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Almost-Interpolatory Chebyshev Quadrature

By K. Salkauskas*

Abstract. The requirement that a Chebyshev quadrature formula have distinct real

nodes is not always compatible with the requirement that the degree of precision of an n-

point formula be at least equal to n. This condition may be expressed as | \d\ \p = 0, 1 g p,

where d - (dx, ■ ■ ■ , d„) with

Mo(w)  ~      , -IT
dj = - 2w A - iM       ; = 1, 2, • • ■ , z!,

ZJ     ,_,

Pj(io), j = 0, 1, • • • , are the moments of the weight function u used in the quadrature,

and xi, ■ ■ ■ , x„ are the nodes. In those cases when | \d\ \i does not vanish for a real choice

of nodes, it has been proposed that a real minimizer of | \d\ |2 be used to supply the nodes. It

is shown in this paper that, in such cases, minimizers of ||rf||,,, 1 â P < <=, always lead to

formulae that are degenerate in the sense that the nodes are not all distinct. The results are

valid for a large class of weight functions.

1. Introduction. In a recent paper [1], a new type of Chebyshev quadrature has

been proposed. The results of numerical computations reported in that paper and

intended to produce the nodes of these formulae show the apparent necessity of

coincident nodes—in this sense, the formulae are degenerate. It will be shown that

this degeneracy cannot be avoided.

The problem in [1] arises from the fact, proved by Bernstein [2], that it is impossible

to find a real zz-tuple (xx, ■ ■ ■ , xn) such that

(1.1) f   1(x)dx = - 22 Kx,)
J-i n  ,•_,

for all / G (P„ when zz = 8 or n > 9. If (1.1) is to hold for (Pn, it must hold for the

basis 1, x, ■ ■ ■ , x" and conversely. This gives the following conditions onx„ • • • , x„:

(1.2) -n 22 x\' =  m„        7=0,1, n.

where

" = Lx'dx
2/0' +1),        j even,

0, j odd.

The first of Eqs. (1.2) is an identity, but the remaining equations cannot be satisfied

by a real zz-tuple if n = 8 or n > 9. The proposal in [1] is, then, to seek real zz-tuples
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646 K.  SALKAUSKAS

f = (fi, fa, • • • , fn), with -1 g fi g f2 g ••• á f» á 1, that minimize the Euclidean
norm of the residual vector d = (dx, • ■ ■ , dn), where

d¡ = - 2-, Xi - m¡, j = I, 2, ■ ■ ■ , n.

For any zz, if there exists a minimizer f, the corresponding quadrature formula

/:
fix) dx = - 22 /(f.) + error

zz JTX

will be said to be almost-interpolatory. The formula will be called degenerate if any

two components of f are equal. For an interpolatory formula, the minimum value

of ||if]|2 is zero. Such formulae exist for zz < 8 and « = 9 and are not degenerate.

If the minimum value of ||c7||2 ¿¿ 0, the formula is not interpolatory. Bernstein's

result states that, for zz = 8 and zz > 9, \\d\\2 cannot vanish; we shall prove that,

in addition, a minimum of \\d\\2 exists and yields only degenerate formulae.

2. Proof of Degeneracy.    Let the mapping G : Rn —* R" be defined by

(2.1) Gx = <

2 ^- 2^ *i
n iZ\

in.

- 22 xl — zzz,

2 v   «- 2^ xi — m„.

By Bernstein's result, Gx = 0 has no roots in Rn when zz = 8 or zz > 9. Let

X =  {x £ R": -1 g xx g x2 g  • • •  ^ xn ^ 1},

and let F be the restriction of G to X. Then, Fx = 0 has no roots in X when zz = 8

or zz > 9, and the proposal in [1] is to find f£I such that ||Ff||2 g ||Fx||2 for all

x£ X.

