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The Euler-Maclaurin Expansion for the Simplex*

By J. N. Lyness and K. K. Puri**

Abstract. A natural extension of the one-dimensional trapezoidal rule to the simplex

0 á x, ä 1, S2 Xi g 1, is a rule Rf which uses as abscissas all those points on a hyper-

rectangular lattice of spacing h = 1/m which lie within the simplex, assigning an equal

weight to each interior point. In this paper, rules of this type are defined and some of their

properties are derived. In particular, it is shown that the error functional satisfies an Euler-

Maclaurin expansion of the type

Rf - If ~ Axh + A2h* + • ■• + Aph" + 0(hP+1)

so long as fix) and its partial derivatives of order up to p are continuous. Conditions under

which this asymptotic series terminates are given, together with the condition for odd terms

to drop out leaving an even expansion. The application to Romberg integration is discussed.

1. Introduction.    In the theory of Romberg integration, the Euler-Maclaurin

expansion

(1.1) A1""'/- //=  2>a/zzz*+ £¿-"7
5-1

plays a fundamental role. Here, Rlm'a]f stands for an zzz-panel (offset) trapezoidal

rule approximation (see (2.1) below) to

(1.2) If =  [ f(x)dx,
•>0

the quantities aq are independent of zzz, and the remainder term satisfies the order

relation

(1.3) Elm-a]f~Oim-').

In addition, when fix) is a polynomial of degree d or less

(1.4) aQ = 0,        q > d,

and

(1.5) £¿""7=0,       p > d.

Also, in the case where R[m'a]f ¡s a symmetric rule, i.e., the midpoint (a = 0) or

the endpoint (a = 1) trapezoidal rule, it can be shown that
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(1.6) aq = 0,        q odd.

The results given above are very well known and occur implicitly or explicitly in

many papers about Romberg integration such as [3] or [4]. An exhaustive list of such

papers is given in a recent survey article by Joyce [5].

It is a straightforward matter to generalize these results to apply to integration

over an s-dimensional hypercube. With certain self-evident modification of notation,

the difference between product trapezoidal type rule approximations and the integral

over the hypercube is also described by an expansion of type (1.1). The statements

embodying Eqs. (1.3) to (1.6) are also valid in this wider context. In the case of (1.6),

the symmetry required is in each one-dimensional trapezoidal rule which is used to

form the product. The theory for the hypercube is given in Baker and Hodgson [2].

In this paper, we are concerned with obtaining analogous results for the simplex.

To this end, we introduce the simplex weighted product trapezoidal rule. In the case

of the right-angled triangle

A2;   x è 0;    v â 0;    x + v g 1

this rule is of the form

Rl = -,Í  i ei,kf{^^,k-^A,
m  ,rrœ *rrœ \     zzz zzz    /

the 6j,k taking the value 1 if the abscissa is strictly within the triangle and zero if the

abscissa is strictly outside the triangle. The specification of 6iik if the abscissa lies

on an edge of the triangle is discussed in detail below.

We assume that f(x) has a sufficient number of continuous derivatives and derive

analogues of the various results mentioned above. The principal results are derived

in Sections 4 and 5 and are embodied in Theorems 4.29, 5.10 and 5.15. In Section 6,

we discuss the polynomial degree of these rules and we discuss some of the simpler

two- and three-dimensional rules in Section 7. Like the one-dimensional trapezoidal

rule, individually, these rules are not particularly useful in practice. However, they

are powerful when used as the basis of Romberg integration. This is discussed in

Section 8.

2. One-Dimensional Notation and Results. This section is devoted to establish-

ing a basic notation and to restating certain known results which will be employed

later on. We define a one-dimensional trapezoidal rule operator for an arbitrary

interval [a, b] as follows:

(2.1) R[ra][a, b)f(x) = - ¿   *,/(*,)
ZZZ  ,__co

where

(2.2) Xj - 0 - 1 + ta)/m

and

(2.3) /„ = (1 +«)/2, |«| £ 1.

Essentially, 0, = 1 when a < x¡ < b and 0, = 0 when x¡ lies outside the interval.

To take care of the cases when x¡ lies at a or at b and the special case when b = a
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(and even the case when b < a which is not used subsequently), we define 0, as follows:

sgn(x) = x/\x\,       x ;¿ 0,

(2.4) =0, x = 0,

0, = i(sgn(*¿ - a) — sgn(x, - b)).

In the cases which arise in this paper (a g b), we find

0, = 1,        a < x, < b,

6i = \,        x¡ = a < b or a < b = x¡,

0, = 0,        a = b,

0, = 0,       otherwise.

(2.5)

We shall write

(2.6) R[ma][a,b]f = R[xma][a,b]f(x)

and

(2.7) Rim.a]j = Äi».«i[0> jy

in cases where no confusion is likely to arise. This notation is entirely consistent with

the notation used in previous papers [6]. However, the superscript zzz has geometrical

significance only as an inverse step length

(2.8) m = 1/h

and corresponds to the number of panels only in the case that the interval [a, b]

happens to be of unit length.

In a corresponding manner, we define

(2.9) Ix[a, b]f(x) = I(a, b]f =   f  fix) dx.
Ja

In the sequel, we require the generalization of the Euler-Maclaurin summation

formula given in (2.10) below. This is proved in Lyness [6, p. 62]. (Note that this is

not simply a scaled version of the conventional Euler-Maclaurin expansion. In this

generalization, the length of the integration interval [a, b] is not an integer multiple

of the spacing l/m between function values.) This is

R[ma][a, b]f - I[a,b]f

(2.10)

where

(2.11)

= g J_ ¡BQita-mb) /(a_>} _ BQita-ma) /(,_1)(fl)j + ^„.„^ ft]/

E¡r-\a, b]f = \ \B°(t° - mb) /<-"(6) - s'{t- ~ ma) /'-"(a)
m    ( pi pi

- jrVfr) *<'■-"*> *j
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Here, the functions Bft) are periodic Bernoulli functions, which have unit period.

