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Higher Order Accuracy Finite Difference Algorithms

for Quasi-Linear, Conservation Law

Hyperbolic Systems*

By S. Abarbanel and D. Gottlieb

Abstract. An explicit algorithm that yields finite difference schemes of any desired order

of accuracy for solving quasi-linear hyperbolic systems of partial differential equations in

several space dimensions is presented. These schemes are shown to be stable under certain

conditions. The stability conditions in the one-dimensional case are derived for any order of

accuracy. Analytic stability proofs for two and d (d > 2) space dimensions are also ob-

tained up to and including third order accuracy. A conjecture is submitted for the highest

accuracy schemes in the multi-dimensional cases. Numerical examples show that the above

schemes have the stipulated accuracy and stability.

Introduction. The task of solving numerically the equations of gas dynamics

has given rise in the last 25 years to the search for finite difference algorithms of

increasing accuracy and efficiency. The pioneering work in the late 1940's of von

Neumann and Richtmyer [1] on the one-dimensional case led to work of Lax [2],

Lax and Wendroff [3], Strang [4] and Richtmyer [5]. By the mid-sixties, the problem

of constructing stable 2nd order algorithms in two space dimensions was solved by

Lax and Wendroff [6], Richtmyer [7, p. 361] and Strang [4], [8]. Burstein and Mirin

[9] and Rusanov [10] then solved the 3rd order accuracy case while Strang's [4] work

included arbitrary order of accuracy for a linear system in one space dimension.

In the present paper, the following results are presented:

(1) An explicit algorithm that yields finite difference equations that approximate

the quasi-linear hyperbolic system to any desired accuracy and for arbitrary number

of space dimensions.

(2) Analytic stability proofs and criteria of the above-mentioned algorithms in

the case of one dimension, for arbitrary order of accuracy.

(3) Analytic stability proofs in the 2 and d id > 2) dimensional cases up to and

including 3rd order accuracy with sufficient stability conditions.

(4) Numerical examples are carried out for a one-dimensional 2X2 system and

a two-dimensional 2X2 system. The computed values are compared with analytic

solutions and are shown to have the stipulated accuracies (4th order for the 1-D case

and 3rd order for the 2-D case). "
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1. The Basic Algorithm. We are considering the following quasi-linear hyper-

bolic system which is in a conservation law form:

du       A du       sZs dFj(u)
(1.1) T7 =   ¿_ Ajiu)— =   Lj—;,-

at        ~[ oXj        ¡T,    dXj

where the matrices A¡ are the Jacobians of the vectors F, with respect to the vector

u, u G c". d is the number of space dimensions.

Theorems 1 and 2 below present explicit algorithms for obtaining schemes of

accuracy p + 1 and p + 2, respectively, if a scheme of accuracy p is already known.

Using these results inductively will lead to schemes of any desired order of accuracy

in any number of space dimension. The discussion of stability is postponed to a

later section.

Theorem 1. Given Eq. (1.1) above, and given that z"+0" is an approximation

to m(í + a i At) of accuracy p, i.e.,

(1.2) uit + a, At) = z"+°" + 0[(Ar)*+1],

then

vi d j\

(1.3) uit + At) = uit) + Ar £ ß< Z r- F,(2n+ai) + 0[(A?r2]
, = i       ¿-i OXj

where

(1.4) ¿ (3,«* = l/ik +1),       k = 0, 1, ••• ,p.
¿-i

Proof.   From Eqs. (1.1) and (1.2), it follows that

(1.5) ¿ -f- F,(z" + oi) = ¿ «« + a, Af) + 0[(Ar)P+1].

Next, expand the first term on the R.H.S. of (1.5) in a Taylor series up to order p:

(1.6) ¿ uit + a, At) =   ¿ ^^ |fTT «(0 + O[(A0"+1].
dr frí      A:!      dr

Next, substitute (1.6) into (1.5), multiply both sides by 0, and sum on /' from 1 to m:

(1 -7)     £ ß, £ J- F,(z"+ai) =  £ (3,£ ^^- ¿n "(0 + 0[(Ar)"+I].
,»i       ,_] ox, ,,[       t_o     «'      or

Multiply both sides by At and add u to both sides:

m d rs

u+ At £/3, E--F,(z" + of)

(1.8) i=1       "iÖXi

= « + Ê (É tó) ^7pS «(o + oKAtr2].
jt=o \ i-i        /     t!     or

We now require that (1.4) be valid, i.e., £"',, /3,a* = (fc + l)"1, and Eq. (1.8) now

becomes
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« + Ar £ ßi £ ^- F,(z"+"') =u+Z ^tzt^ ¿m «(') + 0[(AOP+21
fTi       ?Ti o*, t.o (« + 1)! ot

= «(< + Ar) + 0[(Arr2]

which proves the theorem.

Several comments are now in order.

(i) Since m is arbitrary, then, for any integer p, there exists a solution of Eq.

(1.4). Specifically, for any p, we may take m = p + 1 and select the a ¡'s a priori to

be different from each other but otherwise arbitrary. Then, Eq. (1.4) becomes a

linear system for the unknowns ß„ ß2, • • • , ßp+,. The determinant of the coefficients

is of Vandermonde's type and, therefore, the system possesses a solution.

(ii) The algorithm expounded by Theorem 1 can easily be extended to the non-

conservation law form case by replacing, in Eq. (1.3), the term dFiizn*"i)/dxi by

the expression Aiizn+ai\dzn+ai/dx1:\. The proof then proceeds in exactly the same

manner as above.

A related though different algorithm, which "upgrades" z"+ " ' not by 1 but by 2

orders of accuracy, is now given.

Theorem 2.    Given Eq. (1.1) and z"+<" as defined in Theorem 1, then

(1.9)

uit + At) = uit) + At £ j- Ff(«) + (Ar)2
;-l ox,-

£ 7, £ -f- U(z"+5i) £ -f F,(Z"+")1 + 0[(Ar)*+3]
,_i       ,_i OXj L ¡=i oxi j

where

(1.10) ¿7i«î= l/(* +D(* + 2),       A: = 0, 1, ••• ,p.