It will be convenient to view F as a composite mapping F3F2FX, in which F„

maps x El X onto the point a = (ax, ■ ■ ■ , an) whose components are the coefficients

of the polynomial r" + ûit""1 + • • • + an, having xx, ■ ■ ■ , xn as zeros. F2 maps a

onto s = (sx, ■ ■ • , sn), the vector of sums of powers of the zeros, and is given by

Newton's identities

s, + ax = 0,

S2  +  <3iSi   +  2iZ2 0,

(2.2)

î»_, + íz.^-j + • • • + (zz — l)a„_, = 0,

sn + a,s„_! + • • • + an.xsx + «izB = 0.
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Finally, let ztz = (m,, • • • , mn) be the vector of moments. F3 maps s onto d = 2s/zz —

m = Fx. Clearly, F is a homeomorphism from X onto D = FiX). Since X is compact,

so is D. By Brouwer's Invariance of Domain Theorem [3], int(D) = F(int(X)), and

the boundary of D, Ù = F(A"). Now, the original problem is equivalent to minimizing

|| • ||, on D. Since Fx = 0 has no roots in X, 0 (£ Z>. By the continuity of || • ||2, com-

pactness of D, and unimodality of ||• ||2 on R", \\■ \\2 has a minimum only in D.

Let

Xi - |í£ X: xx = — 1 or xn = I; x{ 9* x¡, i 9¿ j},

X2 = {x G .Y: Xi = Xj for some i ^ y'j,

Ö! = FiXx),        D2 = FiX2).

The boundary of X is X = X, W Z2, and D = DXKJ D2. It remains to show that if

fGÖ minimizes ||-||2, then f G Z)2, for, in that case, F"Y G ^2 and corresponds

to a degenerate formula. We will show that every deleted neighbourhood of d G A

contains points d + Ac/such that \\d + Ad\\2 < \\d\\2 and d + A</ G int(Z)).

Consider first the case when zz is even. Let Ad = (0, • ■ • , 0, Adn) G R".

Lemma 1. For every even integer zz > 0 there exists y < 0, depending on n and d,

such that d + Ad G int(D) and\\d + Ad\\2 < \\d\\2 whenever dEDx and Adn G (y, 0).

Proof. Let d G A be fixed but arbitrary. We have s + As = F;fd + Ad) «

(F3_1úf) + As, where As = (0, ■ • • , 0, nAdn/2) G ^"- From Newton's identities,

F2fs + As) = a + Afl, where Aa = (0, • ■• , 0, — ̂AdJ. We can ensure

that F'\d + Ad) = Fxfa + Aa) G int(*) by restricting A¿. To see this, let pfd; •) be
the monic zzth degree polynomial whose zeros are given by F~ 1d, and whose coefficients

are, of course, given by F^F^d. We see that the increment Adn in the dn coordinate of

d results in the addition of the constant — ̂Aíz*„ to pid; ■). Since the zeros of pid; •) are

distinct and are all in [— 1, 1], those of pid + Ad; ■) will be in (— 1, 1) provided that

Azi„ < 0 and \Adn\ is sufficiently small. There are exactly zz/2 local minima of p(d; ■)

in (—1, 1) and p(d; •) has negative values, say «,, •■• , un/2, there. Let 7, =

2 max )zz,, ■ • • , un/2}. If Adn G (71, 0), thenp(d + Ad; ■) has zz real and distinct zeros

in (-1, 1), and so F'\d + Ad) G int(Z), which implies d + Ad G int(D).
Because F''d G Xx,

.        2 ^   „ 2       _J_
dn = - 2u x< ~ mn >-—TT > 0.

n TTi n       n + 1

It follows that \\d\\22 - \{d + Ad\\22 > 0, if, and only if, -AdfAdn + 2dn) > 0. Since
A</„ < 0, we therefore require Adn > —2dn. Let 7 = max)yx, —2dn} < 0. Then

Ad„ G (7, 0) implies d + Ad G int(D) and \\d + Ad\\2 < \\d\\2.
It is somewhat more difficult to prove a similar lemma when zz is odd. For x G P",

define S, : R" - R by S,x = £?-. x\, j = 1, 2, • • • , zz, and let T„ = 5n_, + ßSn

for all real ß. For every constant m, let

P; = {xE R":xx = -1, Sxx = u},

Pi =  {x E Rn:x„ = I, Sxx = ß},

Pl=  {xE R":xx = -l,xn = 1, Sxx = p.}.

We first prove
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Lemma 2.   Let n be odd.

if) If ß = 0, then Tßx ̂  1 for all x E F; W F° U P\, the equality holding only
for a point of X2 when x E Fl, or x E P\; the inequality is strict if x E F°.

