem 1 below, will play a major role in Sections 3 and 4.

Let H be a separable Hilbert space with scalar product ( •, • ) and corresponding

norm || ■ ||H. For each t in the finite interval [0, T], let A(t) be an unbounded linear

operator, which is closed and with domain DA(t) dense in H. In general, the domain

of A(f) will vary with t. We assume A(t) to have the following property.

There exists a real number ß independent of t such that [A(t) + X]" ' exists and is

a bounded operator on H whenever Re X > ß. Furthermore,

(2.1) |M(0 + X)-'1U ̂  Rex_ g»        ReX>/3.

In the terminology of [13, p. 279], this means that, for each t, A(t) + ß is "m-

accretive." Hence, in particular,

(2.2) Re(Ait)v,v) ^  -ß(v,v)        V v E DA(t).

Consider now the problem

(2.3) un - Ait)u = git),       0 < t < T,

(2.4) «(0) = A,        uiT) = f2,

where fx and f2 are given vectors in H, u(t) and g(t) are //"-valued functions on [0, T],

and g(t) represents a forcing term. The above system was studied by one of us in [5]

and applied to parabolic problems in [6]. In the above papers, it was assumed that

(2.5) Re(Ait)v,v) ^ 0,

rather than (2.2). Leaving aside the question of existence of solutions in (2.3), we have

Lemma 1.   Let ir2/T2 > ß. Then, there is at most one twice continuously dif-

ferentiable solution of (2.3), (2.4).
Proof.   Let u and v be any two solutions. Put w = u — v. Then,

(2.6) w„ - A(t)w = 0,       0 < / < T,

(2.7) h>(0) = wiT) = 0.

Hence
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Re /    (wlt, w) dt = Re /    (Ait)w, w) dt

(2.8) J° J°

£  ~ß f    \\wit)\\2„dt.
Jo

Integrating by parts, using (2.7), we get

(2.9) \2\    \\wit)\\2H dt Ú        Uw.W'h dt £ ß I    \\wit)\\2Hdt,
I    Jo «Zo «Zo

and the result follows.
Consider now the following finite-difference approximation to the system (2.3),

(2.4),

(2.10) (i?n+I - 2t?" + I?"-')/At2 - AV = gn,       n = 1,2, ■■■ , N,

(2.11) va = fx,       vN+l = f2.

Here, At = T/(N + 1) is a small increment in the /-variable, A" denotes ^(zzAz),

and, for each zz, p" is an element of //"which presumably will approximate zz(zzA/), if the

latter exists. Introduce the following notation. With T = (N + I)At, let HN(At) be

the complex vector space of all AMuples {v1, v2, • ■ • , vN\ where vk £ H for each

k — 1,2, ••- , N. Elements of HN will be denoted by capital letters and represented

as column vectors

(2.12) V=  {v\v2,--- ,vN}T.

Equip HN(At) with the scalar product

N

(2.13) iV, W)= At 22(vn> "">
n-l

and write

(2.14) ||K||„,v = iV,  V)U2.

Since H is separable, so is HN. We will also use N X N matrices whose entries are

linear operators in H. Such matrices represent linear operators in HN. For any such

matrix Q, we define

(2.15) 11011*»=      Sup      {||0 FIU»},
!IV|U"-1

the supremum being taken over all V in the domain of Q. We can now write the

system (2.10), (2.11) as a single operator equation in HN namely,

(2.16) QV = F - G,

where V is the vector in (2.12),

(2.17) F= (l/Az2){/,,0, ••• , 0, f2}T,

(2.18) G= {g\g2, ••• ,g"}T,

and Q is the N X N tridiagonal matrix
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(2.19) Q = ¿

"(2 + ¿'A/2) -/

- /        (2 + A2At2) -1
O

o -/ (2+  ¿"Ai2) -/.

Note that in order for V to be a solution of (2.16), it is necessary that the jth com-

ponent of V belong to DAijAt) for each j = 1, • • ■ , N. Concerning the existence of

solutions of (2.16) and the "stability" of this difference approximation, we have

Theorem 1.   Let the family {A(t){ satisfy (2.1) with ß > 0 and let T satisfy

(2.20) w2/T2 > ß.

Then, for all sufficiently small At, there is a unique solution of (2.16) for arbitrary

F, G E HN. Moreover, the following estimate holds:

T-3/2

(2.21)

\v\\h = [(1 _ ¡y _ ßT2, IIGIU» + 0(At){\\fx\\„ + I l/MI»}

.   SmßW2jT- nAt) SmßU2nAt...

+ SinßU2T        """" +   Sinß1/2T  mi"'

as At I 0, where e > 0 is sufficiently small such that (1 — e)zr2 — ßT2 > 0.

If ß gO in (2.2), there is no restriction on T. With ß — 0, we have

(2.22) ||D"||* g ^^ \\G\\Bs + (r ~TnAtl UAH, + Zf N/.IU.

If ß < 0, the estimate (2.21) remains valid iand results in hyperbolic sines of |0|1/2/).

Remark. It is sufficient to prove (2.21). The case ß < 0 can be handled with

minor modifications in the proof, such as replacing Cos 8 by Cosh 8, etc. The resulting

hyperbolic sines imply an exponential decay of the data fx and f2. This was used

in [6] to construct an ¿-stable scheme. The estimate (2.22) follows from (2.21) on

using L'Hospital's rule. It was obtained in [5] without the use of Chebyshev poly-

nomials. The present discussion unifies and extends previous results. All of these

results are quite plausible. Assume for simplicity that g{t) = 0 in (2.3) and that

Ait) = A is independent of / and is selfadjoint with a discrete spectrum. Let the

eigenvalues of A satisfy

(2.23) MA) â -ß.

Expanding in the eigenvectors of A, one can construct the exact solution of (2.3), (2.4).

This yields the analog of (2.21), (2.22) for the continuous problem. The reader who is

convinced by this argument may proceed directly to Section 3 without fear of losing

continuity.

To prove Theorem 1, we will show that Q'XAt) exists and is a bounded operator

on all of HN. As in [5] and [6], this can be done via the technique of "block Gaussian

elimination" applied to the tridiagonal matrix Q. We will need the following lemmas.

Lemma 2. The Chebyshev polynomials of the second kind on [—1, 1] «zzz be

generated by means of the recurrence relation
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(2.24) Un+1ix) = 2xUnix) -  Un.xix),        n = 1,

where U0(x) = 1, Ux(x) = 2x.

Putting x = Cos 8, we have

(2.25) Un(x) =  Sin(zz + 1)8/Sin 8.

Proof.   See for example [20, p. 297].
Lemma 3.   Fix a 8 > 0 sufficiently small such that (N + 1)8 < tr. Then

(2.26) 0 < Sin z<0/Sin(A: + 1)8 < 2 Cos 8

for each k = 1,2, ■ • • , N.
Proof The inequality is true for 0 = 0. Hence, it remains true in a neighborhood

of 8 = 0.
Lemma 4. Let ir2/T2 > ß. Let At = T/iN + 1) be sufficiently small, and put

x = 1 - ßAt2/2. Let A, = [2/A/2 + A1] and let Tx = -(A,)"1. For each zz = 2,

3, • • • , N, let A„ be given by

(2.27) A„ = [2/A/2 +  An] + Yn.x/At\

where

(2.28) r„ = -(A,,)"1,        n = 2,3, ••• , N.

Then, for each n — 1,2, ■■■ ,N,Yn exists and is a bounded operator on H. Moreover,

(2.29) ||rn||ff/A/2 =   Un.xix)/Vnix),       n=i,2,---,N,

where Un is the nth Chebyshev polynomial of the second kind.

Proof From (2.1), we have that, for each zz, [2/A/2 + An] is a closed invertible

operator whose inverse has domain H and

11/2 VII
(2.30) \\[t?+ a1 ^

11\«* /      I Iff

At' At'

ßAt2       2x

Hence,

(2.31) \\TX\\„/At2 g 1/2* =   Uoix)/Uxix).