Proof. According to Eq. (1.1), and using the Lax-Wendroff technique [5], the

R.H.S. of Eq. (1.9), except for the 0[iAt)v+3] term, is equivalent to

u + At g + (Ar)2 £ t. ¿ä uit + S¡ At)
(1.11) dt '='      dt

•   ,   3u  .   ,, ,¡ p      v-i á,(Ar) d + «(r)  ,   „,. .B+3,
= « + Ar — + (Ar)2 £ t. £ -s~- -^ïtf- + 0[(Ar)B+3].

ot ,,i       t,o     «!        dr

Substitute (1.10) into (1.11) and thus the total R.H.S. of (1.9) becomes

■ + *(¥) + Lwrk^ + "K4"'*'1 - * + i0 + 0I<A'r,1

which proves Theorem 2.

Theorems 1 and 2 are thus seen to provide systematic methods for building

explicit finite difference schemes which approximate the system (1.1) to any desired

order of accuracy. The realization of these algorithms (in particular that of Theorem 1)

and the stability of the resulting finite difference schemes are discussed in the following

sections.
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2. The One-Dimensional Case. In this section, we shall explicitly construct

finite difference schemes for the problem

£-"»s-£«•>■
The schemes will be built up in such a way that their first variation (see [8]) will

coincide with the trigonometric polynomials of Strang [4]. This representation was

shown, under certain conditions, to have a norm less than unity, and, thus, according

to a theorem due to Strang [4], there was convergence to the solution.

We introduce the following notation:

p/2

(2.2) 1,(1,) =       II       0, - r)/ij - r),
r = -r>/2;r*j

(2.3) dlij) = ~ [/,(„)],=„,

p/2

(2.4) Dlfix) =     £   dlij)fix + j Ax).
l=-p/2

Following Strang [4], it is easy to show that, in general,

(2.5) Dlfix) = iAxY dQf/dxQ + 0[iAxf+1].

However, from considerations of symmetry, for every p odd, we have

(2.6) Dlfix) = iAx)f'ix) + 0[(A*r2].

With these notations, given an approximation of order of accuracy p for u and F,

the realization of Theorem 1 is immediate:

Ar    m

(2.7) rr(r + Ar) =  D°p„u + — £ ßtDZ,F[uÜ + a, At)].

This formulation, however, is inconvenient on two counts—firstly, the formulae

(2.2)-(2.4) demand many more mesh points than either desirable or necessary;

secondly, it is very cumbersome to investigate the stability of (2.7).

We, therefore, resort to a slightly different method, whose formulation for the

even-/? case differs a little from that of the odd-p case.

Theorem 3.

uit + At) = u + ~ £ ßi{ DlF2lV_,(/ + a, At)
¿XX   t =. i

(2.8) + iD¡ -  D\)F2N^it + a¡ At) +  ■■■

+ iDlN-, - Dl^3)F,it + a¡ Ar)) + 0[(Ar)2W+1]

where

(2.9)
F2Ar_¡(tt(r + di At)) =  F2N^Zt + a, Ar)

=  Fit + a, At) + 0[(Ar)2*~! + 1]    for I =  1,3, ■■■  ,2N - I.

Proof.    In order for the expression in the curly brackets in Eq. (2.8) to corre-

spond to the requirements of Theorem 1, we have to show that
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D\F2N.,it + a, At) + (Z>3 -  Di)F8Ar-,(i + a¡ At)

(2.10) +  • • •  + (D2W-i -  DlN.3)F,it + a, At)

=  OLr-iFw-x« + a, Ar) + 0[(Ar)2A,+ 1].

To do that we utilize the fact that, from (2.9),

(2.11) F2k+, - F2.v-, = 0[(Ar)2i+2]    lor every k g N - 1

and we also recognize that Eq. (2.6) implies that

(2.12) dV*>-i - 02<.v-„-3 = OKAí)"-"-1].

Combining (2.11) and (2.12), we may write

JV-2

(2.13) £ [Diw_„_, - Di,w-„-,][F»+i - F2iV_,] = 0[(Ar)2W+1]
k = 0

or, upon rearranging,

JV-2

(2.14) £ [Di,*.*,., - 3i(»-M-»]f»+i = [DLr-i - ßl]F2W_, + OKAr)2""1].

But (2.14) is equivalent to (2.10); thus (2.10) is established and consequently the

theorem is proven.

In a completely analogous manner, we can establish the construction of the

finite difference scheme when p is odd.

Theorem 4.

Ar    '"
uit + At) =  D°2N+,u + — £ ß,{ D\F2Nit + «,• Ar)

¡XX   ¿_i

+ (flj -  D\)F2N.2it +a. At) + ■■■

(2.15) + iD2N-, - Z>2lV_3)F2(r + a, A/)

+ (Z>2/V+1 - O2,v-i)F0(r + a, Ar)}

+ 0[(Ar)2V+2]

where F2lV_, is defined as in (2.9), except that I = 0, 2, ■ ■ • , 2/Y.

Note that if one of the a ¡'s is zero, then, for this value of i, we replace 0,{ •} by

ßiD\N+,Fit). Theorems 3 and 4 are the finite difference realizations of the algorithm

expounded by Theorem 1. Corresponding to Theorem 2, we get the following con-

struction:

Theorem 5.    The scheme

uit + At) = « + ~r d\n+2f
Ax

i /aA2  m
(2.16) + - y—J   £ y,{D22iAF)N + iD¡ -  Ù22)iAF)2N„2 + ...

+ (/32,v_2 - D22N)iAF\\,

where D22NiAF) = £^_.v Ai + k+W2hUk)[Fix + (* + 1) Ax) - F(x + kAx)] and

bliA[k) = — £*__# i/2(0, is accurate to order 2N + 2.
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Here, in analogy to (2.9), A2N't + a,A/) = A2Niu{t + a,Ai)). For an odd order

of accuracy, we have a completely analogous theorem, Theorem 5a (except that the

leading term is D°2N+2u) which will not be written down here.

Theorems 3, 4 (as well as Theorems 5 and 5a) provide us with specific construction

methods of finite difference schemes of any desired order of accuracy. In Appendix A,

we shall show that all finite difference schemes presented so far in the literature in

one and two space dimensions are special cases for the algorithm presented herein.

