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Integer Vectors with Interprimed Components*

By Harold N. Shapiro

Abstract. Vectors are considered whose components are positive integers. Such a vector is

called interprimed if the components all contain exactly the same distinct prime factors. A

method is provided for estimating the number of such vectors, all of whose components are

less than a given bound. These estimates resolve a conjecture of Erdös and Motzkin.

1. Introduction. In [1] Erdös and Motzkin raised the question of counting

the number of pairs of integers (a, ¡i), 1 S a á i S x, such that a and b have the

same set of distinct prime factors. It is proposed that one show that this number

is asymptotic to ex, for some constant c. A solution was proposed [2] which contains

an error. Applying different methods, we will provide a solution to Erdös' problem

as well as more general ones.

More precisely, a vector ia„ ■ ■ ■ , am) with positive integral components will be

called interprimed iff the a, all have the same set of distinct prime factors. Letting

Fj[x) equal the number of such vectors with 1 ^ a, g a, ^ • ■ • ^ am ^ x, it can

be shown by elementary methods that

(1.1) Fmix) = cmx + Oixm/(m+u + '),

for any e > 0, cm a constant depending on m. The case m = 2 is that of Erdös' prob-

lem. The details of the proof will be given for the case m = 2. Apart from a certain

amount of notational complexity the method carries over to the general case.

Though the method is not pursued here, it should be noted that these problems

can also be treated by analytic methods. For example, for the case m = 2 one con-

siders the function $(z, w) of the two complex variables z, w defined by

(1.2) *(z, w)=  ¿ ¿ar.AV
r=l     8-1

where ar, = 1 if r and s have the same distinct prime factors, and ar, = 0 otherwise.

The series in (1.2) defines $(z, w) in the region Re z > 1, Re w > 1. It is continuable

analytically into the domain Re(z + 2w) > 1, Re(2z + w) > 1, by the identity

3>(z, w) = Giz, w)f(z + w), where f(s) is the Reimann zeta function and Giz, w)

is given by

Giz, w) = n (i + -—l——)(i - -—)•
V V      (V - Dip" - i)A      ,'W
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Then £rSl £sSl ar, may be approximated by

pc + ï"7\      pc + iT

Air'   Je-iT,     Jc-iT. '    zw

_ .        yic + iïi       pc + tla z

(1.3) —j / / $(z, w)--dzdw
Jc-iT,      Jc-

where c = I + (1/log x), and T, and T2 are appropriate functions of x. The desired

estimation of £rSl 2»s* a" results by deforming the contour of integration in

(1.3) to where c = \ + e.

The author is grateful to Professor J. Barlaz for bringing this problem to his

attention.

2. Notations.   The notations used throughout this note are listed below:

(1) pid) = the Möbius function,

(2) (w, v) = the greatest common divisor of u and v,

(3) \u, v) = the least common multiple of u and v,

(4) sqim) = the squarefree part of m, sq(l) = 1 and for m > I,

sqim) =  Il P
p/m

is the product of the distinct primes dividing m. More generally, for any integer

rè 1, define

sqim, t) =     II    P<
v/m\vX T

that is, the product of the distinct primes which divide m but not r. Clearly, sqim, 1) =

sq(w).

(5) p will always be used as a generic symbol for a prime, and q to denote a

squarefree integer.

(6) Qiz, A) = the number of squarefree integers less than or equal z which are

divisible by A. Clearly, if A is not squarefree, Qiz, A) = 0.

(7) v(A) = the number of distinct prime factors of A.

3. Preliminary Estimates.   Various estimates which are needed are cumulated

in the following sequence of lemmas.

Lemma 3.1.   For any fixed integer A ^ 1,

e   i = n (i - up* + oí2ha))
iSzAt ,A)=1 v/A

«■U>\where the OQZ    ) is uniform in A

Proof. We have

E      l = E   Z   mW)
t ¿z ;it ,A)=l t^z  d/it ,A)

= £mW)     £     i
d/A iij;i=0(mod(i)

= £ nid)z/d + on)
d/A

= 11(1- \/p)z + Oi2HA)).
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Lemma 3.2.    For a fixed squarefree integer A S: 1,

(3.1) Qiz, A) = -j £ ^ id, A) + Oiï^iz/AD

where the 0(2"u,(z/^)1/2) is uniform in A.

Proof.

Qiz, A)= £ £ pid)
tSz/A ;<( .A) =1   d"/t

£        nid)      £       i.
di (¡/A) */';(d,A)-l t£z/Ad* -At, A)-I

It follows from Lemma 3.1 that the inner sum equals

lid - l/p)~2 + Oiz'u'),
p/a Aa

where the error estimate is uniform in A. Using this we get

Qiz, a)=       £      mill (i - -) ~* + °(2"u'))
di(z/A)l^;<.d,A)-l sv/A    \ i>/    ^« /

= n(i-i)^     £     ^ + oir^iz/Ar-).
p/A    \ PI    A  di(.z/A)x'';id,A) -1     "

Since

£ M(¿)/¿2 = o(MA),/2),
<¡>(*M)»/»;(<¡,¿)-l

this in turn yields

(3.2) Qiz, A) =  Il (l - ~) -A     £    -r + 0(2'u,(z/^)1/2).
j>/a  \ pi  A (d.A)-i   a

Finally, noting that

n(i-i) z <3P-n(i-^n(«-ii)
p/A    \ P/    (d,A)=l     " p/A    \ PI   pKA    V i>  /

- ? (• - V1)

(3.1) is an immediate consequence of (3.2).