Suppose now that, for some positive integer k < N,Tk exists and is a bounded operator

with domain H, and

(2.32) ||rt||ff/A/2=   Uk.xix)/Ukix).

In that case, we have

Uk-Xix)
(2.33) ¿nr.iu  (è+^r <

h      2x Ukix)

Putting Cos 8 = x = 1 - /3A/2/2, we see that 8 = ß1/2 At + 0(At2). Hence, if At

is small enough, 8 satisfies the hypotheses of Lemma 3. Therefore,

(2.34) Uk.xix)/2xUkix) < 1.

We may now employ the well-known lemma on the stability of bounded invertibility

[13, p. 196] to conclude that I\+1 exists and is a bounded operator on H and that
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(2.35) .2    r*+i \\h =  ,        „    , w-   IT, »•
At 1 —   Uk-xix)/2x Ukix)

Using the recursion formula in Lemma 2, we get, from (2.35),

(2.36) ||I\+1||„/A/2 =   Ukix)/Uk+Xix).

Hence, in view of (2.31), the lemma follows by induction.

Lemma 5.   Let Q be the matrix in (2.19). Let Ak, Tk be as in Lemma 4. Let Z = {zk

be a given vector in HN. Then, X = {xk} is a solution of QX = Z if and only if

N N
X     =   w   ,

N-l     ,      -p, N i . .2 N-l
(2 ™ x       + TN-Xx /At   = w     ,

x1     + Txx2/At2       = w1,

where the {w'{ are defined by

AXW    = Z ,

A 2 2      i 1 / * „2
(2.38) A2W   =Z  +W/At>

ANw    =2   + w     I At .

Proof. See [5, Lemma 4]. Since A"1 is defined on all of H, Lemma 5 actually

proves the existence of a unique solution of QX = Z for any Z E HN.

Lemma 6. Let v2/T2 > ß, and let At = T/(N + 1) be sufficiently small. Let

FE HN be defined as in (2.17) and let Y = Qf'F. Then, for each n = 1, 2, • • • , N,
we have

II »n    <  Sin ßU2(T - nAt)
IHU- -W75^-ll/llU

(2.39)

+ S£tof"*T   II/.II« + 0(A/){||/,|U + II/2IU}

ai A/ j 0.

Proof. Write F = Fl + F2 where F1 is F with /2 = 0 and F2 is F with ^ = 0.

Then Y = Q-'F1 + Q'F2. Consider first the contribution g~'F2. Using Lemma 5

withz1 = z2 = • • • = zN-1 = 0,zN = f2/At2, wegetw1 = w2 = • • • = /"' = 0 and

(2.40) |k"|U = -^f H/2IU

on using the estimates in Lemma 4. Inserting this in Eqs. (2.37), we get

(2.41) \\y2\\H è ^f^ \\h\U,        n=l,2,---,N.
UN(X)

In terms of 8 = Arc Cos x, we have, from Lemma 2,
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(2.42) IKIU Ú  Ss"nÇ*r   ll/2,U + °(At) lM"-

The estimate for the contribution Q~1F2 follows by symmetry.

We are now ready to prove Theorem 1.

Proof of Theorem 1. By Lemma 5, Q'1 exists and is defined on all of HN. Since

each ¿"is closed, g1 is closed. Hence, g_1 is bounded on using the closed graph

theorem. We proceed to derive the inequality (2.21). Let M be the tridiagonal matrix

given by

(2.43) M = Q - diagj A\ A2, ■■• , AN}.

Using the method of Lemma 6 in [5], one easily shows that, given any e > 0, there

exists At sufficiently small so that

(2.44) (1~==ß^(V,  V) è (MV,  V)=At22 \\»*+1 - »"\\l/àt2,r k-0

,0    ,.N+1for every V E H . In the above sum, v , v +   are defined to be zero. If W is in the

domain of Q,
N

(2.45) iQW, W) = iMW, W) + At 22 (Anwn, wn).
n-l

Hence, using (2.2) and (2.44),

(2.46) RsiQW, W) ̂  [(1 - eVVr2 - ß]iW, W).

Choosing « small enough such that (1 — t)v2/T2 > ß, we get, from (2.46),

(2.47) H0_,|U* =
T2

(1 - e)zr2 - ßT2

Next, let QV = F — G with F, G defined in (2.17), (2.18), and put

(2.48) W =   V - Q~lF,

so that

(2.49) QW = QV - F = -G.

From (2.47), we get

(2.50) 11 W\ \aw = (1 _ ey _ ßT2 | |G| U*.

Also, using Schwarz's inequality,

(2.51) ||lf||„.v \\QW\\„* ^ \iQW, W)\ ^ ReiQW, W) ^ iMW, W) - ß \\W\\2Hs.

Using (2.49), (2.50), it follows from (2.51) that

(2-52) iMW, W) g y   ° ~ 62V2rlT2l ||G||JU.
LU — e;zr   — (il J

Now, for any zz with 1 g zz g N, we have

n-l

(2.53) wn = At 22 ("*+1 - v")/At,
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and, using Schwarz's inequality,

(2.54)

n-l   i i     k + 1 k\ i

{ N        I 1/2 f AT     m     *+l kit 21 1/2*{"£'}{" S lb-¿'iJk} •

Since

(2.55) (Miy, »0 = Az £ ||w*+1 - w* Iß/Ar2,

we get from (2.54) and (2.52),

(2-56) |HU á _____ ||Gniíír.

Finally, to estimate the components ju"} of the solution V oî QV = F — G, recall

the definition of W in (2.48) and use the estimates of Lemma 6 for the components

of Q~1F. This yields the inequality (2.21) of Theorem 1.

3. Linear Parabolic Problems and the Backward Beam Equation. To elucidate

the connection between parabolic problems and the two-point problem of Section 2,

consider the following simple example. Let R be the strip {(x, t) | 0 ^ x ^ 1, / ^ 0}

in the (x, /)-plane and consider the mixed problem for the one-dimensional heat

equation

(3.1) «, = uxx, 0 < x < 1, t > 0,

(3.2) «(0, f) = «(1, /) = 0,        / ^ 0,

(3.3) «(*, 0) = fxix), 0 g x g 1,

where fx(x) is such that the unique solution of (3.1)—(3.3) has sufficiently many deriva-

tives, bounded on R. If we differentiate (3.1) with respect to time, we get

(3.4) utl = uxxxx,       0 < x < 1.

Since u is zero on the lateral sides of the strip R, it follows from (3.1) that uxz is also

zero there. Suppose that one knows the exact solution of (3.1)—(3.3) at some positive

time T. Let u(x, T) = f2(x). Then, the unique solution of (3.1)—(3.3) satisfies the

following auxiliary system:

(3.5) v„ = vxxxx,       0 < x < 1,0 < / < T,

(3.6) viO,t)=vxxiO,t)=vxxil,t)=vil,t) = 0,        t ^ 0,

(3.7) vix, 0) = fxix),

(3.8) vix, T) = f2ix).

One may write the above system in the more compact form of a differential equation

in the Hilbert space L2[0, 1],

(3.9) vtt - Av = 0,        0 < / < T,

(3.10) K0) = A,        viT) = f2,
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where now vit) = c( •, /) is a Hilbert space valued function on [0, T], and A is the

unbounded operator in L2[0, 1] corresponding to the spatial part of (3.5) with the

boundary conditions (3.6). Thus, A is a positive selfadjoint operator in L2; it is

exactly the square of the operator defined by the spatial part of (3.1) with the boundary

conditions (3.2). Hence, in this case,

(3.11) (Av,v) ^ zr4(i>,ü)        Viz E D(A).

One may use the energy inequality of Lemma 1, with ß = 0, to prove uniqueness in

(3.5)—(3.8). Consequently, the solution of (3.1)—(3.3) can be obtained by solving

instead the system (3.5)-(3.8). We call (3.5) the "backward beam equation" because

of its similarity with the vibrating beam equation vtt = —vxxxx. In contrast to the

latter, the initial-value problem is not well posed for the backward beam equation.