We shall also present, explicitly in Appendix B, a fourth order accuracy finite dif-

ference scheme.

There remains to investigate the stability of the schemes proposed in the theorems

of this section. According to a theorem due to Strang [8], finite difference schemes

for the quasi-linear case converge to the true solution if their first variation is (linearly)

stable, provided the vector u is sufficiently smooth. For systems like (1.1), where

Ajiu) does not depend on the independent variable, the first variation of the resulting

finite difference scheme corresponds to the finite difference scheme of the linearized

version of (1.1), with the /1,'s taken to be locally constants. For this linear case,

Strang [4] gave finite difference schemes of any desired order of accuracy and verified

their stability. With the aid of the following two lemmas, we shall prove that the

first variations of our algorithms are equivalent with Strang's schemes for the linear

case and thereby their stability is proved.

Lemma I. The schemes presented in Theorems 3, A, 5 use the mesh points j ± k,

k = 0, 1, • • • , N,for schemes of order of accuracy 2N, and use the half mesh points

j ± ik + \), k = 0, 1, ■ • • , N, for schemes of order of accuracy 2N + 1.

Proof. We shall prove Lemma I by induction. If the scheme is of first order

accuracy, it is given by

(2.17) tt"+1 = è(«"+l/a + Hí-1/2) + \X^j('^+1/2 ~ F^-1/2^

and, indeed, it uses the mesh points j ± |. Consider now the schemes resulting from

Theorems 3 and 4. (For schemes resulting from Theorem 5 the proof is similar.)

Under the induction assumption, F2Jy-i (defined by Eq. (2.9)), which appears in

Theorem 3, uses the mesh points j ± (r + $)» r = 0, 1, • • • , Í2N — I — l)/2. A

typical term in the scheme (2.8) is

(2.18) D]F2t/.t

and, according to Eq. (2.4), D\fix) utilizes fix + s Ax), s = —1/2, ■ ■ • , 1/2. It follows

that, in (2.18), we must use the mesh points j ± k, k — (r H- s) = 0, 1, • • • , N.

Similarly, in the odd accuracy case F2 w_, (/ = 0, 2, ■ • • , 2N) of Theorem 4 uses the

mesh points j ± r, r = 0, I, ■ ■ ■ , (2N — l)/2. A typical term in the scheme (2.15) is

(2.19) d!+iF2W-,

and, according to Eq. (2.4), D\+, utilizes fix + s Ax), s = —1/2, ■ ■ ■ , 1/2. It follows

that, in (2.19), we must use the mesh points j ± (A: + \), k = 0, 1, ■ • • , N. This

proves the lemma.

Lemma II.   Let

£   dHj)fix + j Ax) = iAxY Ç-q + 0[(A*r']
Í--P/2 OX
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and

£    mlij)fix + j Ax) = iAxY ~ + 0[iAxf+1 ].
j—p/2 ox

Then m'Aj) = d%j)for every j.

Proof.   Let h'Jj) = d°Jj) ~ >K(J) and, therefore,

P/2

(2.20) £   hUDfix + ; Ax) = 0[(Ax)p+1].
i—v/2

Expand fix + /Ax) in Taylor series to order p, substitute in (2.20) and change the

order of summation to get

^(AxY d'fix)   "A n[(A    +1
L, —,-TJ-    lu   J hij) = 0[(Ax)     ].
r-0       »! "X j=-p/2

The coefficients of every power of (Ax)r must vanish and we get

P/2

(2.21) £   j'hlij) = 0,        r = 0, 1, •■• ,p.
Í--P/2

The system (2.21) constitutes p + 1 equations for p + 1 unknowns, the unknowns

being the h¡íj)'s. The coefficient-determinant of (2.21) is not zero and, hence, /."(/) = 0

which proves the lemma. This leads us to the next theorem.

Theorem 6. The finite difference schemes presented in Theorems 3, A, 5 iand 5a)

are stable provided that

(2.22) iAt/Ax)piA) g,  1    (§)

when the schemes are of even iodd) order of accuracy, except for the 1st order accuracy

case for which (Ar/Ax)p(/1) ^ 1, and where p{A) is the spectral radius of the matrix

A of Eq. VIA).
Proof. The above-mentioned schemes represent, in the linear case with constant

coefficients, the expansion

2'V    / .     \k -.A: 2<V+1   / .     \k -,fc
•r-r   (A*)        .OU t->    (Ax) Ó  U
¿_, —TT- a -r-k   or    i_, ~~rr A T*
t-o    k\ dx írj     k\ dx

and, according to Lemma I, they use the mesh points j ± k (y ± (/c + |)), k =

0, ■ • ■ , N, in the even (odd) order of accuracy case. Therefore, according to Lemma II,

they are identical with the polynomials given by Strang [4] which are, in turn, stable

under the above criterion, Eq. (2.22). This proves the theorem.

Thus, the problem of constructing stable finite difference schemes in the one

space dimension case is solved. Some explicit concrete examples are discussed in

Appendix A.

3. The Two-Dimensional Case. For case d = 2, Eq. (1.1) becomes, upon

setting A, = A, A, = B, F2 = Fand F2 = H,

dt dx dy dx dy
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Both Theorems 1 and 2 enable us to construct finite difference schemes, for this

two-dimensional case, of any desired order of accuracy. The problem is establishing

the stability of these schemes. In this section, we delineate a method for checking

the von Neumann stability condition for finite difference schemes derivable from

Theorem 1 and of order of accuracy p = 1, 2, 3. The schemes of first and second

order of accuracy are well known; the examination of their stability is done here

in a different manner.

Finite difference schemes, for even and odd order of accuracies, which correspond

to Theorem 1, are found by a straightforward extension of Theorems 3 and 4. The

proofs, due to the fact that the conservation vectors F(w) and Hiu) are uncoupled,

are completely analogous to the proofs in Section 2 and will be omitted here; only

the results are quoted below.