Lemma 3.3.    Let y and r be given positive squarefree integers such that (7, r) = 1.

Then, for any e, > 0,

(3-3) £ (sq(m, r))"1 = o(^  U
1 £m£z ;sq(m,T)=0(mod 7) N^ p/71"   I    —    L/P

uniformly in y and r. iNote that the O does depend on e,.)

Proof   We have
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£ (sqim, r))-1 = £ i £ 1
límSí;sq(m,r) aO(mod y) aSz ;a=0(mod y) ;(q,t) =1   Q  mÊz;sq(m,T)-fl

flSz ;<zí"0(mod 7) ; (c.t) «1   H   rn%2/Q;aq(m,T)/q

oí
Z        i     z     (f)"

í;í"0(mod 7) ;((¡,t)-1   9  míí/s; sq(m, r)/«   \ Wl   /

^" £ 4;;   £   ̂ :
«Sí;»-O(mod 7) í (a.'-)-l   9 sq(m,T)/<i   Wl

=    Z ^ „1 + "     J-J-    1 1   /„"     J-J-    1 1   /„"
aSí;»»0(mod 7) ;(«,'')-1   H p/a    l l/P        p/r    1 í/P

<— y — n—— n—l—
7 e;C«.T)-l 9 »/«   1   —   l/P     p/7T 1   —   l/P

= oí^tz n i—ttt)
VY        p/7T 1 -  1/p   /

as asserted in the lemma.

The above lemma enables us to obtain

Lemma 3.4.   Let B and r be squarefree integers such that (5, t) =  1. For any

given e2 > 0, there exists a c = c(e2), c > 1, such that

(3.4) £    {B, sqim, r)}"1 = o(^~ U ;-TT^z")
ISmSz \   B       p/t    I   -"   I/P /

uniformly in B and r.

Proof.   We have

£, sq(m, t)       = -   ¿^   -7-r~
isms, B ,£¿Sz     sqim, t)

B   y/B lSmSz;sq(m,r).0(mod 7)   Sq(/M,   T)

Noting that y will be squarefree and (7, t) = 1, we apply Lemma 3.3 to the inner

sum, so that the above is O of

z—\\±- TT-i- <L! V TT—l-- IT-!-
7/B 7       P/7r   1    —    1/p a   y/B   p/7   P        —    1    P/r    1    —    1/p

Z"-„ 1r-^E^n
B    y/B p/r     1    —    1/P

1
èz- (c, + iy(B> nÄvtl ■ "    # I - 1/p"

(where c, = (2" — 1 )~'), and taking c = c, + I yields (3.4).

Lemma 3.5.    Let B and r be squarefree integers. For any given «3 > 0 there exists

a constant c = c(e3) such that
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(3.5) £ {B,sqim)r = o(£-c'<6> Ü ,      \ . .,)
lSmSz;lB,aq(m)l-0(modT) VD~ p/r    1    —    \/p    I

uniformly in B andr, where B = 5(5, r)~\

Prao/.   We have

£ {B,sq(m)}- g -   £    ÍB,sq(m, r)}'1.
ISmiz: IB,sqim) l»0(mod t) TiSmSz

Since 2? is squarefree, (5, r) = 1, and applying Lemma 3.4 to the above yields (3.5).

Note that if B = sq(/) for some integer /, then

Ê = BiB, t)"1 = sq(/, r)

and Lemma 3.5 yields

£ IsqíO.sqím)}-1
lSmgz ; !sq(I) , sq(m) ) =0(mod t)

(3.6)
= of z\\  c'tn«-T» n —1—V

\rsq(/, t) p1/! 1 - i/p«'/

Setting z = I = m2, m = m,, t = 1 in (3.6) and summing over all m2 g z we

obtain

(»Uq(m,))\

z" E    ,  J-

But it is well known [3] that, for every e > 0, c"(,) = 00') so that the above is

oiz- £ -}-)■
\ »TI. sq(ffi2)/

Finally, from (3.3) with r = y = 1, £maSz l/sq(w2) = 0(ze') so that

(3.7) £       {sqdnO, sqOi,)}-1 = 0(z"),

where e5 = e, + e3 + «.

4. The Main Lemma. The results of the previous section are next applied

to prove

Lemma 4.1. Let V è U be given positive numbers, and let S(£/, V, d) denote the

sum

id, {sq(mi), sq(w2)})

Sm2sV;ma>£7

Then, for any given «4 > 0,

(4.1) £
îsm.amTïv;»^!/   m2{sqim,), sq(m2)\

(4.2) £#5([/,  V,d) = OiU~1 + ")
d    a

uniformly in V.