What is well posed is the "initial-terminal" problem (3.10). This is easily seen by

separation of variables which leads to the estimate

,* «,»•» ii t mi   ^  Sinh t iT — t) ..   .. Sinh zr /   ... ..
(3-12) H"«!!' =        Sinhzr2r       ll/l112 + sinhTl H'21'2"

Recall that f2 in (3.8) is the exact solution of the heat conduction problem at

time T. Hence, f2 is necessarily an analytic function. Imagine now solving (3.5)—(3.8)

with f2 replaced by j2, a function close to f2 in the L2 norm, but not necessarily

analytic. In that case, the corresponding solution of the backward beam equation

cannot in general be a solution of the heat conduction problem. However, because

of (3.12), this solution is close in the L2 norm to the solution of the heat equation

determined by fi(x).
One can relate more general linear parabolic problems to the two-point problem

of Section 2. Consider a parabolic equation, in some bounded domain 0 in R",

(3.13) ut = -PoiOu,       0 < t ^ T,

together with certain homogeneous conditions, on the smooth boundary of Q,

(3.14) B[u] = 0    on dû.

Here, P0(/) is a uniformly elliptic operator in the space variables with coefficients

depending smoothly on x and /. Let P0(t) be the differential operator obtained from

PQ(t) by differentiating the coefficients with respect to /. We then have that any smooth

solution of (3.13) satisfies

(3.15) «(1 = [Pi - Po]u,

and

(3.16) B[u] = 0    ondfi.

However, since P\ is of higher order than P0, one must find extra boundary conditions,

also satisfied by a smooth solution of (3.13), in order to obtain this solution uniquely

from (3.15). Suppose that the boundary conditions (3.16) are independent of /. Then

we may differentiate both sides of (3.16) with respect to / to obtain

(3.17) B[ut] = 0    on dû.

Using (3.13), this leads to the auxiliary problem
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(3.18) u„ m [Pi - P0]u,       x E Û, 0 < t g  T,

(3.19) B[u] = B[P0u] = 0        on dû, 0 < t ^  T.

In [6, Section 3], an analysis is carried out on the auxiliary problem (3.18), (3.19)

generated by a class of selfadjoint problems which are F-parabolic in the sense of

Lions [14], [19]. The elliptic operator P0(/) in (3.13) together with the boundary

conditions (3.14) are assumed defined via a symmetric bilinear form

(3.20) a(t; «, v) =      22      ! «»»(*> OD'u D~>~v dx,
lui, laISm Ja

which is continuous and strongly coercive on a Hilbert space V, lying between the

Sobolev spaces H"(û) and Hm(û). Using the Lax-Milgram lemma, the following

result is proved [6, Theorem 1]:

Theorem 2.    Consider the parabolic equation

(3.21) u, = -Pit)u,       0 < t < T,

where, for each t, P(t) is the positive selfadjoint operator in L2(û) defined by the strongly

coercive bilinear form (3.20). Let the domain of P(t) in L2(û) be independent of t, and

let u(t) be a sufficiently smooth solution of (3.21). Tzzezz u(t) also satisfies the equation

(3.22) u„ - A(t)u =0,        0 < t < T,

where A(t) is the unbounded operator in L2(û), defined by the right-hand side o/(3.18)

and the boundary conditions (3.19). Moreover, there exists a constant ß 2: 0 and inde-

pendent of t, such that A(t) + ß is an m-accretive operator in L2(û).

Remark. In fact, A(t) is selfadjoint in Theorem 2; the need for an additive con-

stant ß to render A(t) accretive is due to the extra term P0(t) which may spoil the

positivity of P2. This extra term is absent in the time independent case. Note that

the domain of A(t) may vary with / even though P(t) is assumed to have fixed domain.

See [6, Section 3].

Consider now the question of approximating the solution of (3.21) by considering

instead (3.22). By assumption, u is sufficiently smooth so that Lemma 1 applies.

Suppose T is such that ßl/2T < ir and let f2(x) be the exact solution of (3.21) at time T.

The difference scheme (2.10), (2.11) now provides a stable "method of lines" where

only the time variable is discretized while the space variables remain continuous.

In an actual calculation, the spatial operator must also be approximated. In order to

maintain the stability inequalities for the fully-discrete scheme, we see from Theorem

1 that it is sufficient to do the space discretization in such a way that the discrete

analog of (2.2) remains valid, uniformly in the spatial mesh size Ax as Ax —> 0. In the

remainder of this section, we show how to do this, using finite-differences, for a

class of two-dimensional second-order problems. More general problems will be

considered in a later report using Galerkin methods.

3.1. The Fully Discrete Scheme for u, = V a Vu — cu on a Rectangle. Let Í2 be

a rectangle in the (x, y)-plane and consider the parabolic problem

(3.23) u, = [a(x, y, t)ux]x + [aix, y, /)«„]„ - c(x, y, t)u,       ix, y) E û, t > 0,

(3.24) uix, y, 0) = fxix, y),        x, y E Û,

(3.25) uix, y, t) = 0,        ix, y) E dû, t à 0.



248 B. L. BUZBEE AND ALFRED CARASSO

We assume a, c and / to be smooth functions with

(3.26) a(x, v, t) ^ cío > 0,       dx, y, t) è 0.

Let —P0(t) denote the elliptic operator on the right of (3.23) at time /. Introduce a

rectangular mesh region û(Ax) over 0 with mesh spacing Ax = Ay, and J interior

mesh points. At each / = nAt, we approximate P0(0 by the usual centered five-point

difference analog

(3.27) -cnw*. y)=[4+f ' 'XL+M* '+fXL - cv>
ix, y) E ûiAx),

(3.28) vnix, y) = 0,       ix, v) E oQÍAx),

where cj, dJ denote the forward and backward difference quotients of v"(x, y) over

Û(Ax).

Denote by V the /-component vector formed from vn(x, y) at the interior mesh

points. Let Pn(Ax) denote the / X / real symmetric matrix corresponding to the

difference operator (3.27) and the boundary conditions (3.28). We use the notation

(3.29) ( V", Wn) = (Ax)2       22       Vnix,y)W\x,y),

(3.30) urn;- (r. y").
for discrete scalar products and norms of /-vectors.

Let L(Ax) be the J X J matrix corresponding to the five-point difference analog

of the negative Laplacian with the boundary conditions (3.28). Then, using (3.26)

and summation by parts, we have

(3.31) a0(LWn, W") g (PnWn, W") g ax{LW", W) + cx \\W\\22,

for all /-component vectors W. Here ax and cx are, respectively, upper bounds for

a(x, y, t) and c(x, y, /). Since L is positive definite independently of Ax as Ax —> 0,

we see that P" is positive definite, uniformly in zz and in Ax as Ax —> 0. Let

(3.32) da/dt ^ a,        dc/dt g y.

Define P" to be the symmetric matrix obtained from Pn by replacing a(x, y, t) and

c(x, y, /), respectively, by da/dt, dc/dt. From (3.32), we get

(3.33) (PnWn, W) g a{LW\ W) + y \\W"\\¡.

Next, let f2(x, y) be the exact solution of (3.23M3.25) at time T. If we now dif-
ferentiate with respect to time in (3.23), we get the auxiliary problem

(3.34) ult = (Plit) - Poit)]u,        ix,y)EU,0 <t < T,

(3.35) «(x, v, 0) = U(x, y), uix, y, T) = /2(x, y),

(3.36) u = Poit)u = 0 on dû, 0 g / ^ T.