Bq(t) coincides with the Bernoulli polynomial Bq(t) in the interval 0 < / < 1, and

takes the value \(Bq(l) + Bq(0)) when / is an integer. We follow the notation used

in Abramowitz and Stegun [1, p. 803 et seq.].

One property of the Bernoulli functions, which is fundamental to the work in

Section 4, is that

(2.12) Bq(x) E CQ-2(-co , co)

but that, for q ^ 1, the (q — l)th derivative of BQ(x) is discontinuous at integer

values of x.

As it is written, the expansion in (2.10) is not in general an expansion in inverse

powers of zzz because the coefficients such as Bq(ta — mb) themselves depend on m.

Because of the complicated character of this dependence, involving derivative dis-

continuities, an asymptotic expansion in inverse powers of zzz cannot be constructed

and so Romberg integration based on Rlm,a1[a, b]f cannot be justified. In the special

case in which a = 0, b = 1, since mb and ma are integers, this dependence on zzz drops

out. Expansion (2.10) then reduces to the conventional Euler-Maclaurin expansion

which is an asymptotic expansion in inverse powers of zzz, and is the basis of Romberg

integration.

3. Product Trapezoidal Rules for the Simplex. We treat an s-dimensional

simplex A, defined by

s

(3.1) A8 :x, ^ 0,        i = 1,2, ■■■ ,s,        £ x, ;g  1.

In two dimensions, this is the right-angled triangle having vertices (1, 0), (0, 0), (0, 1).

If the coordinates of a point satisfy

8

(3.1a) Xi > 0,        i =  1, 2, • • • , s, 22 Xi < 1,
i = l

we term the point an interior point. If the coordinates satisfy (3.1) but not (3.1a),

we term the point a boundary point. We denote the integral of/(x) over the simplex by

(3.2) IA,f =   1    f(xx, x2, ■ ■ ■ , xs) dxx dx2 ■ ■ • dx,.
•'A,

This integral may be expressed in terms of the one-dimensional operators of Section 2

in various ways depending on the coordinate system used and the order of integration.

If one uses the coordinate system (3.1), one finds s ! different orders of integration

are available. For example, in two dimensions one may write

(3.3) IAJ = Ix[0, l]/„[0, 1 - x]fix, y)

or

(3.4) IAJ = /JO, l]/x[0, 1 - y]fix, y).

We are interested in quadrature rules which are natural extensions of the one-

dimensional trapezoidal rule. Relations (3.3) and (3.4) suggest quadrature rules of

the form
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(3.5) RX2f - Rlmiaii[0, lUEi——'IQ. 1 - x]f(x, y),

or

(3.6) R2Xf = Rlvm-a*][0, l]Rlm'a>][0, 1 - y]fix, y).

Both of these rules are referred to subsequently as "basic simplex weighted product

trapezoidal rules." This term is defined below in Definition 3.13.

Applying definition (2.1) we find that

(3.7) Rl2f . -L. ¿   ¿   g,,,/'" 1 + f- , '-' + '-) ,
zzz1zzz2 ,,_„ ,■__„ \        mx m2       I

where d¡,¡ has to be determined from (2.1). The form of 0,,, is

(3.8) 0,,, = 0,0,(0

where

(3.9) 0, = 0, i, 1,

depending on the position of (/ — 1 + /„ ,)/zzz, with respect to the interval [0, 1] and

(3.10) 0,(0=0,1,1,

depending on the position of (j — 1 + ta,)/m2 with respect to the interval

[0, 1 - (i- 1 + /„J/zzzJ.
Clearly, for interior points 0,,, = 1 and for exterior points Bt¡j = 0. However,

for points on the boundary, one can obtain some unexpected values of 0,,,. This is

discussed in more detail in Section 7. For the moment, we remark that in the case

(3.11) mx =  m2 =  m,        („,  = /„, = 0,

the rules Rx2f and R2xf are actually different from each other. The respective weighting

factors 0,, j are listed in Table 7.6. However, this inconvenience does not always occur,

even if boundary points are involved. If in place of (3.11), we assign

(3.12) zzzi = zzz2 = zzz,        ta, = tai = I,

then RX2f and R2lf given by (3.5) and (3.6) are identical. This rule has points having

weighting factor \ on the boundary x + y = 1.

Definition 3.13. A basic simplex weighted product trapezoidal rule for the

s-dimensional simplex A, is a sum of function values of the form

«¿r — 'lO, l]Rl7a°][0, 1 - xx]Rl:'a'][0, 1 - xx - x2]

(3.13) r- ,.,     -,

... Äi-..-.i^0> ! _  22XijfiXuXí, ... ,x.)

or a similar sum in which the variables xx,x2, • ■ ■ ,x, are permuted in the rule operators

(but not in the function arguments). Here, A, is defined by (3.1) above and the con-

stituent one-dimensional trapezoidal rule operators are defined by (2.1) above.

The basic simplex weighted product trapezoidal rule Rf enjoys the following properties:

(1) All abscissas lie on a rectangular grid which includes points of the form

('a, + kx)/mx, ita¡ + k2)/m2, ■■■  ,    (fa, + k,)/m„
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where /c¿ are positive or negative integers or zero. (The values of /„,. = (a¡ + l)/2

and zzz¡ are specified in (3.13).)

(2) The weight attached to each abscissa is

ek/imxm2 ••• m.)

where 8k = 1 if the point is strictly inside A, and 0* = 0 if the point is strictly outside

A..
(3) The value of 8k when the point is on the boundary of A, is determined from

(3.13) and (2.1) and (2.4). However, it may take only one of the 5 + 2 values

(3.14) 0=1, 1/2, 1/4, ••• , 1/2"    or    0.