Theorem 7.

uit + At) = uit)

+ £ ßZA[~j[D\,xF2N.,it + a, At)

+ (Ö3,x -  D\,x)F2N^it + a, At) +  ■■■

(3.1) + (D2.v-i,x - D\N^,x)F,it + a¡ At)}

+ (~)[D\,,H2N.,it + a, Ar) + (Z>3\, - D¡,y)N2N.3it + a¡ At)

+ ■■■  + iD\N.,,v -  D\N.3,v)H,it + a, At)]

+ OUAt)2N+1],

where

F2N-,it + a¡ Ar) =  F2lv-¡(«0 + a, Ar))

= Fit + a, Ar) + 0[(Ar)2V-!+1],

H2N-¡it + a¡ At) = H2N_xiuit + a, Ai))

= Hit + a< At) + OHAt)2N'l+1],

for I = 1, 3, • • • , 2N — 1, and D\ z and D\tV are defined as in Eq. (2.4) with the ad-

ditional subscripts x and y indicating with respect to which coordinates the function

is translated along the grid, i.e.,

p/2

D\.XF =     £   dliJ)Fix + j Ax, y),
J=-p/2

p/2

Dl.vH =     £    dlik)Hix, y + k Ay).
k = -„/2

For the odd order of accuracy case, we have

Theorem 8.
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«(r + Ar) = - £ D°2fl+,iXiu
¿ ¡-i

+ £ /8<|(^)[D1..F«(í +a, Ar)

(3.2)

+ iD\,x-  D\,x)F2N.2it + ct, At)

+  • • •  + (0ur-i„ -  D\N.3JF2it + a, At)

+ (¿Lr+i.. - Dl^,,x)F0it + a. At)]

+ (^j[<„//2.v(r + at At)   ■

+ iD¡,„ -  DljH2rl.2it + a, At) + ■■■

+ ÍDIm-i., -  DlN.3,u)H2it + a, At)

+ iD\N+,,u -  D\N.Us)H0it + a, At)]

+ 0[(Arr+2],

where here, as in Theorem A, I = 0, 2, • • • , 2N, d = 2, x, = x, x2 = y.

Note again that, if one of the «,'s is zero, then, for this value of i, we replace

ßi{ ■ ) by ßiD\N+i,x¡F(t). Applying Eq. (3.2) to a first order accuracy case iN = 0),

we get the following finite difference scheme:

(3.3)

n+1    _    1 r   n !_n n n 1

Ui,k    —    4LWj + l/2,fc     I      «j-1/2,*     I      »j,jfc+l/2   ~T   Ujtic-i/2\

+ iAt/Ax)[Fni+,/2,k - FZ,/2,k] + iAt/Ay)[Hlk+,/2 - H",k.,/2].

This is the Lax scheme of 1954 [2]. The amplification matrix of the linearized

version scheme, for Ax = Ay and X = At/ Ax, is

(3.4)

and, thus.

(3.5)

(cos - + cos - )/ + 2/X A sin - + B sin —
2 2

ich ú (cosf) / + Ai\A sin + (cosf)/ + 4/XjB sin f

Under the assumption that A and B are normal matrices (this is less restrictive than

the usual assumption that they are symmetric), we have

(3.6)

(cos |)

(cosf),

/ + 2iXA sin -

cos ^1/ + 2;'Xßsin ^

Ct      ,      „ .,      ,    . s       .      oí
cos - + 2i\piA) sin -

cos ^ + 2/Xp(B) sin ^

,    and

where piA) and p(Ä) are the spectral radii of A and B, respectively. Thus, the R.H.S.

of (3.5) is bounded from above by unity provided Xp(/1) fi, \, Xp(ß) g j. The two
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inequalities of the previous sentence provide then sufficient criteria for the linear

stability of scheme (3.3). As far as we are aware, this procedure for establishing

sufficient stability conditions has not been tried previously.

We now start the "boot-strap" operation and go to a second order scheme, by

first solving the constraint of Theorem 1, Eq. (1.4):

(3.7) £p>! = i/(/+ i),      / = o, i.

Here, it is sufficient to choose for (the arbitrary) m, m = 1 and then we get ß, = 1,

<*i = § which leads us immediately to the following two-step scheme:

«f.*
i r n —i— in _i_    n _i_    n i
4LW; + i/2,a ~r Uj-\/2,k ~r Uj,k+\/2 ~r wJifc_i/2j

(3.8)

(3.9)

+ (£H. Fj-\/2.k] + « I .   JlHj.k + i/2       HJih-,/2],

n+l 71 ,      f_Ar \        „+1/2 „n+l/2      .      ,       I _Ar \ „+1/2 ¡jn+1/2      .
»I.t     —    "i.k      1      I   ,      j\.fj + l/2.k ■'"¿-1/2,41   ~T    I    .       I\.nj.k+W2    —    "i.k-1/21-

This is basically the Richtmyer [7] two-step method. The amplification matrix of

this scheme is, again for Ar = Ax, X = At/Ax,

(3.10)

i( A sin^ + ßsin^
)

a   i 0 i
cos - + cos -1 + 2) + 2ix(^sin| + ßsinf)

2 2)

Let M = x4 sin a/2 + Ä sin ß/2, and then

(3.11) G =  / - 2X2M2 + ¡XM(cosa/2 + cos ß/2).

We would like to check whether this G meets the von Neumann condition, i.e., do

we have p(G) ;£ 1. Let m be an eigenvalue of M and p(G) be the largest absolute

value among all the g's, the eigenvalues of G. Using the spectral mapping theorem,

we can write

(3.12) g =  1 - 2X2m2 + ;Xm(cos a/2 + cos ß/2).

Let X2m2 = ß, and obtain, from (3.12),

\g\2 = (1 - 2ß)2 + ßicos a/2 + cos ß/2)2.

The requirement p{G) ^ 1 or, equivalently, \g\ ^ 1 leads to

núl -
cos a/2 + cos ß/2

2

Hence, it is sufficient to require

(3.13) [pi\M)f S  1 - [¿(cos a/2 + cos ß/2)]2

or

(3.14) X2m2 g  1 - [¿(cos a/2 + cos ß/2)]2    for every m.
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At the same time, since we assume that A, B and M are normal matrices,

[pQsM)]2 g X2 \\Asma/2+ B sin ß/2\\2

(315) ^ X2{IMII ||sin«/2|| + ||ß|| ||sin/3/2||î2

g X2[max{||¿||2, ||ß||2l](||Sina/2|| + ||sin/3/2| |)2

= X2[max{p2(¿), p2(F)}](||sina/2|| + ||sin ß/2\\)2.