This is the problem to be discretized. Define the / X / matrix A\Ax) by

(3.37) ¿"(Ax) = iPn)2 - P".
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A little thought shows that ¿"(Ax) is an 0(Ax2) difference approximation at / = nAt

to the spatial operator on the right of (3.34) together with the boundary conditions

(3.36). Hence, the fully-discrete scheme for the auxiliary problem (3.34)-(3.36) is

obtained by replacing zz,, in (3.34) by a centered second-difference quotient, while

using (3.37) for the spatial operator. Using the natural ordering along lines / = con-

stant, the fully discrete scheme can be written as

(3.38) Q(Ax)V = F,

where Q(Ax) is the matrix (2.19) with ¿" replaced by ¿"(Ax), Kis the "block" vector

(3.39) V = {V\ V2, ■■■ , VN}T,

and F contains the data fx, f2 evaluated on O(Ax). We now establish the analog of (2.2)

for ¿"(Ax). In the simple but important case where (3.32) holds with a = y = 0,

we see that P" is negative semidefinite and hence ¿"(Ax) is positive definite. More

generally,

(3.40) l{P"Wn' W")l - Ha'H-<L,r' "^ + I Ie'11» û ̂ "11'*

^ (lkll-+ WctWJXoKLW", wn),

where X0 > 0 is the infimum of the eigenvalues of L as Ax —► 0. Consequently, if

(3.41) X =  ||a,||-/ao+ Hc.lU/aoXo,

we have, from (3.31),

(3.42) x(P"W", W) - (PnWn, W")^ 0.

Therefore, from (3.37) and (3.42),

(3.43) (A"Wn, Wn) è ||F"^"||2 - x{P"Wn, W).

Using the inequality

(3.44) €2 | |FB W| | - XU°. Wn, Wn) + x2 11 Wn\ |I/4e2 ^ 0,

we obtain from (3.43), for every 0 < 6 < 1,

(3.45) (A"WR, Wn) è (1 - e2) H^^llï ~ X2 II W"\\22/4t2.

Hence, using (3.31),

(3.46) (A"W, Wn) è [«oXo(l - €2) - x74e2] || W"||?.

This proves (2.2) for ¿n(Ax) with a constant ß depending on ||a,||„ and ||c,||.. Note

that ß is positive if ||a(||co and 1 ¡ct||œ are sufficiently large. From Theorem 1, we see

that this leads to a restriction on T. The reason for this restriction will be seen in the

next section, where it will be eliminated by suitably transforming the original problem

(3.23).
A discussion of methods for solving the difference equations (3.38) will appear in

another report. In the case of one space dimension, one may use the block Gaussian

elimination scheme discussed in the proof of Theorem 1. Other methods include

SLOR, S2LOR, and in the case of time-independent coefficients, the matrix decom-

position method of [2]. The latter method is the one used in the example of Section 5.
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4. Parabolic Equations Backwards in Time.   Consider the parabolic equation

(4.1) ut = -P(t)u,       t > 0,

where, for each /, Pit) is a positive selfadjoint operator arising from a coercive elliptic

boundary-value problem, as is the case in Theorem 2 of Section 3. The backward

problem associated with (4.1) is, given a function /2(x) in L\û), to find a solution

of (4.1) which at time T > 0 takes on the value f2. As is well known, there cannot,

in general, exist a solution, unless f2 meets certain smoothness requirements. On the

other hand, if there is a solution, it is unique. For results on backward uniqueness,

see [17], [18] and [11]. In practice, one cannot measure f2 with sufficient precision to

determine whether or not f2 meets the necessary requirements for existence. However,

in a real problem, one will know that f2 is close, in the V norm, to a function ]2 for

which a solution exists. Moreover, from physical considerations, one will know a

bound on the solution at previous times. This bound need not be sharp. Hence, the

following version of the backward problem makes sense. Given the positive constants

5, M, T, and given /2(x) in L2tû), find all solutions of (4.1) on [0, 7] which satisfy

(4.2) ||«(0)||2 û M,

(4.3) ||«(D-/,||2 Ú 5.

This is the version of the problem that is considered in this paper. It is clear that if

there is one solution to this problem, there are, in general, infinitely many. Our

method will produce a mesh function which is an approximation to all of them simul-

taneously. Concerning the question of continuous dependence and error bounds in

the above problem, the following results are known. First, assume F(/) in (4.1) to be

independent of t. Let tz(/) be a solution of (4.1). Then (see [11, p. 183]), log||«(/)||2

is a convex function of / and, therefore, for 0 ^ / ^ T,

(4.4) n«(oii2 ̂  n«(o)iir-!,/r n«mii2/r.

Hence, if uff) and u2if) are any two solutions of (4.1) on [0, T] satisfying (4.2), (4.3),

and if «(/) is their difference, we have the following stability estimate:

(4.5) IKOII2 á i2M)(T-')/Ti2S)'/T,        0 ^ / g  T.

In the case where F(/) in (4.1) depends on t, a less generous convexity result, due

to Agmon and Nirenberg, is known. (See, e.g., [11, p. 182].) Specifically, there exist

positive constants zzz and c so that if p. = p(t) is given by

(4.6) p(t) = ieT - l)/(e" - 1),

then any smooth solution of (4.1) satisfies

(4.7) ||«(/)||2 Í emle-mT/" ||h(0)|I,"""" ||«(r)||^,        0 g / g  T.

Suppose for simplicity that one can take m = 0 in (4.7) and consider the resulting

inequality at / = T/2. Using

(4.8) p.iT/2)tteT'2,

we get, from (4.7), the following result for the difference e(/) of any two solutions

satisfying (4.2), (4.3):
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(4.9) ||e(r/2)||2 = i2M)1-'-°T/'i25)'-'T/'.

Suppose now that c and T are such that

(4.10) e""n « §.

A comparison of (4.9) with (4.5) at / = T/2 suggests the following. In order to know

the solution of the time-dependent problem with the same certainty as in the time-

independent case, one must, in general, know the corresponding terminal data with

much greater accuracy. This seems plausible on the following grounds. Consider

the simple parabolic problem

(4.11) «, = [aix, t)ux]x,       0 < x < 1, / > 0,

(4.12) «(x, 0) = A(x), 0 = x = 1,

(4.13) «(0, /) = «(1, 0 = 0,      / = 0.

If the diffusion coefficient a(x, /) in (4.11) is an increasing function of time, it is

evident that the initial data fx(x) is smoothed out at a higher rate than is the case

when da/dt ^ 0. Consequently, more precision in measurement is necessary at time T,

in order to obtain the same amount of information as in the case when da/dt g 0.

We have gone into the above discussion in order to set the stage for our method.

We begin with the simpler case of P independent of /.

4.1. Selfadjoint Problems with Time-Independent Coefficients. Let F be a positive

selfadjoint operator in L2(û) and let

(4.14) «, = -Pu,       0 < t < T.

Let /2(x) be the given approximation to the terminal data at time T. The idea behind

our method is to solve the backward problem for (4.14) by considering the backward

beam equation, associated with (4.14),

(4.15) wu = F2h>,       0 < / < T,

together with the initial-terminal conditions

(4.16) w(T) = f2,       w(0) = 0.

Note that the unknown initial data for (4.14) has been replaced by zero in the auxiliary

problem. Consider now the error committed by using the wrong initial data. In

analyzing this question, we may as well make a direct attack on the difference scheme

which will be used to solve the auxiliary problem. Moreover, it is convenient and

sufficient to consider only the "method of lines" of Section 2. All statements below

will also hold for the fully discrete scheme of Section 3, provided continuous L2 norms

are replaced by discrete L2 norms and the truncation error 0(At2) is replaced by

0(A/2 + Ax2). Thus, we use the scheme (2.10), (2.11), with fx = 0 and g" = 0 to

approximate (4.15), (4.16). Let «(ziAz) be the difference between the solution of the

difference equations and any of the exact solutions of (4.14) satisyfing (4.2), (4.3). We

see that ¡ t"} satisfies the difference equations (2.10), (2.11), with g" representing the

truncation error, fx the initial data, and f2 the difference between the exact and approx-

imate terminal data. Since P2 ^ 0, the estimate (2.22) is valid. Hence, using the given

bounds (4.2), (4.3), we get, from (2.22),
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(4.17) IKON, á MUT - t)/T) + Ôit/T) + OiAt2),        0 = / =  T.

A little thought shows that the error bound (4.17) is not satisfactory. Indeed, the

error due to using the wrong initial data decays linearly with time, while the solutions

of (4.14) decay exponentially with increasing time. Thus, eventually, a time will be

reached where the error is bigger than the solution itself. On the other hand, (4.17)

would be a useful bound if somehow the solutions of (4.14) grew exponentially suf-

ficiently fast, for then the error due to the wrong initial data would eventually be

imperceptible.