Some examples of basic simplex weighted product trapezoidal rules in two and

three dimensions are given in Section 7. It appears that they are not usually symmetric

and that there are other more natural rules which satisfy properties (1) and (2) but

not property (3). We refer to these simply as follows.

Definition 3.15. A simplex weighted product trapezoidal rule Rf is a sum of

function values satisfying properties (1) and (2) above. An example is the symmetric

sum

(3.16) Rsf = è(fl12/ + R2if)

defined by (3.5) and (3.6) above with zzz! = zzz2 = m; tai = tai = 0 as in (3.11). This

rule is not basic as it does not satisfy property (3) and cannot be expressed in form

(3.13). However, it does satisfy properties (1) and (2) and is in addition symmetric

in the interchange of the x and y coordinates.

Finally, we remark that our present interest in basic rules derives solely from the

circumstance that we can prove our results directly and generally for these rules.

Once this is done, it is sometimes possible to use these results to derive the corre-

sponding results for the more general rules which do not satisfy property (3). This

approach is employed in Section 7.

4. An Euler-Maclaurin Expansion for A,. We are concerned here with deriving

the Euler-Maclaurin expansion for the basic simplex weighted product trapezoidal

rule over an ¿-dimensional simplex. We carry out the derivation for the case 5 = 3

only. The method generalizes in an obvious way. We therefore investigate the dif-

ference between the rule sum

(4.1) Rf = i?i""a,1[0, l]R[„m'a'][0, 1 - x]Rlr°'][0, 1 - x - y]fix, y,z)

and the integral

(4.2) hj = Ix[0, l]/,[0, 1 - x]IA0, 1 - x - y]fix, y, z)

which the rule sum (4.1) is supposed to approximate.

In this paper, we shall assume that /(x) and all its partial derivatives of total order

p or less are continuous in all variables within and on the boundary of the simplex A,.

We are interested principally in the case in which the spacing h = 1/zzz is the same in

each direction, that is

mx =  m2 = m3 = zzz.
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However, the derivation is marginally more general and allows an assignment of

the form m3 = k32m2; m2 = k2Xmx, where k32, k2x are integers. The quantity k3X =

k32k2X = m3/mx also occurs in the result.

The statement that a term is Oirn E) is taken to mean that it is 0(m¡v) where i may

be 1,2 or 3. A situation is implied in which the values of m( become infinite in a manner

in which k32 and k2X remain constant. We commence by applying (2.10) to form an

expansion for

(4.3)

This gives

<p(x, y) = R
[m3 , as]

[0, 1 — x — y]f(x, y,z).

(4.4)

where

<f>(x, y) =   22co,(x, y)/mV + Cp(x, y)/mv3,
«>-0

x, y)=  f
Jo

(4.5)

CoC

c„ix, y)

fix, y, z) dz,

Bq,jta, - m3jl - x - y)) ¿T-1

-qll ¡¡^ KX' y' Z)

Bq,jta,) ó""

-qJ^d^KX'y'Z)
q3 è  1,

and

(4.6) \C,(x, y)\ < K.

The next stage would be to apply the same expansion (2.10) to

^"■•-■[0,1 -x]<p(x,y).

Unfortunately, this is not possible because the function <p(x, y) is not continuous in

the variable y. This is obvious from its definition (4.3). As y is increased, the rule

sum in (4.3) abruptly requires an additional function value. This is reflected in the

coefficients cfx, y) as these involve Bernoulli functions BQit) which have discontin-

uities in the iq — l)th derivative at / = 0, 1, • • • . In order to overcome this difficulty,

we synthesize each function ca,(x, y) as follows

(4.7)

where

(4.8)

cQ,(x, y) = aqfx, y) + bqfx, y),

a0(x, y) = c0(x, y);       b0(x, y) = 0,

aQ,(x, y) =
B<,fta, + m3taJm2 + m3taJm1) d

9s!
—x 1(x, y, z)

BqftaJ d'

93!      dz
— fix, y, z)

dz

q3 ^  1,



280 J.  N.   LYNESS AND  K.  K.  PURI

and

\Bq,jta, — m3jl — x — y))      Bq,jtg, + m3taJm2 + m3taJmx)
bqfx, y) =

(4-9)
Xd—xKX,y,2) b   è   1.

This synthesis depends on ax and a2. The functions aqfx, y) have continuous deriva-

tives of order up to p — q3 + 1 and the functions bq3(x, y) contain the inconvenient

discontinuities in the derivatives. In the subsequent part of the summation, each

point (*,, v,) for function evaluation has the form

(4.10)
,        .      (t - 1 + ta,   j - 1 + ta2\
(x¡, y i) = I-,-1-

\ mx m2        I

For these points, the Bernoulli functions in (4.9) are identical and so

(4.11) M*. *) - 0.

Consequently,

(4.12) RI"'a,,[0, l]Rlm°a>](0, 1 - x]bq,(x, y) = 0.

We may then replace cq,(x, y) in (4.4) by its synthesis in (4.7) and, using (4.12), we

find at once that

Rf =   22~ Rlmia'][0, 1]ä'—"■ '[0, 1 - *]«,.(*, y)
(4.13) <""° m3

+ -\Rlmi"l][0, l]Rlm*'a>][0, 1 - x]C,(x,y).

ml

The final term is of order m~* and forms part of the ultimate remainder term. The

functions a„,(x, y) have continuous derivatives up to order p — q3 — 1. We are now

ready to carry out the second stage of the calculation which consists of using (2.10)

to expand

(4.14) R[v"-**]l0,l - x]aq,ix,y).