Designate maxjp(^), p(5)} = pmax, and then combine (3.15) with (3.13) to get

,.1fl ^22     < 1 - ft(cos «/2 + cos p72)]2      ,
(3.16) Xp,n«^ -[sin a/2 + sin ß/lT~ = *    for.a11 "> ^

We thus arrive at the conclusion that a sufficient condition for the stability of (3.10) is

(3.17) XPmax = X[max¡p(/Q, p(B)}] á i

This result agrees in effect with the stability condition obtained by Richtmyer [7],

except that this analysis was restricted to the hydrodynamic equations while here

the hyperbolic system is more general.

Next, we proceed to the 3rd order of accuracy case and begin by solving the set

n

(3.18) £p\a| =  l/(/+ 1), / = 0, 1,2.
¿-i

We have the following system of equations (for n = 2):

ßi + ß2= 1,

(3.19) iS,«, + ßia2 = J,

ß,a2, + ß2a2 = f.

One of the solutions of (3.19) is a, = 0, a2 = f, ß, = \, ß2 = f. Using Theorems 7

and 8 sequentially with Ax = Ay = Ar/X, we get

(3.20)

71 + 1/3   _    i r    n t^      n ji n i^      n .

Uj.k —    4\.Uj + l/2,k   +    Uj-,/2ik   T   Wj,4+1/2   ~+   W;,4-l/2j

r   lMF + 1/2,4 Fj-,/2,k   +    «1,4+1/2 "i.k-i/2i>

<1   in „n+2/3   _       n ,      2ur»+l/3        _     r-n+1/3 ,       „n+1/3 „71+1/3     ,
(3.¿I) Uj.k —    "¡,4     I"   3ALri+l/2,4 ri-l/2.k     I      «j,4+1/2 "i,Jt-l/2J>

71+1      __ 9r     71 1^ 71 1^ 71 1^ 71 -1

"¡,4    —   T21w¿ + l/2,4   "T   "i-1/2,4   "t"   M),4+1/2   T   Wy ,*—1/2J

1    r     71 1 71 1 71 ] 71 .

"    3~2~lU¿ + 3/2,4   "T   «,-3/2,4   T"   "i,4 + 3/2   "T   M,-ti_3/2J

,-¡   T,s _i_    lur"í/' ,-,71+2/3 1        „71+2/3 „71+2/3      -,
(3.ZZ) -f-  4ALrJ + 1/2iJ; —   r¡-i/2,k "T  «¡,4 + 1/2 «1,4-1/2!

~T   8Al(F'+l/2,t F-1/2.Ä;)   +   («V4+I/2 -TÍj,4-I/2)]

2"ïX[F+3/2,4 F-3/2,4   "T   Hj.k + 3/2 «"V, 4-3/2].

In constructing (3.22), we made use of the fact that F0(i + aiAr) is a zeroth order

approximation and, hence, without loss of accuracy, we may replace £>¿Fo+2/3 by

Using standard notation, the amplification matrix for this 3rd order accuracy

scheme is
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G = - (œs- + cos-j - - ^cosT + cosTj

3 J A   •   <*   ,    n   •   ß\        l   J .   ■   3«   ,
rXl A sin -+ - ¿X( ̂  sin - + ß sin -I - — íXl 4 sin — + B sin

(3.23)      +| /x(^sin| + ßsinf)

,   ,   4 n( ,   .   a   ,   „   .   (3\fl fa, ß
1 + - (XI ̂  sin - + ß sin -I   - I cos - + cos -

+ - ¡X( A sin - + B sin

Let

(3.24) 77 = sin a/2,        f = sin (3/2,        M =   /Ir; + ßf.

We can then put G in the form

(3 25)        G = *[0 ~ "2)1/2(2 + "2) +(l ~ r2)I/2(2 + r2)] + 2iXM

- [(1 - r;2)172 + d - f2)'/2](XM)2 - |,(XM)3 + i\iAV* + Bf).

In order to investigate the stability of (3.25), we shall utilize the methods used in

connection with the first and second order schemes. Define

G,  = |[(1 - r,2)1/2 + (1 - f2),/2]

(3.26)
- [d - vY'2 + (1 - f2)1/2](XM)2 + 2r(XA/)[l - f(XM)2],

G2 = \vH - r,2)1/2 + \i\Ar,\

G3 = |f2d - ñW2 + ÜXBf3.

It is clear that

i|G|| ^  IICII + ||G,|| + ||G,||.

Note that the spectral mapping theorem can be applied to each of the matrices

G„ G2 and G3. We next inquire under what conditions the following inequalities

will hold simultaneously:

(3.27) Hdll á 1 - W + ?),

(3.28) ||G,|| ú W,

(3.29) HGsll Û if2,

so that, as a result, ¡|G|| ^ 1. It is easily verified that (3.28) and (3.29) are satisfied

provided that \p(A) ^ f and Xp(ß) ^ f where piA) and p(ß) are, as before, the

spectral radii of A and B. Next, we consider the inequality (3.27):

Kd - ví'2 + (1 - ñw'2)[h - (XA/)2] + 2«(XM)[1 - §(XM)2]| Ú 1 - lin2 + r2)-

Let p = [(XM)]2 where p(XM) is the spectral radius of the matrix \M. We now assume

that XM satisfies the spectral equality theorem \\\M\\ = pi\M). This is true if M

is a normal matrix or even satisfies lesser restrictions. Therefore (3.27) leads to
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(3.30) [(1 - ^ + (1 ~ñ + 2(1 ~ 7'2)1/2(1 ~ f2)I/2][i - * + ^2]

+ [i - iß + iß] ú i - W + ñ + Mv + f2).