Thus, rather than deal with (4.14) directly, we set

(4.18) v = ek'u,        0 ^ / ^  T,

in (4.14), where k is a large positive integer chosen so that v grows exponentially with

time sufficiently fast. Then, v satisfies

(4.19) d, = -(F - k)v,       0 < t < T,

and hence the auxiliary problem for o is

(4.20) w„ = (F - k)2w,       0 < t < T,

(4.21) wiT) = ekTf2, wiO) = 0.

The essence of our method is to solve (4.20), (4.21) numerically in order to obtain a

good approximation for v and hence as good an approximation for u in the original

problem. Notice that since F is selfadjoint, (F — k)2 is selfadjoint nonnegative, and

so the estimate (2.22) is still valid. Thus, if we use the scheme (2.10), (2.11) (with

fx = 0, gn = 0, and f2 replaced by ekTf2) to approximate (4.20), (4.21), and if wopp(/)

is the solution of the difference equations, we find

(4.22) ||d(0 - »vapD(/)||2 ̂  MUT - t)/T) + it/T)ekTS + OiAt2),

for the difference between wapp(/) and any of the exact solutions of the modified

backward problem (4.19). Let a(t) be the relative error in the L2 norm, that is,

(4.23) ait) = |KO - w^it)\y\\vit)\\2.

If k is chosen properly in (4.18) and At is sufficiently small, ait) will be acceptably

small on some interval 0 < /0 ^ / ^ T. In fact, if the terminal data is known with infinite

precision, then, by choosing k sufficiently large and At sufficiently small, one can

make <r(/) acceptably small on as large a subinterval of (0, T] as desired. Furthermore,

since

(4.24) <z(0 =
e~u |KQ - n>aDD(/)||2   J|«(Q - e~*'wTO(Q||2

e~kt IKOII2 ||«(f)||,

we see that

(4.25) «.„(i) = e-klwwM)

will be an equally good approximation to the solutions of the original backward

problem for (4.14).
The fact that the terminal data /2(x) is only known to within 5 results in an optimal

choice for k, as was observed by P. D. Lax. From (4.22), we have
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(4.26) ||«(0 - e-k,wm(0\\ = M»"" 1~^ + (iX*"" * + 0(A'2)l

Neglecting the term 0(At2) in (4.26), we find that the right-hand side is minimized

as a function of k by choosing

(4.27) k0 = (1/70 log(M/5).

Moreover, with this choice of fc, (4.26) becomes

(4.28) ||«(0 - <T*°'>vapp(0||2 ̂ (M)(T-')/Ti5)'/T + 0(A/2),        0 = / = F.

It is interesting to note that, apart from the truncation error, the bound (4.28) is the

same as that in (4.5), which followed from the basic convexity result in the time-

independent case. It is fair to warn the reader that the truncation error term 0(A/2)

contains a factor (fc0)4 due to replacing vtt by a second-difference quotient. Hence,

in practice, the contribution from truncation will be an appreciable part of the total

error in this method. For the fully discrete scheme of Section 3, the truncation error

term on the right of (4.28) becomes O[(zc0)4 A/2] + 0(Ax2); that is, the factor (k0)*

does not affect the error due to discretizing the space variables. In practice, this means

that one will often choose At much smaller than Ax in order to minimize the trunca-

tion error.

4.2. Selfadjoint Problems with Time-Dependent Coefficients. The time-dependent

case is more subtle. To develop the reader's insight, it is worthwhile to begin with the

simple one-dimensional problem

(4.29) «, = [a(x, /)"*]* - c(x, t)u,       0 < x < 1, / > 0,

(4.30) h(0, 0 = "(LO = 0, / = 0,

(4.31) «(x, 0) = /,(*), 0 = x = 1,

where the coefficients a(x, /), c(x, /) are smooth functions with sufficiently many

bounded derivatives and

(4.32) aix, 0 ^ a0 > 0,        c(x, /) = 0.

In connection with the backward problem for (4.29), we distinguish three cases.

Case l.   JáO,       f = 0.
dt dt

(4.33) Case 2.    -^=0,        T ^ 7,       7 > 0.
dt dt

„      ,.      da   .. dc   . ^   „       ^  _
Case 3.    — g a,        TâTi        a > 0,y ¿ 0.

dt dt

In Case 1, the diffusion coefficient o(x, /) and the dissipative term cfx, t) do not increase

as / increases. Hence, the smoothing undergone by the initial data fx(x) is no worse

than would take place in the time-independent problem

(4.34) u, = [a(x, 0)ux]x - c(x, 0)u.

In Case 2, there is additional smoothing due to the growing dissipative term. In
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Case 3, the smoothing is much more severe due to the growing diffusion term. The

qualitative difference between these three cases is borne out by the error bounds in

our difference scheme.

Let us write the initial-boundary problem (4.29)—(4.31) in the form

(4.35) «, = -0(0».        t > 0,

(4.36) «(0) = /,,

where Q(i) is the positive selfadjoint operator in L2[0, 1] defined by

(4.37) QoiOw = -[dx, t)wx]x + c(x, t)w,       0 < x < 1,

and the boundary conditions

(4.38) w(0) = wil) = 0.

As in Section 3, we use the notation Q0(t) to denote the formal differential operator

in (4.37) without the boundary conditions. By g\(0. we mean, as usual, the formal

differential operator obtained from Q0(t) by differentiating its coefficients with respect

to /. Thus, if we differentiate (4.35) with respect to /, we obtain the backward beam

equation

(4.39) «„ = B(t)u,

where B(i) is the unbounded operator in L2[0, 1] defined by the formal differential

operator

(4.40) Ba(t) = Ql - go

together with the boundary conditions

(4.41) w(0) = Oo(0vf|x-o = w(l) = QQ(t)w\x.x m 0.

In dealing with the backward problem for (4.35), it will be necessary, as before,

to consider the modified auxiliary problem obtained by setting

(4.42) v = ektu

in (4.35), for a suitable positive k. This modified problem is

(4.43) vtt =  Ait)v,

where A(t) is the operator in L2 defined by

(4.44) ¿o(0 = (Oo - A:)2 - Öo

together with the boundary conditions (4.41). We now observe the following. If Q(f)

is the operator defined by Qa(t) on the domain of A(t) in (4.43), then

(4.45) (Q(t)v,v) gO Vu E DA,        in Case 1,

(4.46) (Qit)v,v) ¿y(v,v) Vu E DA,        in Case 2.

In Case 3, because of the growing diffusion coefficient, Q(t) is not semibounded from

above in the L2 norm. In Cases 1 and 2, it follows from (4.45), (4.46) that, for any k,

we have, in (4.43),
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(4.47) (A(t)v,v) = 0        Vc G Di,        in Case 1,

(4.48) (Ait)v,v) ^ -y(v,v), in Case 2.

In Case 3, a little thought reveals that A(t) is semibounded from below, but the bound

depends on k. This is not satisfactory for our purposes. We shall return to Case 3

later in this discussion.

Consider now the backward problem in Case 1. Let f2(x) be the given approxima-

tion to the terminal data at time T for Eq. (4.35). By assumption, the solutions of

(4.35) satisfy (4.2), (4.3). In (4.42) above, set k = k0 where k0 is defined in (4.27)
and consider the auxiliary problem, for v,

(4.49) wtt - Ait)w =0,        0 < / < T,

(4.50) wiT) = eUTf2,        wiO) = 0.

Use the difference scheme (2.10), (2.11) to solve (4.49), (4.50). Since A(t) satisfies

(4.47), the estimate (2.22) is valid. Consequently, so is the estimate (4.28) applied to

the present problem (4.35). Thus, Case 1 behaves like the time-independent problem

(4.34).
In Case 2, more precise measurements are necessary at time T in order to obtain

the same amount of information about the solution as in Case 1. Hence, it may be

anticipated that the estimate (4.28) cannot hold. An indication of the trouble is

provided by Theorem 1 of Section 2 where we see that Fis restricted by the requirement

y1/2T < r and we lose uniqueness as 71/2F f zr. To eliminate this difficulty, consider

the preliminary transformation

(4.51) û = expJ7/2}«

in (4.29). Then tt satisfies

(4.52) «, = [a(x, t)ux]x - [c(x, /) - yt]a.