(ii) Ifx EP-,VPl,p.^ -l,ß< 0, then 7> > 1.
(iii) Ifx E F; U F°, m è 1, 0 > 0, then Tßx > 1.
Proof,   (i) If 0 = 0, then 7> = S„_,x. When x G F;, S„_,x = 1 + ][)»_2 <"1 = 1

if, and only if, x2 = x3 = • • • = xn = 0. But then ¿t = — 1, and (—1,0, • ■ ■ , 0) G X2.

Otherwise Sn-Xx > 1. The other cases when ß = 0 are as trivial,

(ii) If x E F;, then

n

Tßx = (m + i — x, — • • • — xn)"~l + 22 xT1
i-3

ft

+ ßip.+ 1 - x3- ■■■ - xnf + ß 22 xi + 1 - ß
i-3

= [2 + nßip. + 1)] 22 ■*""' + lower degree terms.
i-3

It follows that the restriction of Te to F~ has a global minimum at a critical point

provided that 2 + zz/3(n + 1) > 0. This is satisfied in view of the hypotheses for (ii).

In order to find the values of Tß at critical points, we use a Lagrange multiplier.

Then

— [TßX - \iSxx - m)] = 0,        j = 2, 3, ••• , zz,
dXj

implies

(2.3a) (zz — I)*"-2 + nßx"~l = X,       / = 2, 3, • • • , n.

The additional equation to be satisfied is

(2.3b) x2 + x3 + • • • + xn = m + 1.

Suppose that x%, ■ ■ ■ , x*, X* is a solution of (2.3a) and (2.3b), and denote the critical

point (—1, x%, ••• , x*) by x*. Then, since ß < 0 and p. + 1 g 0 by hypothesis,

we must have X* ^ 0. Otherwise, Eqs. (2.3a) could only be satisfied by positive

numbers x^, • • • , x*, and this would contradict (2.3b). Multiplying the y'th equation

in (2.3a) by x^ and summing, j = 2, - - ■ , zz, we find, with (2.3b), that

(zz - lXS,_,x* - D + nßiSnx* + 1) = \*0i + 1),

and upon rearrangement,

TßX* = Sn.xx* + ßSnx* =  1 + (1/zz)[X*(m + 1) - ßn + Sn-Xx* - 1] > 1

at every critical point since ß < 0, X* g 0, p + 1 g 0 and S„-Xx* > 1. This is the

required result.

Proofs of the cases when x E Pi and x G P\ are very similar to the above.

We are now ready to proceed with the proof of

Lemma 3. Let Ad = (0, • • • , 0, Aí/„-i, Ad/) and Adn = ßAdn_x. For every odd

integer zz > 0 and every d E Dx, there exist ß and yiß) < 0, depending on n and d,
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such that d + Ad E int(Z)) and \\d + Ad\\2 < \\d\\2 whenever d E A and Adn-X E

(?, 0).
Proof. For any d E D, let pid; ■ ) be the monic zzth degree polynomial with

zeros given by F'ld&nd coefficients given by F2l -F^d as in Lemma 1. Now, s + As =

F3'(d + Ad) = F;ld + nAd/2, so that As = zzAri/2. Using Newton's identities,

we obtain a + Aa = F2fs + As) with

Aa=(o,...,o,-AH.-—T-—)•
\ n — 1     n — 1 n I

It follows that

As„-.   (      sxAs„-x _ Asj,

n — 1 n — 1 n

As„-, / zi - 1    \

« — 1 \ n        I

The effect, then, of the change Ad in d, is to add the linear polynomial Apid; •) to

pid; • ), thereby causing a shift in the zeros of pid; ■ ). The magnitude of this shift

depends on more variables than in the even case.

Let

XI =  {x E Xx:xx =  -l,x„ < 1},

Xx   =  {x E Xx: xx > -1, x„ = 1},

X°x =  {xE Xi-.xx =  -l,x„ = 1).

Clearly Xx - X\ U ^,° VJ AT^. Suppose first that ¿GA and that F'd E X\. Then,
/>(«?; — 1) = 0, pid; 1) > 0, and all zeros of pid; ■) are real, distinct and in [—1, 1).

Now, d + Ad E int(vD) if, and only if, pid; ■) + Apid; •) has zz real, distinct zeros

in (—1, 1). The following conditions are sufficient for the real zeros of pid; ■) +

Apid; •) to lie in (—1, 1):

(i)    Adn.x < 0,

(2.5) (ii)    Apid; -1) < 0,

(iii)    Apid; 1) > -Pid; 1).