Since \ - ß + ß2 £ 0 and since 2(1 - r,2)1/2(l - f2)1/2 g (1 - v2) + (1 - f2),

the following inequality holds:

(3.31) m3 - [(3/4) + (9/8>V + (9/8>2M - (9/256>4 ^ 0,

where r2 = r¡2 + f2. Next, introduce v = mA2. This is legitimate since r2 = 0 means

»7 = f = 0 and, for this case, M = 0 and hence, from (3.25), G = I. The inequality

for v can be put in the form:

(3.32) rViv - 9/8) - (3/4>2 + (9/8> - 9/256 g 0.

Assuming v g 9/8, the first term in (3.32) will only strengthen the inequality. Hence,

a sufficient condition on v is found from

(3.33) v2 - (3/2> + 3/64 ^ 0

from which it follows (recalling that we took v ^ 9/8) that

(3.34) v Ú |[1 - (11/12)172]

satisfies the inequality (3.33) and, hence, also (3.32) for all r's.

Now

M/X2 =  [piM)f =  11 M||2 =   ||^ + ßf||2

(3.35) è i\\A\\ r, +  ||ß|| O2 = hp(^) + ÏP(B)]2

ú pLáv + f)2 è 2plM + ñ,

where pmax is the greater of piA) and p(ß). Thus, using (3.34), we set

(3.36) v = ß/r2 g 2X2pL, ^ 1(1 - (H/12)1/2).

or

XPmM S [|(1 - (ll/12)1/2)],/2~ .12635 •••

Thus, a sufficient condition for stability of the 3rd order finite difference scheme,

Eqs. (3.20)-(3.22), is approximately

(3.37) Xp,mix = KM A), piB)] g §.

From numerical computations, it is apparent that the necessary and sufficient con-

dition is quite a bit more relaxed and, in fact, in our particular example (see Section 5)

the | can be replaced by a |. That Xpmax cannot exceed \ can be verified analytically

directly from (3.25) by setting f = r/.

Note that the 3rd order scheme, Eqs. (3.20)-(3.22) is a "true" 3-step process in

the sense that at each time step (r + Ar/3, t + 2At/3, t + At) one uses information

only from the previous step (and of course from the time t), and, at each time step,

u is evaluated to some specified accuracy. Thus, u"Zk2/3 is of 2nd order accuracy.

When we go to higher accuracies, the resulting finite difference schemes are more

complex in the sense that at some intermediate step there might be several u"ZkaiA',

each one being evaluated to a different accuracy. That this is so in general is quite
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apparent from Theorems 7 and 8. The schemes up to and including/? = 3 are simpler

by virtue of their lower order of accuracy. In Appendix B, we put forth, by a straight-

forward utilization of Theorems 7 and 8, a specific 4th order accuracy finite difference

scheme for any number of space dimensions.

4. The Multi-Dimensional Case (d ^ 1). In anology to Theorems 7 and 8,

the finite difference schemes for d dimensions for even and odd order of accuracy

are, respectively,

uit + Ar) = uit)

+
d   I At\

£ ßi £ hHi^UíWiO + «. Ao
(4.1) -1    í=1 vzu,/

+ iD23,x¡ -  D\,xi)Fj,2N.3it + a¡ At)

+ ■■■ + (flLr-i.., - I&r->..,)Ff.i(f + «. Ar)]

+ 0[(Arr+1],

1   d

uit + At) = - £ D°2N+,,xiuit)
d

+ £ ßi £ (■rL)[öLiF,.,2JV(i + a, Ar)
i-l , = i   \iix,7

(4.2) + (Ö3,x1-ö!,x,)ßi,2W-2(i+a. Ar)+---

+ (D¡ir-i,.i - 0^-3.^)^.2« + a, Ar)

+ (öL+t.xi - DL-i.x,)Fo(r + a, Ar)]

+ 0[(Ar)2Ar+2],

where, in the notation of the 2-dimensional case of Section 3, F,,2N-, = F2N_,;

F2.2N-i = H2N-,; etc. The stability proofs, up to and including 3rd order, follow

exactly the same pattern as in the 2-dimensional case id = 2; x, = x, x2 = y). The

results are

(i)   for 1st order accuracy schemes Xpmax i£ l/d,

(ii)  for 2nd order accuracy schemes Xpmax ̂  l/d,

(iii) for 3rd order accuracy a sufficient condition is

x        < -L rx      i -HI.
Apmax   =    .%   ,   !ApmilxIl-diinension n.  ,

5. Numerical Results. We have applied the results of the previous section to

two cases: A one space dimension problem which was solved with a 4th order accurate

scheme and a two-dimensional system which was solved using a 3rd order accuracy

scheme. In both cases, the numerical results were compared with analytic solutions

and, by halving the grid size, we could show that the indicated accuracy was achieved.

Delineated below are summaries of the result.

(i) The one-dimensional, Ath order accuracy problem. Consider the system
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l/3t;2

0

{      \

(5.1)

or, equivalently,

(5.2)

with the initial conditions

(5.3) K°>
.vix, 0)J

The analytic solution of (5.2)-(5.3) is

■2w/3r;E

-l/v2

1 -à x g 2,

0|i|l,

w/3v

l/v)

l/x1

(5.4) wix, t) = ixit + I))1 v = at + d/x)
1/2

We solved (5.2) numerically, using a 4th order scheme like the one presented in

Appendix B, except, there it is presented for the multi-dimensional case. First, we

used Ax = 1/20 with the stability criterion of At = [Ax/max, |u2|] and got the

following maximum errors:

and

eiw) = max |h>" — wix, t)\ ~ 4 X 10

eiv) = max \v" - vix, t)\ = 5.4 X 10"

When the grid size was halved, i.e., Ax = 1/40, the corresponding errors were e(w) =

2.5 X 10"8 and <?(d) = 3.4 X 10"8. Thus, the expected improvement in accuracy

of (|)4 was achieved.

(ii) The two-dimensional, 3rd order accuracy problem. The system under con-

sideration is

(5.5) +
— w

0

w —wv

Vit        I 0       lj (v j .

with the initial conditions

(5.6) wix, y, 0) = vix, y, 0)

The analytic solution of (5.5)-(5.6) is

I £ x,y £2,

0 < r < 0.3,

ix + yY

w = ix + y + t2)1 t, v= ix + y + 2t)1

First, we ran the problem with the sufficient stability condition found in Section 3

which, in this special case, takes the form (Ax = Ay): (Ar/Ax) g |(l/max, |w|).