Thus, (4.51) reduces Case 2 to Case 1. In fact, this transformation can be used for

general abstract problems. It changes (4.35), (4.36) into the problem

(4.53) w, = -0(0«.        t > 0,

(4.54) zi(O) = A,

where Q~(t) = Q(t) - yt, satisfies (4.45). Put

(4.55) 5 = expJ7F2}5

and let

(4.56) /co = (1/F) log(M/5).

Note that with k0 as in (4.27), we have

(4.57) «o = /Co - yT/2.

We now solve the auxiliary problem

(4.58) wlt - A(t)w =0,        0 < / < T,
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lT'/2 k0T,     _ k0T.
(4.59) wiT) = eyj-'Y°'f2=e*

with À defined in terms of Q(t) and îc0.
From (4.28), (4.51) and (4.57), we get

/„        w(0) = 0,

(4.60)

"(0 - H>app(0 exp -|*o +
yit - T)

{*T7__0}
T exp \yt(T~ °\ + 0(AO,

where «(/) is any solution of (4.35) satisfying (4.2) and (4.3). From (4.60), we may

observe the effect of the extra smoothing of Case 2. The uncertainty in the solutions has

been increased by a factor exp {yt(T — 0/2} over that in Case 1, where y is the upper

bound on dc/dt.

We now remark that, in both Cases 1 and 2, the uncertainty is less than would

have been predicted by the Agmon-Nirenberg convexity result (4.7). This is because

the latter is of general validity. As a matter of fact, the error bound obtained via (4.7)

is what our method yields for Case 3, the case of most severe smoothing of the initial

data. To analyze Case 3, we will reduce it to Case 1 by stretching the time variable.

This stretching transformation was shown to us by Joel Spruck.

In view of the transformation (4.51), it is sufficient to consider the case where

(4.61) da/dt g a,       a > 0,

With a0 as in (4.32), let <p(s) be the function

(4.62) <pis) = — log
a ht')-

dc/dt g 0.

s è 0.

Then,

(4.63) p'(«) = ao/iao + as) > 0,

(4.64) V"(ß) =  - W(«o + oaf < 0.

We shall put / = <p(s) in (4.29). Let

(4.65) pix, s) = uix, vis)),       s è 0,

(4.66) z3(x, s) = aix, visais),

(4.67) dix, s) = dx, visWis).

Then, p(x, s) satisfies

(4.68) p, = [bix, s)px]x - dix, s)p,

(4.69) pix, 0) = «(x, 0) = A(x),

(4.70) piO, s) = pil,s)= 0,

From (4.32) and (4.61H4.64) we have

(4.71) bix, s) > 0,       dix, s) ^ 0,

(4.72) b, gO,        d, g 0.

0 < x < l, s > 0,

0 g x g 1,

s ^ 0.
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Therefore, the transformation (4.62) reduces Case 3 to Case 1. Consider now the

backward problem for the transformed equation (4.68). Let /2(x) be the given approx-

imation to the data at time T for (4.29). Then, /2(x) becomes terminal data for (4.68)

at time S where

(4.73) 5 = iao/a)[eaT/a° - 1].

Putting

(4.74) zc» = (1/5) log(A//5),

we solve the auxiliary problem associated with (4.68) on [0, S]; that is,

(4.75) q„ -  Ais)q =0,        0 < s < S,

(4.76) 9(0) = 0,       qiS) = e"'sf2,

where A(s) is constructed in the usual way, from k0 and the right-hand side of (4.68).

If qm(s) is the solution of the difference equations for (4.75), (4.76), it follows as in

Case 1 that

(4.77) \\p(s) - gm(s)e-k"\\t Ú MiS-')/sS'/s + 0(As2).

It is instructive to transform back to the unstretched time /. Let

(4.78) cV(0 = (a0/a)(ea,/°° - 1)

and define

(4.79) H>app(0 = <7app(*>_1(0),       0 < t < T.

Put

(4.80) pit) = ieaT/" - D/ie"'"' - 1).

Let tz(/) be any solution of (4.35) satisfying (4.2) and (4.3). From (4.71), (4.79), (4.80),

we then have

(4.81) ||«(0 - e-*"",('W0||a g M("-1,/"51/" + 0(A/2),

where k0 is defined in (4.74). Thus, the uncertainty in (4.81) is that obtained from (4.7)

with m = 0 and c = ot/a0.

The above discussion of the one-dimensional problem can be generalized. To begin

with, the distinction between the three cases and the transformations (4.51) and

(4.65)-(4.67) apply equally well to the problem in more than one space dimension

(4.82) ut = V-a(x, /)V« - c(x, t)u,        x E û, t > 0,

(4.83) « = 0   on dû,

where a(x, t) ^ a0 > 0 and c(x, /) ^ 0. In fact, all of the ideas remain valid for higher-

order parabolic problems which can be built up from (4.82), (4.83) such as

(4.84) ut - i-iy-'Q'iOu,       t>0,

where s is a positive integer and where Q(t) is the operator corresponding to the

spatial part of (4.82) and the boundary conditions (4.83). Moreover, the fully discrete

scheme of Section 3 can be generalized to apply to (4.84) while preserving all the
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necessary inequalities. In practice, because of the resulting algebraic problem, one

will seldom be able to compute problems in more than two space dimensions in general

domains, and with time-dependent coefficients.

To complete the discussion of the time-dependent case, we now show how the

preceding ideas can be generalized so as to apply to the abstract " F-parabolic"

problems of Section 3. Because of the level of generality, the discussion will now have

to be restricted to the semidiscrete "method of lines" of Section 2.

Let F be a closed subspace of the Sobolev space Hm(û) with the property that

(4.85) Hmoiû) EVE Hmiû)

and let ||(-)IU denote the norm on Hm(Û). For each / ^ 0, let a(t; u, v) be the sym-

metric bilinear form on V given by

(4.86) ait; u, v) =      22      j «*»(•*> t)D"uWv dx,
ipi .iQtsm Ja

where the apq depend smoothly on x and / and

(4.87) am = aqp.

We assume a(t; u, v) to be strongly coercive on V, uniformly in /; this means that there

exists a positive constant w, independent of /, such that

(4.88) ait;v,v) ^ w \\v\\2m        Vd G   V.

Let àvq denote davJdt and define aft; u, v) to be the bilinear form on V obtained

from (4.86) when avq is replaced by ápq. The form à(t; u, v) will play an important

role in the subsequent discussion. Both a(t; u, v) and á(t; u, v) are continuous on

V X V. Thus, there exist constants Kx > 0 and K2 ^ 0 such that

(4.89) \ait; u,v)\ g  Kx \\u\\m \\v\\m        Vu,vE  V,

(4.90) \àit; u,v)\ g  K2 \\u\\m \\v\\m        \/u,vE   V.

The form (4.86) generates the selfadjoint parabolic boundary problem

(4.91) «, =  -F0(0« =  -     _      (-1)""Dviap,ix, t)Dqu),        x E Û, t > 0.
ISl.lOli»!

(4.92) B[u] = 0,        x E dû, t ^ 0.

We assume (4.86) to be such that the boundary conditions (4.92) are independent

of /. Hence, under sufficient smoothness,

(4.93) ¿ B[u] = £[«,] = B[P0u] = 0,        x E dû, t ^ 0.
dt

The backward beam equation associated with (4.91), (4.92) is

(4.94) «,, = (Pi - P0]u,       x E Û, t > 0,

(4.95) B[u] = 5[F0«] = 0,        x E dû, t ^ 0.

According to Theorem 2, this is of the form u,, — ¿(/)tz = 0, with ¿(/) quasi m-

accretive in L2(Í2). Corresponding to the three cases in problem (4.29), we now make

the following definition:
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Definition. The parabolic boundary problem (4.91), (4.92) is minimal-smoothing

on [0, T] if

(4.96) àit;v,v) g¡ 0       Vu E  K, 0 < / g F.