To verify, we note that if (i) and (ii) hold, then Apid; ■ ) has positive slope and Apid; • )

< 0 on (— oo, — 1], Also, pid; ■ ) is of odd degree and its smallest zero is — 1. Hence,

pid; ■) + Apid; ■) < 0 on (— œ, —1] and has no zeros there. If (i) and (iii) hold,

then the positive slope of Apid; •) implies that Ap(d; ■) > —pid; 1) on [1, <»). Since

p(d; ■) is monic and its largest zero is less than unity,p(d; ■) > p(d; 1) > 0 on [1, °°).

It follows that p(d; ■) + Ap(d; •) > 0 on [1, <») and has no zeros there either.

Using (2.4), we may rewrite (2.5) as

(i)   Aï,,-, < 0,

(2.6) (ii)    ß < n(sx + l)/(n - 1),

(iii)    A5„_,(l - sx + in - l)ß/n) <in - l)pid; 1).

Ap(d; t)

(2.4)
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In view of the simple relationship between As and Ad, namely Ad = 2As/zz, (2.6)

could be written as a condition on Adn-X and 0, but the introduction of the factor

zz/2 that would result, only complicates the expressions that arise. We therefore

postpone it until later.

Since the coefficients of / in Apid; t) are continuous functions of As„_,, and the

zeros of pid; • ) + Apid; ■ ) are continuous functions of the coefficients, it follows

that, for a given 0 and ¿GA, p(d; •) + Ap(d; •) has only real and distinct zeros

provided that |As„_,| is sufficiently small. Then, assuming (2.6X0 holds, there exists

5,(0) < 0 such that

(2.6) (iv)    8fß) < As„_, < 0

implies that the zeros of pid; ■ ) + Apid; ■ ) are real and distinct.

All of the conditions in (2.6) guarantee that d + Ad E int(D).

Our further objective is to ensure that \\d + Ad\\2 < \\d\\2. Using the definitions

in the statement of this lemma, a straightforward calculation shows that

\\d + Ad\\22 - |IrfU2. = 4 Asn.x[Asn-XH + 02) + 2(s„_, + 0s„ - 1)],

where we have used the fact that </„_, = 2sn_,/zz — 2/zz. This norm-difference is

negative if

(2.7) As„_, >  -2(s„-, + 0s„ - 1)/(1 + 02) =  -2iTßF~1d - 1)/(1 + 02),

since Asn_, < 0 by (2.6)(i). But then, also the right-hand side of (2.7) must be negative,

so that we need

(2.8) TßF~xd - 1 > 0

so as not to contradict (2.6Xi). This is a condition on the choice of 0 and can be

satisfied by using Lemma 2. Then, (2.7) supplies a lower bound for Asn_,; we denote

it by 52(0).

We must now reconcile the conditions expressed in (2.6), (2.7) and (2.8), and,

to this end, we distinguish three cases, assuming right away that (2.6X0 holds, that

is, As„_, < 0:

(i) s, = SxF~xd £j —1. We choose 0 according to (2.6XÜ). Since s, + 1 g 0,

the 0 is negative. Now x = F~ld E F~ with s, g — 1, 0 < 0, so that by Lemma

2(ii), TßX = TfF~ld > 1. Hence, (2.8) holds. In addition, we take

(2.9) 0 > niS.F-'d - l)/(zz - 1).

This means that the coefficient of As„_, in (2.6XÜÍ) is positive. Since pid; 1) > 0,

(2.6)(iii) does not restrict Asn_, < 0. With 0 satisfying both (2.6)(ii) and (2.9), we

choose

0 > As„_, > max{5,(0), 52(0)¡  =  5(0),

and set 7(0) = 25(0)/zz. The lemma is proved for this case.

It will be of importance in the next section to observe that conditions (2.6XÜ)

and (2.9) can be satisfied without choosing 0 outside the interval [—n, 0). This is

because F'ld E X~x, and therefore SxF~id > —zz.