When the grid of Ax = Ay = 1/10 was halved, the expected reductions in the errors

were obtained. Even better absolute and relative results were obtained when, in the

stability criterion, we replaced f by |. Since, as mentioned in Section 3, the numerical

coefficient in the stability criterion cannot exceed \, it is apparently indicated that

1 is the true necessary and sufficient condition.
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6. Summary. The schemes (4.1) and (4.2) represent essentially the distilled

results of this paper—they, together with the condition (1.4),

V,   4 1 ,        n   . ¡2N inEq.(4.1),
¿u ß,a, = -,—777 .        k = 0, \, ■ ■ ■  , p,        p = 1

+ [2N + 1     in Eq. (4.2),

provide specific finite difference schemes, of any desired order of accuracy, for solving

the hyperbolic partial differential equations system (1.1), using a minimum number

of grid points. Sufficient and necessary conditions for stability were given in the

one-dimensional case for any order of accuracy. In the multi-dimensional cases,

sufficient and necessary conditions were given for the 1st and 2nd order of accuracy

cases. Sufficient conditions for the 3rd order of accuracy cases were established

analytically. Numerical experiments with a specific 2X2 system seem to indicate

that a necessary and sufficient condition is obtained by considering the case of equal

disturbing Fourier frequencies in all directions, i.e., kx = ky = kz = • • • , etc. In

view of the results in Section 4, we offer the following conjecture:

(a) For 1st order accuracy schemes corresponding to Eq. (4.1) with N = 0 ip = 0)

and Ax, = h (/ =  1, ■ • • , d), a necessary and sufficient condition for stability is

(Ar//0p,„„x iS l/d       (1 ^ d),

where d is the number of space dimensions in the original p.d.e. system.

(b) For all higher order of accuracy cases, corresponding to schemes (4.1) and

(4.2), depending on whether the order of accuracy is even or odd, respectively, a

necessary and sufficient condition for stability is

(Ar//r)p,„„x á l/d       il/2d)

for even (odd) order of accuracy. pm„ = max, p{A¡) as defined in Section 3.

Appendix A. We have already shown in Section 3 (see Eq. (3.3)) that the 1st

order accuracy scheme due to Lax (1954 [2]) is obtained from Theorem 8 by taking

N = 0 and ß, = 1. We have also shown there (see Eqs. (3.7), (3.8), (3.9)) that by

solving £™r,' ßiü, = l/ik + 1), k = 0, 1, we get ß, = I, a, = \ and thus get

the 2nd order scheme known as the Richtmyer two-step method. If instead of m = 1,

we take m = 2, we obtain the 2nd order scheme proposed by Gourlay and Morris

[11].
In order to get a 3rd order accuracy scheme, we have to solve £™-i ß ■«< =

l/ik + 1) with k = 0, 1, 2 (see Eqs. (3.18) and (3.19)). The case m = 2 with a, = 0,
a¿ = f, ßi = \, ßi = f is basically the one due to Burstein and Mirin [9]. They,

however, did not use a staggered mesh, as we do, and, hence, the scheme was unstable

without the addition of artificial viscosity. Using the staggered mesh, one gets in

1 space dimensions the finite difference scheme (3.20)-(3.22) without the vector H;

it is then stable provided that Xp(/1) ^ f. In the 2 space dimension case, we obtain

the sufficient condition of Xpm;ix ¿¡ \. The scheme proposed by Rousanov [10] is

also essentially the one given by Eqs. (3.20)-(3.22).

Had we chosen to also develop explicitly the finite difference schemes which are

implied by Theorem 2 (i.e., utilize the coefficient matrices A, as well as the conserva-

tion vectors F¡), then we immediately get, for the 2nd order case, the Lax-Wendroff

scheme [6] and, for the 3rd order case, a scheme considered earlier by the present

authors (unpublished).
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Appendix B—A 4th Order of Accuracy Finite Difference Scheme. In order to

get a 4th order accurate scheme, we must solve the conditions given in Eq. (1.4)

for k = 0, 1, 2, 3. The smallest system to be solved is for m = 3 and explicitly it is

ft + & + ß3 =  I,

ß,a, + ß2a2 + ß3a3 = \,

ß,a, + ß2a\ + ß3a\ = \,

ßicA + ß2a\ + ß3a3 = \.

A possible set of solutions is a, = 0, a2 = \, a3 = l; ß, = £, ß2 = |, ß3 = £. Using

these values in Theorem 7 with N = 2, we get, for the 2 space dimensions case

n+1,4 n      i      **   I   ^   / i-ti T->n \ / i->» r-n \   I
«, =    U,■   +   -       -  (F+2,4    -    F-2,4)   —   77  (F + 1.4   —    F-1,4)

+ 7    ^ («'1,4+2 — Hj.k-Z) — 77 (",/.4+i — Hj.k-i)

1 \J       ,.-71+1/2,3 wl+1/2,3..      i       '   A _n +1/2.1 .,71+1/2,1..
3        1 '■t+1/2    _    * {.*-•/*)   "T   7   (,^7.4+1/2    —    ■*,.4-I/2)

_   ,,-.71+1/2,1 ,-,71+1/2,In

JA     Ci + 3/¡,i ^)-3/2,4)

I ,„71+1/2,3 ,-.71+1/2,3..      1      2  /-r.71+1/2,1 „71+1/2,1.
"t"        (.«Í.4 + 1/2 •f'1,4-1/2)   "T    „  l'í, 4 + 1/2 fj.k-1/2)

(B.l) _  ,.„71+1/2,1 „71+1/2, U

^4   (.«¿,4 + 3/2 «1,4-3/2)

+     Aj|._71+1,3 j-,71+1,3        v , l^r.71+1,1 £.71 +1,1 .

7 I    iTi+i/î,*  ~   ^i-1/2,4) "T 7 lr/+i/2,*  —   ■''¿-1/2,4)

—  1* J7n+1 ' 1 Cn+1 • ]     \\
ja   (.^¿ + 3/2,4 ^¿-3/2,4/

I ,-„71+1/3 „71+1/3       \    _1_   1    ,„71+1.1 „71+1,1       s
1 (,«¿,4+1/2 «í,4-l/2)   T    R   (,«¿,4+1/2    ~~    "¿,4-1/2.)