It is strongly-smoothing if

(4.97) á((;p,t)áT IHIÎr.       »GK, 0 < / g F,

where ||(-)IU is the norm on L2(û) and 7 > 0. If, for some positive a, we have

(4.98) à(t;v,v) ûa\\v\\2m,       v E  V, 0 < t g  F,

the problem (4.91), (4.92) is said to be maximal-smoothing on [0, T\.

We may write (4.94), (4.95) as

(4.99) «„ = [F2(0 - P(/)K

where P2(t) is the positive selfadjoint operator in L2(û) defined by P20(t) and the

boundary conditions (4.95), and P(t) is the symmetric operator in L2(û) corresponding

to Po(0 restricted to the domain of P2(t). Since

(4.100) (P(t)v,v) = áit;v,v)        Vu E DP,it),

the inequalities (4.96)-{4.98) can be translated in terms of the operator P.

With the above machinery, it is now easy to discuss the backward problem for

(4.91), (4.92). Consider first the minimally-smoothing case. In this case, we choose

zc0 as in (4.27) and use the difference scheme (2.10), (2.11) to solve the auxiliary

problem

(4.101) wtt = (iP - ko)2 - P]w,       0 < t < T.

(4.102) wiO) = 0,        wiT) = ehoTf2,

where f2 is the given approximation to the terminal data. This leads to the estimate

(4.28) as in the case of time-independent coefficients. In the strongly-smoothing case,

we have

(4.103) (Pit)v,v) ^y(v,v)        Vu G Bp.(í).

Applying the preliminary transformation (4.51) to (4.91), we may reduce the strongly

smoothing case to the minimal case. With ¡c0 as in (4.56), this leads to the estimate

(4.60). In the maximal-smoothing case, we first observe that the idea behind the

stretching transformation (4.62) can be abstracted to the present problem. With

co and a the constants in (4.88) and (4.98), define the function

(4.104) iKO = (co/a) log(l + as/u),        s ^ 0.

Then, f(s) > 0, i>"(s) < 0 and

(4.105) u>i>" + ai-^'f = 0.

From the bilinear form a(/; u, v) of (4.86), we construct the form b(s; u, v) where

b(s; u, v) = a(iKi); «, v)Vis),       s è 0,

(4.106)

ipi ,T7ism Ja
=      _      Í bmix, s)D"uDvv dx,

ii>i. ui im Jn
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with

(4.107) b„(x, s) = aPQix, tÜM'is),       s = 0.

Let b'(s; u, v) be the symmetric bilinear form on V obtained from (4.106) by replacing

bPQ(x, s) with dbpq/ds. We then have

(4.108) b'is; u, v) = V'aiKs): «> v) + (Vfaitis); u, v).

Hence, using (4.88), (4.98) and (4.104),

(4.109) b'is;v,v) = [a^'f + wtf,"] \\v\\2m = 0        Vu E  V.

We now put / = ^(s) in (4.91). Let

(4.110) {(*, s) = uix, ibis)),       x E û, s = 0.

Then £ satisfies the parabolic boundary problem

(4.111) f. = -Go(s)£,       xE 0,s > 0,

(4.112) 5[£] = 0, x E dû, s è 0,

where G0is) = \l/'(s)Po(\p(s)). This is the problem generated by b(s; u, v). Since

b'(s; v, v) ^ 0, we have the minimal-smoothing case for the transformed problem

(4.111 ), (4.112). Proceeding as in the discussion of the one-dimensional problem (4.35),

we get an estimate like (4.81) for the maximal smoothing case with a0 replaced by «

in (4.80).

5. An Example.   Consider the one-dimensional problem

(5.1) u, = «„, 0 < x <ir,t > 0,

(5.2) «(0, 0 = «O, 0=0, fäO,

(5.3) uix, 0) = e-10 Sin x + Sin 2x,        0 g x g jr.

This problem has the exact solution

(5.4) «(x, 0 = e"(I0+i) Sin x + e~u Sin 2x.

The particular initial data (5.3) was selected so as to generate a solution whose

character changes with time. From (5.4), we see that, at / = 0, the second harmonic

dominates the solution with an amplitude of about 105 times that of the first harmonic.

At / = 10/3, the two amplitudes are equal, and thereafter the first harmonic dominates.

At T = 5, the amplitude of the first harmonic is about 150 times that of the second.

To illustrate our theory, we have computed this problem backwards in time, given

the exact solution at T = 5. Thus, the only error in the terminal data is that due

to round-off in the machine (see below). To get an idea of how long a time span is

physically represented by choosing T = 5, we mention that in the numerical computa-

tion of forward parabolic problems via marching procedures, a "long time" is often

taken to be about the half-life of the transient term [26]. In the above example,

computing backwards from T = 5 to near / = 0 amounts to resurrecting the second

harmonic after it has decayed by some eight or zzz'zze orders of magnitude ! This is

because at the early times, the solution consists almost entirely of the second harmonic.

Needless to say, such long time backward calculations are hardly possible in physical
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problems where the terminal data are obtained from measurements with low accuracy.

The point of the experiment is to illustrate the possibility of going from the smooth

to the less smooth.

Following the development of Section 4.1, we are led to the auxiliary problem

(5.5) wti = wxxxx + 2kwxx + k2w, 0 < x < zr, 0 < / =  5,

(5.6) w(0, t) = w„(0, 0 = vf(zr, 0 = wxx(tt, 0 = 0,        0 g / g 5,

(5.7) w(x, 0) = 0, w(x, 5) = e5*/2(x), 0 g x ^ zr.

Here k is a positive number to be determined from (4.27). The computations were

carried out in single-precision on a CDC 6600 at the Los Alamos Scientific Labora-

tories. Hence, /2(x) in (5.7) differs from (5.4) at / = 5 by an amount 5, where

(5.8) S««"" X 10~uä; 10"20.

Using M fí¿ 1, we get fe0 = 9.2.

To approximate the spatial operator in (5.5) and the boundary conditions (5.6),

we used the scheme of Section 3.1. In the present one-dimensional time-independent

case, this reduces to the pentadiagonal / X / matrix (H — kl)2, where / is the identity

and H is the / X / tridiagonal matrix

(5.9) H = — {-1,2,-1},       Ax = yq—•

Using the natural ordering along lines / = constant, the fully discrete scheme for

(5.5)-(5.7) may be written as a block tridiagonal system of linear equations. The

matrix of this system is precisely the matrix Q in (2.19) with the ¿n's replaced by

(H — kl)2. We chose At = 1/50 and Ax = zr/40. The resulting system of order

9,711 was solved using the method of matrix decomposition described in [2]. Time

of computation on the CDC 6600 was 4.5 seconds, even though the code incorporated

provisions for inhomogeneous terms in (5.1)—(5.3).

Equation (4.28) bounds the L2 norm of the absolute error. However, since the

solutions of (5.1) decay exponentially, it is the relative error which is significant.

In our example, one can estimate the quantity a(t) of (4.24) by using (4.28) and the

known behavior of the solution (5.4). Making provision for truncation error and

using M — 1, 5 = 10"20, we conclude that a relative error of 10 percent or less should

be attainable as far back as 90 percent of the way from F = 5. Clearly, in view of the

fundamental uncertainty (4.17), one cannot expect good results further back in time.

Two computations of (5.5)-(5.7) were performed, one with k = k0 = 9.2 and the

other with fe = 12. Only the computation with k = 12 is displayed. In Table 1, the

function a(f) of (4.24) is tabulated. We see that a is less than or equal to 10 percent

as far as 94 percent of the way back from T = 5, and less than 3 percent as far as

89 percent of the way back. Since all our estimates are in terms of L2 norms, one may

ask whether the pointwise structure of the solutions is actually being computed.