Proceeding in an identical manner, we find

Rlm'a'}[0, 1 - x]aq,ix,y)

—~ ^-7^r~ >    «3 = o, i, ••• ,p - i.
oj-o      zzî2 m2

Here, Cp-ai,q3(x) is bounded and the other coefficients may be expressed in the form

(4.16) cq,,q,(x) = aq,,q,(x) + bq,.q,ix)

with
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pl—X

aQ.a,(x) =   /      aqfx, y) dy;       /30,<,,(*) = 0,
Jo

(4.17) ««,,<,,(•*) =
Bq,(ta, + m2taJmx) d" '

<?2!      dy"

dy

I aq,(x, y)

V-l-x
q~x aq,(x, y)\

q2 è  1,
1/-0

and

(4.18)

ba,,a,ix)
_ Bqfta2 - m2jl — x)) — Bqfta, + m2ta,/mx)

q¿

d"'-1

dy
q2 = 1.

The function a,,,„,(*) has continuous derivatives of order up to p — q2 — q3 + 2,

while

(4.19) «¿"—''[D, l]bq„qfx) = 0.

Substituting these expressions into (4.13) gives

Rf -  E V Ë  ~~. RÍmiaí]ÍO, 1K....0O
a,-o   q,-o   m2 m3

(4.20)
0.-0   /«3      ZZ12

+ -^""•<"1[0, l]/?¿— "a,[0, 1 - x]Cp(x,y).
m3

The final p + 1 terms here are remainder terms of order mT v. The final stage, that of

evaluating Rxm"a']aa^qfx), is straightforward since there are no complications

arising from a variable interval length. We use (2.10) again to obtain

V-Q3-Q3-1  n C
Dl«.,i.]rn    n ,   ^ V^        "'"«■.«'    1    W-a.-a.,«..«.

(4.21)        ** [0.1K....W-      Z m..     +      „j-..-..

where C
P—«3—030a   '03

02 = 0, 1, • • •  , p — q2 — 1,    q3 = 0, 1, • • •  , p — 1,

is bounded and

(4-22)       «,,.,.„. = ^-¡— <^ <,„.„.(*)

Substituting (4.21) into (4.20), we find

(4.23)

where

- —r=I «„.».to
-1        o\x

P-l   p-ga-1   p-ga-fla-1

*/ = E Z    Z   a......«./'«í,'«;,'«r + Ef,
fla=0       Qj-0 d =-0
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Ef= 22 T -fefrt + S-^7^",a,,[o.i]c,-,..a.w
lA  2^\ ««-o     aa-0    ZZlj ZZZ2   ZZÎ3 a.-0  ZZZ3   ZZJ2

+ —pR[ra'][0, l]Äi—-'[0, 1 - x]CPix,y).
m3

Since the functions and operators occurring here are bounded, we may write

(4.25) \Ef\ < km~p.

To avoid unnecessary complication, we state the theorem for the case

(4.26) zzZi = zn2 = zzi3 = zzz.

We note from the definitions which lead to the constants 0 <,,,„,,„,, namely (4.22),

(4.17) and (4.8), that

(4.27) flo.o.o = hj

and that

(4.28) a8l.aa.a..        <?i + 92 + ft < P,

are independent of zzz. We also note that the remainder term Ef given by (4.24) consists

of the sum of a finite number of terms, each of which is of the form C/mv where

C is bounded. This leads to the theorem.

Theorem 4.29.

(4.29) Rf - /a,/ =   E ¿J™* + Ef,
0-1

where Rf and IAJ are given by (4.1) with mx = zzz2 = m3 = zzz azzzi (4.2) respectively,

the quantities Aq, q = 1, 2, ■ ■ ■ , p — 1, are independent of m and

(4.30) \Ef\ < km~p.

Here

a     a-ei

(4.31) Aq   =     2Lj    2—1 a<¡\ ,aa.a-ai-aa •
ai=0 a3=0

5. The Coefficients AQ. In this section, we look in some detail at the structure

and properties of the coefficients AQ which occur in the Euler-Maclaurin expansion

(4.29). These are functions of the rule parameters ax, a2, ■ • ■ , a, and depend also on

the function /(x). In view of the possible application of this expansion in Romberg

integration, we are particularly interested in the circumstances under which certain

coefficients vanish.

The principal results of this section are given in Theorems 5.10 and 5.15 below.

These state that the expansion terminates if f(x) is a polynomial and that the odd

coefficients are zero if all the constituent one-dimensional trapezoidal rules are

symmetric.

It is difficult to write down a closed expression for ¿„in conventional notation

which is not unduly cumbersome. We content ourselves with a recursive definition

embodied in Eqs. (5.1) to (5.5) below. For notational convenience, we define
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(5.1) m, = i — E*.;      *< = 22kntai;      x° = taj
1-1 ¡-1

where, as before, kH = mjm^ Then, following through the definitions of Section 4

in an s-dimensional rather than a 3-dimensional context, we find the following

recursive definition of aq,,„,,...,„:

(5.2) ¿zL¥i> JC2> ' ■ "  j •*») == jC-^i> x2, • • •  , x¡),

q,\Xx, x2, •*. , Xt-\)•*Qt ,Qt + i . .".as

,, ,  . _  Bqt(Xt) _d_ , v
(J.ia) — . aai+i.ai+a. •••,«,\XX, X2,   ••■   , X¡)

"f     dxt

Bqti\°<)  d°'~l
„ I        ..   oi-l flai + i ,ai + 2. •••,q,\Xi, X2,   •     ■   , Xi)
If     dxt

When q, = 0, this is interpreted as an integral, i.e.,

(5.3b)        «o,a,+1,...,a.(*i> x2, ■ • ■ , xt-x) =   /     aqi+1,...tqfxx,x2, • ■ ■ ,xt) dxt.
Jo

Since \\ = \°x = /„,, the final stage, that having / = 1, may also be simplified. Thus,

/c a\ Bqijta,) [   dQl

Finally,

(5-5) ^a =    E   a«i.«,.•••.«•>
20i-8

the sum being taken over all distinct sets of nonnegative integers qt whose sum is q.