Proof.   We have
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SiU,V,d)è     £     ~ £ r £ {sq(m,), sq(m2)}-\
U<m,ûV   rn2     j/d        l£m, Sma; lBq(mi ) ,aq(ma) l=0(mod t)

and we apply (3.6) to the inner sum on the right, with z = / = m2. This yields that

SiU, V, d) is O of

1 c-w. 1

v&isv ml'" Tji sq(m2, r)  f,\  1 - 1/p"

(4-3) ^ e n, _ 1/b.. e
T/d     p/T     * 1//?        m3>U

»(aq(m; , t) )

m\~" sq(w2) r)

~    c"'0'

= in,—z/r, e1|     /      tj ^     . /     . I —«3
VP        (a,T)-l       I        m,>i/;sq(m..T)=o   "î2

But the inner sum

n,>U;snl.m,,T)-Q   m2 Q m2> U/n ; ■«{«, . t)/o   "l2

9 '   m,>tVa;8q<ra,.T)/<I   ffl2       '   \    U   /

(we assume e3 < 5), and this in turn is

1       1        ^
— „*■   ril~2"    11    1        1 /„<> 11 I        1 /_<>

9 t/ p/«;p,fT    1     —     VP P/T      1     —     1/P

Inserting this in (4.3), we have that SiU, V, d) is O of

(4-4) £ H L      \, .,)     £    -T77.  C/-,+2,s-
T/d   p/t    M VP    /     (a,r)=i 9p/

From this it follows that

£ if s(t/, k. d) = o(ir»- £ ^ £ n (1 - £)" £ ;£)•
¡j     « \ d     a      j/d   p/T   \ P   /      <a,T)-i <7      /

Noting that

£ €; = o(n (1 + -fr)").
(a.T)-l a \   p    \ p        I     I

this in turn is

°(tr'*- H (> + ¿i (> + (>- jr)-Ji + pf')) - «o—).

5. Elementary Proof of (3.1). We will give the details of the proof for the

case m = 2. The general case is completely analogous.

If we consider the integers ^ x such that the distinct primes which divide them

are precisely those which divide the squarefree integer q, these are precisely the

integers of the form qm ¿> x such that sq(m) divides q. Thus we have
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F2ix) =   £ £ 1
q£x   lSmiSSfnîQ|j;8q(mi)/a;8q(m,)/q

-    E £ i
lSmiám2íi   g £x/m? ; QosO(mod ( sq (m. ) ,gq(m3) t)

or

(5.1) F2(x) -       £      Ö(V«2, Mm.), sq(w2)}).

We next split the summation so that

F2(x) = £ + £ Gl— , {sqim,), sq(m2)})

= Si + s2.

We estimate S, first. Applying Lemma 3.2 we have

Si =        £        —;—;—;-;—r;— £ —¡r id, {sqim,), sq(m2)})
ísm.s^sW m2\sqim,), sq(m2)}        ¿     d

_i_ /)[ V1 21,(Uq<",') •,q<ms")[_-_I      |.

\is»,£ís*'/> V/KjlsqÍOTi), sq(w2)}/    /

We note first that since 2"l " = 0(/' ') the O term is less than

, 1/2
^     l/2+<' v^ Wlil/2+e' \-> _•_^       1/2+e'

-.1/2
nm,tn1,i^i-im2\sqim,),sqim2)\) is».sZix>/' {sq(fM,), sq(m2)}

g ¿2/3+.' 22 {sq(m,); sq(m2)}_1

and using (3.7) this is 0(x2/3+<). Thus

,. -.s c v ^ V (¿, (sq(w1), sq(w2)j) 2/3+
(5.2) Si = x ¿_, ~3~        2^        -i—;—7—-,—TT + °(*       )•

d    d    is^iHsw»   w2¡sq(m1), sq(w2)j

Applying Lemma 4.1 with U = xl/3, V = °°; yields that

/« ii V HÍ^) V (rf, {sq(;w1), sq(m2)}) _        2/3+
\.J-J) X   ¿^       2 ¿^ \      1       \ r       \\     ~   V(X ).

d     d    iim,<m,-.m,>z'"   m2\sqim,), sqim2)\

Thus (5.2) becomes

(5.4) S,=cx + Oix2/3+t)

where c is a constant given by

y mW)     y^     (¿, {sq(w1), sq(w2)})

d    d2   ,<,~im,   m2{sqim,), sq(w2)¡

In fact it is the estimate (5.3) which establishes the convergence of the series.

Turning next to S2, we have

52 á       £      Qix2/3,{sqim,),sqim2)\)

c-. 1< x2/3

1 gmi â"iiëî {sqim,), sq(w72)(
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and from (3.7), this is 0(x2/3+f).

Since F2ix) = S, + S2, we have that

F2ix) = cx + 0(*2/3+<)

as asserted in (1.1).
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