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Chebyshev Polynomials Corresponding to a

Semi-Infinite Interval and an Exponential

Weight Factor

By David W. Kammler

Abstract. An algorithm is presented for the computation of the n zeros of the poly-

nomial qn having the property that qn(t) exp (—t) alternates n times, at the maximum value

1, on [0, + <*>)• Numerical values of the zeros and extremal points are given for zz g 10.

1. Introduction. Using well-known arguments from the theory of minimax

approximation (cf. [2, pp. 28-31]), it can be shown that for each n = 0, 1, 2, • • • there

exists a unique polynomial qn of degree zz and zz + 1 real numbers 0 = r„0 < rnX < • • •

< r„„ such that

(1) max{|9ll(0 exp(-f)| : / ¡> 0} = 1,

(2) 9n(r„0 exp(-r„0 = (-1)""*,        k = 0, 1, • • • , zz,

i.e., such that qn is the Chebyshev polynomial of degree n which corresponds to

the semi-infinite interval [0, + <») and to the weight function w(/) = exp(—/).

By means of a zero counting argument, we see that whenever y satisfies the dif-

ferential equation

(3) (Z> + l)"+1v(0 = 0,        / ^ 0, D = d/dt

and the normalization condition

(4) max{|X0l : * è 0} £ 1,

then

(5) |v(/)| ^ 9.(0 exp(-0    for / ^ r„„,

with equality possible only if

(6) v(0 = ±</„(0exp(-0,       / ê 0.

Moreover, it can be shown [1, Theorem 2] that (5) also holds whenever y is any

solution of the more general differential equation

(7) [iD - Xo) • • • (£> - X„)]v(/) =0    for / ^ 0 with - » < X« ,• • • , X. g -1
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which is subject to (4), again with equality possible only if y is given by (6). In par-

ticular, if y satisfies (7), then

(8) \yit)\ è max{|XO|: 0 g s g rnn}q„(t) exp(-/)    for / ^ r...

Thus, the familiar "maximum growth" property [3, Theorem 6, p. 51] of the ordinary

Chebyshev polynomials (associated with the interval [—1, 1] and the weight function

wit) = 1) corresponds to the "minimal decay rate" (8) for any transient satisfying (7).

By using (8) and the particular function yft) = /" exp(—/), / ä; 0, which takes

its maximum at / = n, we conclude that t„„ ^ n, zz = 1, 2, • • • . No simple upper

bound for r„„ (which could replace rn„ in (8)) is presently known, although we con-

jecture that t„„ g 2zz for all zz as is certainly the case for zz ̂  40 (as we have verified

numerically).

2. Numerical Determination of qn. Let zz ̂  1 be fixed and let z = (zx, • • • , z.)

with 0 < zx < • • • < z„ be given estimates of the zeros of qn. We define

(9) <p(z, 0 = IHM -!)■■■ (t/zn - 1)] exp(-0,        t ^ 0,

and seek to adjust the parameters z so as to level <p and thereby force <p to satisfy

the normalization condition (4).

For z = 1, • • ■ , zz, we let tfz) denote the unique point where \<p(z, — )| takes its

maximum on the interval (z,, zi+x) (with zn+1 defined to be +00). Given z, we may

numerically determine tfz) by using standard rootfinding techniques (e.g., bisection

followed by Newton's method) to locate the unique zero of the function

(10) <pfz, t)Mz, t)= it - z,)'1 + •••+(/- zny' - 1,       z, < / < z, + 1

(with the subscript denoting the corresponding partial derivative).

The perturbation h(z) = (/z,(z), • • • , hfz)) is defined in such a manner that

^(z-fh(z), tfz))^i-iy-\        i = 1, ■■• ,n,

to terms of first order in h(z), i.e., such that

n

(11) Viz, tfz)) +   22 ?>.,(*. tfz))hfz)  m   (-1)"-, i  =   1,   • • •   , ZZ.
í-1

Using (9) in (11), we obtain the equivalent system of linear equations

(12) y hfz)        = <pjz, tfz)) -(-I)"-

(   ' ¿Í z,[f,(z) - z,] /,(z)?(z,(i(z))        ' ...

which may be used to compute h(z) when z is given. (Indeed, since any linear com-

bination of the zz functions $ft) = (/ — z/f1, t ^ z,, i = 1, ■ • • , zz, can be expressed

as the ratio of two polynomials with the numerator having degree at most zz — 1,

it follows that no such linear combination can have more than zz — 1 zeros. Thus,

the columns of the coefficient matrix in (12) are linearly independent so that (12)

uniquely determines h(z).)