Lemma 5.6.   Iff(x) is a polynomial of degree d, then

a«i.«,.•••,«. = 0    when E 9i > d + s — 1.
í=i

Proof. In this proof, the statement that a function is a polynomial of degree if

assumes its usual meaning when d' ^ 0 and assumes the meaning that it is identically

zero when d' < 0.

Let us suppose that the function aq¡+,...qi(xx, ■ ■ • , xt) is a polynomial of degree dt.

One term in the subsequent function in (5.3a) is obtained by differentiating q, — 1

times and replacing one of the variables xt by a linear sum n, of the other variables.

The other term is obtained in the same way, except that p., is replaced by zero. Thus,

the subsequent function is a polynomial of degree d,.x satisfying

(5.7) dt-x g dt - «?, + 1.

In the case in which q, = 0, examination of (5.3b) yields the same result (5.7).

Thus, if f(x) in (5.2) is of degree d applying (5.7) (s — 1) times shows that the

degree dx of aq2,,„...,q,(xx) satisfies

i

(5.8) dx^ d- £«. + (*-!).
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However, the integrand in (5.4) is zero if

(5.9) dx < qx.

The simple consequence of (5.8) and (5.9) is the statement of Lemma 5.6 above.

Finally, since ¿„ is a sum of these coefficients having E 9« = <«> there follows

Theorem 5.10.    When /(x) is a polynomial of degree d,

(5.10) ¿„ = 0,       q > d + s - 1,

Theorem 5.10 represents a major difference between the theory as applied to the

simplex given here and the corresponding much simpler theory for the hypercube.

In the expansion for the hypercube, (5.10) is replaced by

(5.11) A, = 0,        q > d (hypercube).

The difference arises at the point where the variable limits /x, are introduced (definition

(5.1)). For the hypercube, one would replace n,-(xx, x2, ■ ■ ■ , x¡^x) by ju, = 1. This

has the effect that (5.3a) could be replaced by an integral analogous to (5.4). Then

(5.7) would be replaced by

(5.12) </,_! Si dt — q,        (hypercube).

This adjustment, being necessary only (s — 1) times, accounts precisely for the

discrepancy between (5.10) and (5.11). Incidentally, the formalism given here is quite

unnecessary to derive similar results for the hypercube.

The effect of the constituent trapezoidal rules being symmetric is much easier

to gauge. First, we recall that the odd Bernoulli functions satisfy

(5.13) BQin) = BQ(n + |) = 0,        q odd, n integer.

In (5.3a) if it happens that Bqi(K) = Bqi(^°) = 0, then the function defined by (5.3a)
is zero and so subsequently is o«,,„,,...,„,. One of the many possible cases in which

this happens is covered in the following lemma:

Lemma 5.14.   If2tai is an integer for i = 1, 2, • • • , s, and q, is odd, then

««..«„,••••«. = 0.

In expression (5.5) for AQ, we see that if q is odd, then each term in the sum on the

right must contain at least one odd subscript. Thus

Theorem 5.15. If each constituent rule R[mi'ai] in a basic simplex weighted

product trapezoidal rule is either a midpoint rule (a, = 0) or an endpoint rule (a, = 1),

then

¿„ = 0,        q odd.

6. The Polynomial Degree of R{m)f. A natural question to ask about a quad-

rature rule is whether or not it is exact for /(x) = constant, i.e., is it of polynomial

degree zero? In this section, we show that the basic simplex weighted product trape-

zoidal rules for the simplex are in general not of degree zero, though there are some

exceptions to this statement.

In this section, we restrict ourselves to cases in which zzz = zzz, = m2 = • • • = zzz,.

We denote by R{m)f an s-dimensional basic simplex weighted product trapezoidal
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rule of type (3.13). We note that Theorem 5.10 warns us that we might expect a

situation of this type. This states that when f(x) = 1, i.e., is a polynomial of degree

zero, then Aq = 0 for q > s — 1. Thus,

(6.1) Rim)f- If = ^ + 4+ ••• +--'
m       m

«-i

In the 'symmetric cases' covered by Theorem 5.15, the terms Aq/m11 with q odd drop

out. But there is no other reason to believe that, in this rather special case with

/(x) = 1, any of the terms in (6.1) should be zero. And if they are not zero, then

Rim)f differs from IAj and is not of degree zero.

The results of this section are Theorems 6.4 and 6.6 below. We treat the case

s ^ 3 first. The result in Theorem 6.4 below is proved by means of two lemmas.

Lemma 6.2.   For s 2: 3, Rim)f, m = 1, 2, is not of degree zero.

Proof.   Using properties (2) and (3) of Section 3 and Eq. (3.14), we have

R{m)f = —s E »*/(**),
ZZZ      *„!

where

6k = At/2\        X4 = integer.

Thus, when /(x) = 1, it follows

hj = l/sl;       Rim)f = X/(2zzz)s,    X = integer.

If IAf is to equal A"" 7, then

X = (2zzz)s/s!

must be an integer. If s ^ 3 and zzz = 1 or 2, this is clearly impossible. This establishes

Lemma 6.2.

Lemma 6.3. If R'm)f is of degree zero for s — 1 distinct values of m, then it is of

degree zero for all m.

Proof. Let ¿,, ¿2, ■ • • , ¿,_, stand for the values of the coefficients in the case

that /(x) = 1. Then, if the s — 1 distinct values are mx, m2, • ■ ■ , m,-x, we have

s-l

0 = fl(mi7 - lAJ =  22 AfmU        i = 1,2, ■■■ ,s - 1.
i-i

This is a set of s — 1 linear homogeneous equations in s — 1 unknowns A,- with a

nonsingular coefficient matrix. This has the unique solution Ax = A2 = • • • =

¿,_! = 0. Consequently,

s-l

Rim)f - /a,/ =  E ¿i/m' = 0   a11 m.
i-i

The immediate consequence of Lemmas 6.2 and 6.3 is

Theorem 6.4. For s 2: 3, the basic simplex weighted product trapezoidal rule

R(m'f is of degree zero for at most s — 2 special values of m.