,  „71+1,1 „71+1 .1        v        I

(.«¿.4 + 3/2 «¿.4-3/2/   I [    724

where the numerical superscripts indicate the order of accuracy to which that term

is to be calculated. Thus, F"+,/2'3 = F(u"+1/2'3) where w"+1/23 is u evaluated at

t + IAr to 3rd order of accuracy, etc. Quantities at «Ar = r do not carry the ad-

ditional numerical superscript because wn is assumed already to be known to 4th

order accuracy. In order to evaluate the various terms in (B.l), all the following

quantities have to be computed as indicated:

n+1/0,1    _    ]/    n i^       n i^       n i^       n \

Ui,k —    4\Wï + l/2,fc      I      Wj_i/2,fr   ~f~    Mj,k+\/2   "T"   Mj.k-./2)

(B.2) x
+   7   [(F + l/2,4    ~    F-l/2,4)   +    («'¿,441/2    ~~    «'¿,4-1/2)].
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71+1/3,1      _       1,      71 71 I 71 I 71 .

Uj,k —    4"(."¿ + l/2,4   "I"   "¿-1/2,4     1      "¿,4 + 1/2     I      Ujx 4-1/2)

+   7   [(ßj + l/2,4 Fj-l/2.k)   +   («j,4+1/2 «í,4-l/2)ll

,n    ,l\ 71+1/3,2 Ti i        A    ,.,„71+1/6,1 ,-,71+1/6,1.        I        ,„71+1/6,1 „71+1/6, K,
(HA) Uiik —   Uixk   + L(.r, + 1/Ü,*   —    fj-l/2,k)   +   (.«¿,4+1/2   —    «¿.4-1/2)1,

n+1/2,1    _    1,   n 1^      71 1^      r. 1^      71 .

"¿,4 —    4v"¿ + l/2,4   "T   "¿-1/2,4   T   "i,4 + 1/2   "t"   #¿,4-1/2)

T"   7   [(F + l/2,4 F-l/2,4)   "T   («'¿,4 + 1/2 «'¿,4-1/2)],

71+1/2,3    _ 1    TQ,     71 I 71 1 71 1 71 -.

"¿,4 —    32 l"(."¿+l/2,4     1      "¿-1/2,4   T   "¿, 4+1/2   "T~   "¿,4-1/2)

-   ("¿ + 3/2,4   +   "¿-3/2,4   +   "¿,4 + 3/2   +   "¿,4-3/2)]

rVt   Í.1 -L    3\ „pn+1/3,2 e.71+1/3,2.      i       ,„71+1/3,2 „71+1/3,2..,
(.B.D) T   8^H.r¿ + i/2,4  —   ^¿-1/2,4) T  (.«¿,4 + 1/2 «¿,4-1/2))

"T   T6 X [( F; + 1 /2 . k   ~    Fj-1/2.4)   +   («¿,4 + 1/2 "1,4-1/2)]

77   [(F+3/2,4 f¿-3/2,4)   T   («'¿,4+3/2 «¿,4-3/2)l.

/r> -7\ n+2/3,2   _      71       1     21 r/r"*1'3'1 ^,71+1/3,1.    L  / „»+1/3,1 „n + i/3,1..-,
(.*>•') "¿,4 —    "¿,4   T   3<Ul. ^¿ + 1/2.4   —    ^¿-1/2,4)   i"   (.«¿,4 + 1/2   —    «¿,4-1/2)1,

n+1,1    _    1,   n 1 71 i n 1        71 .

,r,  o\ M¿.*        —   ív"¿ + l/2,4   "T   "¿-1/2,4   T"   "¿,4 + 1/2   "T   "¿,4-1/2)
(.0.8)

+ «[(F + 1/2,4 F-1/2,4) +  («¿,4 + 1/2 «¿,4-i/2)j7

n+1,3  _      írn/   n _i       n 1       » _i_     n \
"¿,4 —    32l"s.Uj + l/2.k     I      "¿-1/2,4   "T   "¿,4+1/2     I      "¿,4-1/2)

("¿ + 3/2,4   +   "¿-3/2,4   "T   "¿,4 + 3/2   T   "¿,4-3/2)]

ÍVt   Q~> -1-    3\ IV E-1+2/3,2 pn + 2/3.2.      ,       , „n + 2/3,2 „n+2/3,2,.
(.D.9) +   4XL(.r*í + i/2,4   —    r¿-l/2,4)   i"   (.«¿,4+1/2 «¿,4-1/2)1

"t"    8^[(F + l/2,4 F-l/2,4)   "T    («'¿,4+1/2 «'¿,4-1/2)]

77   [(F + 3/2,4 f¿-3/2,4)   +   («'¿,4 + 3/2 «'¿,4-3/2)]-

Note thus that at r + 5Ai, for example, we compute w"^I/3 twice, once to 1st

order accuracy, w"^173'1 and once to 2nd order accuracy, w"*,!/3'2, etc.

The scheme (B.1)-(B.9) is easily extendable to higher space dimensions. We use

the notation F*,, ,,,„...,ri (j = I, ••■ , *0 to denote the component of the vector

F" (associated with conservation in the x, direction) at grid point v„ ■ ■ ■ ,vd where

d is the number of space dimensions. Thus, in 3 space dimensions, FS,rii„_1/Sir,

corresponds, in our previous notation of Section 3, to //""it_,/2,,. With this notation,

the equation corresponding to (B.3), for example, but for d dimensions takes the

form

1     d
71+1/3,1 _      _}_       ^^      ,71 ■ 71 N

"»,, ■■■,rd   —   1  ,   .Lu  sP,,, •••,ri+l/2, •••,rd     I     "», , • • •, »j-1/2, • ■ ■, vd)
La ,»!

X   -
+  7   2—1  ('i.'i. •••»¡ + 1/2, •••,ii Fi,r,, •••.V/-1/2, '••.nt-

3    ,,!
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Similarly, we can express all the equations (B.l) to (B.9) in a form suitable to d space

dimensions.
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