(ii)   s, = SxF~*d G (-1, 1]. Now s, + 1 > 0, and we satisfy both (2.6)(ii) and,
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by Lemma 2(i), (2.8), by taking 0 = 0. The coefficient of As„_, in (2.6XÍÜ) is non-

negative, hence (2.6Xiii) does not restrict As„_,. Consequently, we must choose

0 > As„_, > max{5,(0), 52(0)| = 5(0),   or   0 > Afi„_, > 7(0).

(iii) s, = SXF~ ld > 1. As in the previous case, the choice 0 = 0 satisfies both

(2.6XH) and (2.8). Let

53 = (zz - l)pid; 1)/(1 - sx) < 0.

Now, (2.6XÜÍ), (iv) and (2.7) are satisfied when

0 > As„_, > max{5(0), 53} = 5,

or

0 > Adn.x > 7(0),   7(0) - 25/zz.

We have exhibited a choice of 0 and a 7(0) such that d + Ad E int(D)

and \\d + Ad\\2 < {\d{\2 whenever A</„_, G (t(0), 0), and d E A is such that F~xdE

X\. Furthermore, it is not necessary to use a 0 outside [—zz, 0]. The cases when

F~*d E X°¡ or X\ are dealt with in a similar way, some small changes in (2.6X0,

(ii) and (iii) being necessary.

When all cases are combined, one finds that 0 need not be chosen outside [—zz, «].

We conclude that \\d{{2 cannot attain its minimum value on A, rather this occurs

either in int(A or on D2. We therefore have the

Theorem 1. For zz = 8 and zz > 9 every almost-interpolatory Chebyshev quad-

rature formula is degenerate.

3. Generalizations. It is possible to generalize the preceding results in several

directions. One of these is the consideration of other than constant weight functions

in (1.1).

Let W be the set of all weight functions on [—1, 1] having unit integral. This

normalization is convenient. Let {ufw), /zi(«), ■ • • j be the moment sequence of

uEW, that is,

nfo>) = J   w(x)x' dx,       j = 0, 1, • • • , n.

The normalization implies that u0iw) = 1 for all w E W. For every fixed positive

integer n, we shall use pico) to denote the moment vector iufu), ■ ■ ■ , /z»(u))- Now,

it is required to approximate /i, w(x)/(x) dx by c 22"i-i fix/), where x = (x,, • • ■ , x.)

G X, and the approximation has no error when / G G*». Taking fix) = 1, we find

pfw) = en, and therefore, choose c = 1/zz. Taking fix) = x', j = 1,2, • • • , n, we

again obtain residuals

1 "
d,; = - 22 •*• - /»ii»). J =  1, 2,    ■ ■  , zz,

n ,,,

as the components of the residual vector d E R". The resulting quadrature formula

is interpolatory if there exists x G X such that d = 0. We are thus led to the search

for minimizers of \\d\\2.

Let F„ : X -> Rn be defined by
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í¿*zz -
Mi(w)

Fax =

r 22 x" - Mn(")-
L«   ,-l

As before, F„ is a homeomorphism from X onto D(u)

and w2 G W then

Fu,x = Fa¡x + mÍ^i) — /*(<«>2).

F„(Z). We note that if w,

It follows that a change in weight function results merely in a translation of D(ux)

to D(w2). Suppose that 0 <£ D(ux) and 0 f$ D(u>2), and let F„fX2) = Dfux) be the

"side" of A^i) closest to 0, so that ||c?||2 is minimized on A(«i), corresponding to

a degeneracy. The translation of D(wx) onto Dio>2) can easily be such that now A("2)

is the side of D(w2) closest to 0. This means that the proofs of Lemmas 1 and 3 will

extend to other weight functions only if the choice of weight function is quite re-

stricted. Those proofs are in two parts. The first part shows that d + Ad E int(D)

if \\Ad\\2 is sufficiently small, and is independent of the weight function. The second

part shows that ||g? + Ad\\2 < \\d\\2 and does depend on the weight function. For

zz even, Ad„ < 0 is necessary for the first part of the proof. Then, in the second part,

we obtain \\d + Ad\\2 < \\d\\2 only if Adn > —2dn. This is possible only if dn > 0.

But, on A(w), d„ > 1/zz — Mn(w), and this is the best possible bound. Hence, |\d-\- Ad\\2

< \\d\\2 only if pfa) g 1/zz. In Lemma 1, with the scale change due to normalization,

we have w = |, and pnQ) = l/(zz + 1) < 1/zz.