The two-dimensional case requires special treatment. Theorem 5.10 gives, for

/(*) = 1,
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Ä("7 - // =  Ax/m

and Theorem 5.15 shows

(6.5) Ax = 0,        /„, = 0, \    and    ta, = 0, \.

However, a direct evaluation of Ax when fix) = 1 leads to some other cases in which

Ax is zero. We find

Ax = Bx(ta2 + /«,) - Bxitai) - Bxita2)       ifix) = 1; s = 2),

where

Exix) = x - i, 0 < * < 1,

Bxix + 1) = Bxix),        all x,

Bxi0) = 5,(1) = 0.

This leads to

¿i = 0,        ta, = 0,    any ta2,

¿i = 0,        ta, = 0,    any /„,,

¿i = 0,        ta, + ta, = 1.

These include (6.5) above. In fact, these are precisely the cases in which the rule R(17

includes a boundary point, thus making it possible for R(1,f = § = //.

Theorem 6.6. When s = 2, R{m)f is of degree zero if and only if either ta, = 0

or ta, = 0 or tai + tai = 1.

7. Examples of Two- and Three-Dimensional Rules. Up to this point, we have

considered only families of basic rules defined by product one-dimensional operators

of form (3.13). This restriction arose simply because only in these cases is any reason-

ably general method for establishing the Euler-Maclaurin expansion known to us.

In this section, we consider, in certain very special cases, the rules obtained using a

different, intuitive approach. This discussion is limited to 'centre' rules and 'vertex'

rules and is also limited to two- and three-dimensional simplexes.

Definition 7.1.   A two-dimensional vertex rule is one of the form

« m    m— i

(7.1) K(m7 = ir*22 22 Oi.iKi/m, j/m)
m    i=a  i-o

where

(7.2) 0,,,. = 1,       (//zzz, j/zzz) is an interior point.

The main interest centres on the definition of 0,,, when ii/m, j/m) is a boundary point.

Two examples of two-dimensional vertex rules have been considered in the previous

sections. These are

(7.3) R¡ff = R[xmU[0, l]Rlml][0, 1 - x]fix, y),

(7.4) RiTf = Rlml][0, l]R[xml][0, 1 - y]fix, y).



THE  EULER-MACLAURIN  EXPANSION  FOR  THE  SIMPLEX 287

As mentioned in Section 3, these are different from each other. A 'natural' rule may

be obtained using various intuitive approaches. The grid lines divide the simplex into

squares and right angled triangles. If we assign to each square the weight \m2 at

each corner and to each triangle the weights \m2, \m2, \m2 at the right angle vertex

and the other two vertices, we obtain a natural rule R[m)f. It appears that

(7.5) R[m)f = £(«£7 + Riff).

The weight factors 0,,, are listed in Table 7.6.

Table 7.6

D(m) Dim) Dim)

^21 ^12 Ks

interior

edge but not vertex       \ \

vertex (0, 0)

vertex (1, 0)

vertex (0, 1) 0

ill
2

111
4 4 4

1 0 A
4 O g

We make the following remarks:

1. All three rules are of polynomial degree zero. None is of polynomial degree 1.

2. All three have an even error expansion of the form

(7.7) Rim)f - /a,/ =   ¿2/zzz2 + ¿4/zzz4 + • • • .

3. Since

(7.8)

*.™7 = Ri2Í + ^-2Íf(0,l)-f(l,0))
am

= R»i1 - A(/(0, 1) - /(1,0)),
ozzz

the coefficients ¿4, ¿6, • ■ • in (7.7) are the same for all three rules. The coefficient ¿2

differs from one rule to another according to (7.8).

Definition 7.9.   A three-dimensional vertex rule is one of the form

i m    m—i  m — i —i /   • • i    \

(7.9) «W| = AEE   E   M-.X,- K
m   ¿.o iTo   k-o \m    m    ml

where

(7.10) Biijik = 1,        0/m, j/m, k/m) is an interior point.

The previous sections provide six examples. These are 'basic' rules of form (3.13),

namely

(7.11) . R^i.f = Ri:>][o, i]Rx;u[o, i -xt]fi!r"[o, i -*, -*,i/c«i.*s>*«)

where {i, j, A:} is a permutation of {1, 2, 3J. It turns out that these rules are identical

in pairs; thus,

(7.12) /?<">.*/ = R'rl.kf.
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The weighting factors 0,,,-, k corresponding to these rules and to another rule R™ are

listed in Table 7.13. Here, we have used the following abbreviation:

Face* = Face but not edge,

Edge* = Edge but not vertex,

<T = xx + x2 + x3 - I.

Table 7.13

p(m)
-"■231 or R(3m2\

p(m)
-"■312 or/c(™2    R(?2iorR

interior

Face* x¡ = 0

Face* = 0

Edge* x, = x,■ = 0

Edge* <j = xx = 0

a = x2 = 0

a = x3 = 0

Vertex (0, 0, 0)

(1, 0, 0)
(0, 1, 0)

(0, 0, 1)

1

\
i
2

I
4

0
1
-1

i
\

1
8
1
8

0

0

1

I
\
\
1
4

0

\
1
8

0

I
0

1

\

1
Í

4

0
1
8

'J

Dim)
KN

1
I
5"ST

5

5
TB:

i
S
i

Tí
1

Tí
I

Tí

The three product rules have an even expansion

(7.14) *("7 - /*./ =  At/m   + ¿4/zzz4 +

However, they are not of degree zero. In fact,

(7.15) RiTi.kl ~ L\,1
1/12

2 /(x)=  1.