Figure 1 displays the computed evolution backwards in time of the terminal data,

together with the absolute error (E). The exact solution (5.4), can be obtained by

adding the curve (E) to the curve (*). We have good agreement up to / = .3. At

/ = .02, the relative error is about 73 percent. It is interesting, but very likely fortuitous,

that the qualitative behavior of the solution is still preserved at / = .02.
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T NORM(RE)

0.02 7.28E- 01
0.04 5.35E-01

0.06 4.00E-01

0.08 3.09E- 01

0.10 2.48E-01

0.12 2.09E-01
0.14 1.84E-01

0.16 1.66E-01
0.18 1.53E-01

0.20 1.43E-01
0.22 1.33E-01
0.24 1.25E-01
0.26 1.16E-01

0.28 1.08E-01
0.30 1.00E-01
0.32 9.25E- 02
0.34 8.53E-02

0.36 7.85E-02
0.38 7.21 E-02

0.40 6.62E- 02
0.42 6.06E- 02
0.44 5.54E-02

0.46 5.06E- 02

0.48 4.62E-02
0.50 4.21 E-02

0.52 3.84E-02
0.54 3.50E-02
0.56 3.18E-02

0.58 2.89E-02
0.60 2.63E-02

0.62 2.39E-02

0.64 2.17E-02
0.66 1.97E-02
0.68 1.79E-02

0.70 1.63E-02
0.72 1.48E-02
0.74 1.34E-02

0.76 1.22E-02

0.78 1.11E-02
0.80 1.OIE-02

0.82 9.14E-03

0.84 8.31 E-03
0.86 7.55E-03

0.88 6.87E- 03

0.90 6.25E-03
0.92 5.69E-03
0.94 5.19E-03

0.96 4.73E-03
0.98 4.32E-03

1.00 3.95E-03

T   NORMIREI

1.02 3.62E-03

1.04 3.32E-03
1.06 3.06E-03
1.08 2.82E-03

1.10 2.61 E-03

1.12 2.42E-03

1.14 2.25E-03

1.16 2.10E-03

1.18 1.97E-03
1.20 1.85E-03

1.22 1.75E-03

1.24 1.67E-03

1.26 1.59E-03

1.28 1.52E-03

1.30 1.47E-03

1.32 1.42E-03

1.34 1.38E-03
1.36 1.34E-03

1.38 1.31E-03

1.40 1.28E-03

1.42 1.26E-03
1.44 1.24E-03

1.46 1.22E-03

1.48 1.21E-03

1.50 1.20E-03

1.52 1.19E-03

1.54 1.18E-03

1.56 1.18E-03

1.58 1.18E-03
1.60 1.17E-03

1.62 1.17E-03

1.64 1.18E-03

1.66 1.18E-03

1.68 1.18E-03

1.70 1.19E-03
1.72 1.20E-03

1.74 1.21 E-03

1.76 1.22E-03
1.78 1.23E03

1.80 1.25E-03
1.82 1.26E-03

1.84 1.28E-03
1.86 1.31E-03

1.88 1.33E-03

1.90 1.36E-03

1.92 1.39E-03
1.94 1.43E-03

1.96 1.46E-03
1.98 1.50E-03

2.00 1.55E 03

Table 1

t   normire)

2.02 1.60E-03

2.04 1.65E-03

2.06 1.71 E-03

2.08 1.77E-03

2.10 1.84E-03

2.12 1.91 E-03

2.14 1.99E-03

2.16 2.07E-03

2.18 2.16E-03
2.20 2.26E-03

2.22 2.36E-03

2.24 2.47E-03
2.26 2.58E-03
2.28 2.70E-03
2.30 2.83E-03

2.32 2.97E- 03

2.34 3.11E-03

2.36 3.26E-03
2.38 3.42E-03

2.40 3.59E- 03

2.42 3.77E- 03
2.44 3.96E- 03

2.46 4.16E- 03
2.48 4.38E- 03

2.50 4.60E-03

2.52 4.83E-03

2.54 5.08E- 03
2.56 5.34E-03

2.58 5.61 E-03
2.60 5.90E-03

2.62 6.20E-03

2.64 6.51 E-03

2.66 6.84E- 03

2.68 7.19E-03

2.70 7.55E-03

2.72 7.93E-03

2.74 8.33E-03

2.76 8.75E-03

2.78 9.18E-03

2.80 9.63E- 03

2.82 1.01 E-02

2.84 1.06E-02

2.86 1.1 IE-02

2.88 1.16E-02

2.90 1.22E-02

2.92 1.28E-02

2.94 1.33E-02

2.96 1.40E-02
2.98 1.46E-02

3.00 1.52E-02

T NORMIRE)

3.02 1.59E-02

3.04 1.65E-02

3.06 1.72E-02

3.08 1.79E-02
3.10 1.86E-02

3.12 1.93E-02
3.14 2.00E- 02

3.16 2.07E-02

3.18 2.14E-02

3.20 2.20E-02
3.22 2.27E-02
3.24 2.33E-02
3.26 2.39E-02

3.28 2.45E-02
3.30 2.50E-02

3.32 2.55E- 02

3.34 2.60E-02

3.36 2.64E-02
3.38 2.68E-02
3.40 2.71 E-02

3.42 2.74E-02
3.44 2.77E- 02

3.46 2.79E-02
3.48 2.80E-02

3.50 2.81 E-02

3.52 2.81 E-02

3.54 2.82E- 02

3.56 2.81 E-02

3.58 2.80E-02
3.60 2.79E-02

3.62 2.78E- 02

3.64 2.76E-02

3.66 2.74E-02

3.68 2.72E-02

3.70 2.70E-02

3.72 2.67E-02

3.74 2.64E-02

3.76 2.61 E-02

3.78 2.58E-02

3.80 2.54E-02

3.82 2.51 E-02

3.84 2.47E-02
3.86 2.44E- 02

3.88 2.40E-02

3.90 2.36E- 02
3.92 2.32E-02

3.94 2.28E-02

3.96 2.24E-02
3.98 2.20E-02

4.00 2.16E-02

T NORMIRE)

4.02 2.12E- 02

4.04 2.08E-02

4.06 2.03E-02

4.08 1.99E-02
4.10 1.95E-02

4.12 1.91 E-02
4.14 1.86E-02

4.16 1.82E-02

4.18 1.78E-02

4.20 1.73E-02
4.22 1.69E-02

4.24 1.65E-02
4.26 1.60E-02
4.28 1.56E-02

4.30 1.52E-02
4.32 1.47E-02

4.34 1.43E-02
4.36 1.39E-02
4.38 1.34E-02

4.40 1.30E-02

4.42 1.26E-02
4.44 1.21E-02

4.46 1.17E-02
4.48 1.13E-02
4.50 1.08E-02

4.52 1.04E-02

4.54 9.96E-03
4.56 9.53E-03

4.58 9.09E- 03
4.60 8.66E-03

4.62 8.22E-03

4.64 7.79E- 03

4.66 7.35E- 03
4.68 6.92E-03

4.70 6.49E-03
4.72 6.05E- 03
4.74 5.62E-03

4.76 5.19E-03
4.78 4.75E-03

4.80 4.32E- 03
4.82 3.89E-03
4.84 3.45E-03

4.86 3.02E-03
4.88 2.59E-03

4.90 2.16E- 03
4.92 1.73E-03

4.94 1.29E-03
4.96 8.62E-04

4.98 4.31 E-04
5.00 3.97E- 13

Relative error in the L2 norm as a function of time.
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Figure 1

Backward evolution of slightly perturbed first harmonic in the presence of round-off error.

(*) denotes computed solution, (E) absolute error.
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The computation with fc0 = 9.2 produced similar results. Although the interval

of 10 percent relative error was essentially the same as with fe = 12, the relative errors

were generally larger. The reason for this is the following. With fe0 = 9.2, the matrix

(H — feo/)2 is nearly singular, since 9 is an eigenvalue of the spatial operator in

(5.1)-(5.2). From Theorem 1 of Section 2, with ß = 0, we see that we have linear

decay of the data, and hence of the errors. On the other hand, fe = 12 lies midway

between the third and fourth eigenvalues of the differential operator, and this leads

to a positive-definite matrix (H — kl)2. The resulting exponential decay of the errors,

due to the hyperbolic sines, accounts for the better results.
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