In the odd case, using the more general F„, we find that

Ad\\   - \\d\
1

As»-JA^O  + 00 + 2(i„_,  + ßsn -  Z10A4» -  Z7/Z„-l(0>))].
n

As in the proof of Lemma 3, As„_! < 0 implies that this norm-difference is negative

if

(3.1) As„ >
•2[s„-! + ßsn — nßp„iw) — npn-fu)]

1 +02

and the right-hand side must then be negative as well, so that we need, as a condition

on 0,

(3.2) s„_! + 0s„ — nßpfu) — np„.fu) > 0.

Inequalities (3.1) and (3.2) are the generalizations of (2.7) and (2.8). We may rewrite

(3.2) as

0M» + ii»-,(co) < TßF'Jd/n.

As in Lemma 3, 0 can always be selected so that TßF'Jd > 1, and (3.2) will be satisfied

if

ßßn(U) + M„_,(co) g   \/n.

Since we may restrict 0 to [—zz, zz], we find when 0 = 0 that
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,*,-,(«) á  1/zz    and    |M,(«)| g [1/zz - pn.xiw)}/\ß\

otherwise. As a 0-free condition on pn-fw) and pfw), we may therefore take

(3.3) /;„_,(") g 1/zz,        |Mn(«)| è \/n   - nn-fw)/n.

If we replace (2.7) by (3.1) and (3.3) holds, then the proof of Lemma 3 can be applied

as it stands to complete the proof of

Theorem 2. Let n and w G W be such that the interpolatory Chebyshev quad-

rature does not exist. If n is even and pfu) g 1/zz, or ifn is odd and (3.3) holds, then

the corresponding almost-interpolatory formula is degenerate.

Another generalization is to minimize H^H,,, 1 g p < °°. When zz is even it is

trivial to extend the argument from Lemma 1, with pfw) g  1/zz, to the /z-norm.

When zz is odd it seems necessary to impose a more restrictive condition than

(3.3) on the weight function. It is sufficient to require that

(3.4) pn-fo>) è 1/«,        M = 0.

With this assumption, we find that f¿„_, > 0 for all d E A(«) = Fa(Xx). If d E

Dfu), F'Jd E X~ and SxF'Jd g -1, then, by Lemma 2,

S.-,f;'(/+ ßSnFZ'd > 1,        V0 < 0.

In terms of the components of d, this is equivalent to

rfB_, + ßdn > \/n - (in-fa),        V0 < 0.

By (3.4), it follows that dn-x -\- ßdn > 0, V0 < 0. Since <4_, > 0, this implies d„

< 0. Now,

\\d + Ad\\i - \\d\\i = \dn-x + Arf„_,r - K_,r + K + ßAdn.x\v - \dn\».

This is negative if

(3.5) 0 > Adn-X > max{-2d„-i, 2dn/ß},

and (3.5) replaces (2.7) in Lemma 3, which now applies verbatim for SxF~'d g — 1.

If SxFZld > -1, we again choose 0 = 0 and then \\d + Ad\\„ - \\d\\„ < 0 if

0 > Aí/„_i > —2dn-x, and this replaces (2.7) in Lemma 3.

If F~Jd E X\, and SlF~1d ^ 1, then Lemma 2 can again be employed to show

that now d„ > 0 while 0 > 0. In this case, a norm-decrease results if

0 > dn-x > max(-2i/„_1, -2djß}.

If SiFl'd < 1, the choices 0 = 0 and 0 > dn-x > —2i/„_, again ensure a norm-

decrease.

When F~Jd E X°x, the lower bounds on Arf„_, are obtained in a similar fashion.

The proof does not extend to the case p = °°.

We combine the even and odd cases in

Theorem 3. Let uG Wbea normalized weight function on [— 1, 1] whose moment

sequence ¡/k,(w)}°°-o bas the property

Hoiu) = 1,   M2í-i(«) = 0.   /*2,(w) g 1/2;',       j = 1,2, ••• .

If for some positive integer n the corresponding interpolatory Chebyshev quadrature
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formula does not exist, then the almost-interpolatory formula defined by a minimizer

of\\Fmx - m(w)IU 1 Ú P < °°, m(w) = (mi(w), • • • , nf")), is degenerate.
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