Since this relation is satisfied by all three rules, it is also satisfied by their symmetrized

sum

(7.16) Rlm)f = 1(ä&7 + RïXf + ÄiS.7).

The weighting factors for R[m) are not given in Table 7.13 explicitly.

Because the rule ^"7 does not integrate the constant function correctly, a rule

R^f which does integrate the constant function was constructed. The weight factors

for this rule appear in Table 7.13. The specifications for this rule are as follows:

(1) It should be of form (7.9).

(2) It should be symmetric under permutations of the variables x, y, z.

(3) Points which do not lie on the plane x + y + z = 1 should have the natural

weighting factors 1, J, \, \ according as they are interior, face, edge or vertex points.

(4) Three other weighting factors 6F, 6E, dv are assigned for points on the plane

x + y + z = 1 according as they are face, edge or vertex points.

(5) The rule should be of degree zero.

This led unambiguously to the weights listed under RNf in Table 7.13. Note that

conditions (1) through (4) are satisfied by a three-parameter set of rules including,

for example, the symmetric rule R[m)f. The single condition (5)
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(7.17) RlNm)f = h,f,       f(x) = 1    all integer zzz,

gives three linear equations in the three unknown weighting factors 8F, 6B, 9V.

There are other ways of setting up specifications which lead to the same rule. This

rule is clearly not a linear combination of basic simplex weighted product trapeziodal

rules as defined in (3.15). Thus, it is of interest to investigate its properties to see

whether it has an Euler-Maclaurin expansion and, if it does, whether the coefficients

satisfy Theorems 5.10 and 5.15.

Direct examination of Table 7.13 gives

in   1 0\ nimW DÍm), -._-2n[m,l] i     •._-2D(m.l] i     -._-2D[m,3]
(7.18) RN   f — RX23f = Aizzz   R       <px -\- \2m   R       <p2 + A3zzi   R       <p3,

where

(7.19) \x = X2 = -m — j,       X3 = ss,

and <f>i(t) are one-dimensional functions defined by

(7.20) Vx(t) = fiO, t, 1 - /);   <p2(t) = /(l - t, 0, t);   <p3(t) = /(/, 1 - /, 0).

Since both R(x™lf and i?'"1'11^ have even expansions in powers of 1/zzz, so has R^f.

This establishes that Theorems 4.29 and 5.15 are satisfied also by R^m)f-

To proceed, we invoke the Euler-Maclaurin expansion for Rlm,l](pi. Thus,

(7.21) Ä|W,1V<

where

(7.22) a?

In view of Eq. (1.6),

(7.23) «"> = 0,        q odd.

Also, if f(x) is a polynomial of degree d or less, so is <p,(x) and so

(7.24) «J0 = 0,       q > d.

Collecting these results, we find

(7.25) Ä<T7 - h.1 =  ATI m   + Ai"/m' + ■■■ ,

where

(7.26) A™ = ¿a + E X.«i-a
i-l

and Aq are the coefficients corresponding to R^lf- In view of Theorem 5.10 and

(7.24) above,

(7.27) A[m =0,        q > d + 2.

This establishes that the coefficients corresponding to the rule ^^""7 als0 satisfy

Theorem 5.10.
The two- and three-dimensional 'centre' rules are not nearly so complicated.

In two dimensions, the two rules

a,  / m   + £p_2 <pi,

Bq(l)  f     (0)
= —r- /   <Pi  it) dt.

?!    Jo
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(7.28) R¡ff = Rlx:0][0, 1}R[X:0][0, 1 - *,]/(*,, x2),

with [i, j] = ¡1, 2} or [2, I}, coincide. They assign weighting factors 1 to interior

points and \ to points on the edge x + y = 1. There are no points on the other edges

or at the vertices. This rule is of degree zero.

In three dimensions, all six rules

(7.29) R¡7kf = RÍ7°][0, 1]RÍ:0,[0, 1 - x,]R[x:ol(0, 1 - *, - Xj]fixx, x2, x3)

coincide. There are no boundary points. This rule is not of degree zero, and there is

no obvious 'natural' rule of this type. In fact,

(7.30) R[2if - IA,j = — ir ,       fix) = 1.
zzz

An interesting point to notice is that, when zzz = 1, none of the points lie within

the simplex and so

(7.31) RlHf = 0.

8. Romberg Integration. The natural application of these expansions is to

Romberg integration for a simplex. In general, one chooses a set of mesh ratios

m0, mx,m2, ■ ■ ■ and constructs a Romberg 7-table of the following form:

Tl

(8.1) T°        ^

Tl        T\        Tl

Tl        T\        Tl        T°3

The elements of the first column are obtained from

(8.2) TÍ = R<m'7

and elements of subsequent columns using

(8.3) Tkp =  T%1\ + ßk.AK-l - Tkp-X).

If, as is usually the case, R<m)f — If has an even expansion, then

(8.4) p.k,p =  m2k/im2k+v — zzz*).

If one had chosen a rule for which the expansion is not known to be even, a situation

which is avoided in practice, then

(8.5) \xktP =  mk/imk+P — mk).

In the one-dimensional case in which a standard choice of the symmetric rule Rim-1]f

in (8.2) is made, each element Tp in the table represents an approximation to // of

polynomial degree 2p + 1. This follows quite simply from (1.4) and (1.6) namely,

(8.6) aq = 0,        q > d,

(8.7) aq = 0,        q odd.

In the case of integration over a hypercube using product symmetric trapezoidal



THE   EULER-MACLAURIN  EXPANSION  FOR  THE  SIMPLEX 291

rules, the same result holds. See for example Baker and Hodgson [2].