This being the case, we may begin with a suitable initial estimate, z,, and then

successively compute
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(13) z„+1 = z, + h(z„),       v = 1,2, ••• ,

in hopes that this sequence will converge to the limit < = (fnl, • • • , f„„) where fnl < • • •

< f „„ are the (positive) zeros of qn. The sequence will certainly converge to Ç provided

that Zi is sufficiently close to <. Indeed, using (9), (10), (12) and the implicit function

theorem we see that tfz) and hfz), i = 1, ■ ■ • , zz, are all continuously differentiable

functions of z in some neighborhood of z = < so that we may write

(14) A,.(z)= hfO+ È^UXz* - f„0 + oi\z- C|),       ;=l, •••,».

Since h(z) corresponds to a perturbation about z = ( and since /,(z) is an extreme

point of ip, we have

hfO = 0,       y = l, ... ,«,

?•({.'<«)) =0.        z = 1, ••• ,zz,

and, by making use of these identities in the equation which results when (11) is

differentiated with respect to zk, we obtain

dhfÇ)/dzk =  —8ik,        j, k = 1, • • • , n.

Thus, (14) reduces to

(15) h(z) = Ç - z + oi{z - (I).

Using (13), (15) and considerations of continuity, we conclude that jz„) converges

to C and that {tfz/)} converges to the kth extremal point rnk of (2) for qn provided

that z, is sufficiently close to Ç. (A slight extension of the above argument shows

that the convergence is quadratic in each case.)

3. Numerical Results. Using the above procedure, we have computed the

zeros f.* and the extremal points rnk for zz ̂  40, and we list our (rounded) results

for zz ̂  10 in Table 1. The roots fnt, k = 1, • • • , zz, can be modeled relatively well by

z, =  .308/zz - .026/zz2,

z2 = z./.lll,

zk = zt.,/{l - 2.04/A: + .34A2 - .10/(zz + 2 - *)},        k = 3, • • • , zz,

and for zz ^ 40 about a half dozen iterations are needed to locate the zeros and

extreme points of qn to 16 place accuracy when these initial estimates are used.

Finally, we note that the leading coefficient, an, of qn (which corresponds to the

leading coefficient 2l~" for the ordinary zzth order Chebyshev polynomial) appears

to decay with n in such a manner that

an - (f.. • • • UV' « [a[a + 1/2] • ■ •  [a+in- l)/2]\-1,

a =  .276, zz =  1, 2, • • •  ,

with this approximation being good to within about two percent for zz ¿ 40.
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Table 1

Zeros and Extremal Points for qn

ink Tnk Tnk

.27846

0.14728
1.47277

0.09996
0.94116
2.94440

0.07561
0.69785
2.05438
4.53706

0.06078
0.55591
1.59954
3.33784
6.19974

0.05080
0.46240
1.31541
2.68315
4.72922
7.90880

0.00000
1.27846

0.00000
0.61035
3.00971

0.00000
0.40635
1.75198
4.82719

0.00000
0.30523
1.27074
3.10443
6.68449

0.00000
0.24456
1.00310
2.36634
4.57439
8.56540

0.00000
0.20406
0.83046
1.92781
3.60468
6.12060

10.46217
10

0.04364
0.39600
1.11914
2.25574
3.88966
6.19599
9.65118

0.03824
0.34636
0.97479
1.95077
3.32411
5.18551
7.71882

11.41884

0.03403
0.30782
0.86390

72079
91087
48859
54969
28522

13.20644

0.03066
0.27702
0.77592
1.54056
2.59332
3.96994
5.72826
7.96803

10.88659
15.01021

0.00000
0.17509
0.70924
1.63180
3.00276
4.94116
7.72085

12.37043

0.00000
0.15333
0.61924
1.41689
2.58340
4.18557
6.34983
9.36171

14.28748

0.00000
0.13638
0.54968
1.25311
2.27144
3.64662
5.45012
7.81416

11.03436
16.21148

0.00000
0.12281
0.49426
1.12387
2.02907
3.23820
4.79650
6.77906
9.32290

12.73268
18.14115
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