However, in the case of the ^-dimensional simplex, (8.6) and (8.7) have to be

replaced by

(8.8) ¿a = 0,        q> d + s - I,

(8.9) A. = 0,       q odd.

This leads to the following theorem:

Theorem 8.10. If R{m)f is an s-dimensional basic simplex weighted product

trapezoidal rule of type (3.13) having an even expansion (a, = 0 or 1), the elements

Tkp of the T-table (8.1) defined by (8.2), (8.3), (8.4) are of polynomial degree

D = 2p + 2 - s.

The only significance of a negative value of D is that the result is not exact when

/(x) = constant. A corresponding theorem of little present practical interest applies

to the case where the Euler-Maclaurin expansion is not an even expansion. This is

Theorem 8.11. If Rtm)f is an s-dimensional basic simplex weighted product

trapezoidal rule of type (3.13), the elements Tp of the T-table (8.1) defined by (8.2),

(8.3), (8.5) are of polynomial degree

D = p + 1 - s.

These theorems depend only on the results embodied in Theorems 4.29, 5.10

and 5.15. Since the two-dimensional rule Rlm)f given by (7.5) and the three-dimensional

rule R„m)f given in Table 7.13 have Euler-Maclaurin expansions whose coefficients

have the properties described by these theorems, these rules may be also used as a

basis for Romberg integration and the elements of the T-table have the same degree

as that given in Theorem 8.10. If Romberg integration is to be used, it appears that

the use of R^f rather than R^lf requires marginally more function values. The

only gain seems to be that the first column is exact in the special case in which f(x) =

constant. There is no obvious reason for believing any other elements of the T-table

are more or less accurate in any general case.

So far as comparing R^f and Riff is concerned, the situation, though rather

trivial, does have one point of interest. All elements in the T-table other than the

first column are identical. A moment's reflection indicates that these elements are

actually independent of the values of /(l, 0) and /(0, 1) and /(0, 0) since these occur

in every rule sum with coefficient k/m2 and are automatically eliminated at the first

eliminating stage. So if Romberg integration is to be used, and elements of the first

column are not going to be taken seriously, then the rule

(8.12) R(m)f = Riff - -~ ifiO, 0) + fil, 0))
4ZZ!

gives identical results to Riff, but requires two fewer function values. Using a

criterion based on error per number of function values, a rule which does not integrate

fix) = 1 exactly shows up to advantage over one which does. There are other very

special cases in which a rule which is not symmetric but which has an even expansion

may be useful. Suppose, in three dimensions,

(8.13) fix, y, z) = (fiix, y, z)/ix + y — 1),
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where ip(x, y, z) is easily evaluated and is zero on the plane x + y — 1 = 0. The

rule R(xm23f does not require function values at points for which x + y = 1 and so the

inconvenience of special coding for this case would be avoided.

There is another rather interesting phenomenon which occurs when Romberg

integration is used for the three-dimensional simplex using the centre rule (7.29).

If the mesh sequence zzz0, zzzi, m2, ■ ■ ■ includes

(8.14) m„ = 1,

we find

(8.15) r„° = RlHf = 0,

an approximation obtained at the cost of no function values at all. A natural immed-

iate reaction would be to ignore this and to choose a different mesh sequence. However,

if one considers 7^ as an intermediate quantity which will be combined with Tl to

form 7^, it appears that there is no reason to disregard it at all. In particular, if

(8.16) mx = 2,

we find

(8.17) Tl = Rillf = ifih ï. ï)

and

(8.18) 7? = Tl- |(I2 - Tl) = |/(|, \, I).

Since the point (\, \, |) is the centroid of the tetrahedron A3, this is an approximation

of degree 1 in accordance with Theorem 8.10 and, clearly, a more appropriate approx-

imation than Tl, although the same number of function values is involved. The effect

of the approximation 7"° = 0 in the Romberg table is only to adjust the ratios in which

the other approximations T'0 are combined by the procedure in such a way as to

ensure the proper polynomial degree of the other elements.

9. Concluding Remarks. The principal results given in this paper are very

simple in structure. Essentially they are embodied in only three theorems (4.29, 5.10

and 5.15). These state broadly:

(i) A basic simplex weighted trapezoidal product rule does have an Euler-

Maclaurin expansion.

(ii) This is an even expansion if the constituent rules are symmetric.

(iii) The expansion terminates at a specified point if f(x) is a polynomial of

particular degree.

Only the third result is different in detail from the corresponding result for the

hypercube.

The theory as presented here suffers from several defects. First of all, the basic

elements which are the basic simplex weighted product trapezoidal rules are not

symmetric. Secondly, the proof of these various properties involves an excessive

amount of manipulation of an elementary nature. Thirdly, naturally arising rules

such as /?£"7 are not covered directly by the theory and subsidiary calculations are

necessary to produce precisely corresponding results.

There are, of course, other branches of numerical analysis where the derivation of
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aesthetically satisfying results involves a mass of unpalatable algebra. One branch

is high-order Runge-Kutta integration. Another branch is the one-dimensional

Euler-Maclaurin expansion in the case in which/(x) includes an algebraic or logarith-

mic singularity. In that branch, the initial publication by Navot [8] of results whose

proof was most unaesthetic in 1960-1962 led ultimately to simpler proofs by Lyness

and Ninham [7] and to more general results over a course of ten years. It is the authors'

hope that the same sort of phenomenon may occur here.

However, any easier approach must lead to the same curiosities in the results.

The same exceptions to the general remarks about the degree of a two-dimensional

rule as described in Section 6 must occur. Also, the fact that basic rules which are not

of degree zero may be used in Romberg integration to form approximations of high

polynomial degree must also form part of the theory. In the authors' view, the situation

described at the end of Section 8 in which the element T°0 = 0 is included in theRomberg

J-table epitomizes the difference between s-dimensional quadrature over the simplex

and over the hypercube.
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