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A Search Procedure and Lower Bound

for Odd Perfect Numbers

By Bryant Tuckerman

Abstract. An infinite tree-generating "^-algorithm" is defined, which if executed would

enumerate all odd perfect numbers (opn's). A truncated execution shows that any opn

has either some component/?" > 1018, with a even, or no divisor < 7; hence any opn must

be > 10«.

1. Introduction. It is unknown whether any odd perfect numbers (opn's)

exist. For a history, see McCarthy [2]. Kanold [3] gave a lower bound of 1020 for

possible opn's. Muskat [5] showed that every opn must have a divisor p" > 1012.

The present paper is a condensed and clarified version of [6], which was announced

in [7], and submitted to this journal in 1968. The completion of the requested revision

has been delayed until now.

The chief results are:

(I) A "^-algorithm" is given, which defines a countably infinite tree, on which,

if enumerated, every opn (if any) would be recognized at some node.

(II) A finite truncation of the tree was computed, which shows that (1) every

opn must satisfy the known restrictions defined at some one of the truncation-nodes

implied by this tree; (2) every opn must have either (a) some component p" > u =

1018, with a even, or (b) no prime divisor < 7; (3) hence any opn must be > u2 = 1036.

This "1036-tree", occupying 9 pages, has been deposited in the UMT file [8]

(and occurs in an earlier arrangement in [6]). To convey the spirit of that tree and

of the algorithm, an analogous "1016-tree" (based on u = 108), occupying 2 pages,

is included in this paper. Statements about the 1036-tree will typically hold equally

well for the 10ia-tree.

The bound of 1036 has been superseded in a recent paper by Hagis [9]. Nevertheless,

there are enough different approaches in the two papers to warrant the present

publication. For omitted proofs and details, see [6].

2. Notation. Let N, P, Í2 be the sets of all positive integers (n, m, h, d, etc.),

primes (p or q), and opn's, respectively. Let a(p, n) ^ 0 be the multiplicity of p in n,

and let h(p, n) = a(p, n) + 1 à 1. With Sylvester, we call/?"'1'•"' > 1 a component

of n. Let A(ri) = {p: p \ n\. For n > 1, define pdji) = min {p G A(ri)\ ; the other

p G A(ri) may be numbered p2(ri), ■■• , pr <n)(«) in any convenient order. We may

then represent n in any of the forms

n = np.(»r(n) = n^(")A,(n)-1 = Up'1"" = ^/(,"B,-l
»«i í=i p p

where the range of p in the last two products is indifferently P or A(n).
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Given/, write h = a + 1. Then <r(/) = erf/"1) = (ph - \)/(p - 1) = IUd F¿p)

where Fd(-) is the dth cyclotomic polynomial (see Nagell [1]), and D = {d : d \ h A

rf ?* 1}. If A, | A2, then <r(/,_I) | cri/'"1) (proof in [6, p. 23]). Thus in using <r() and

in studying opn's, it is more effective to deal with h and its prime divisors rather

than with a. It will prove convenient to write its prime factorization as A = qxq2 ■ ■ ■ q„

where q¡ ^ q2 ^ • • • ^ q,. By the y'th prime divisor of A we will mean q¡. (Thus if

A = 45 = 3-3-5, then the 1st, 2nd, 3rd prime divisors of A are 3, 3, 5.) For A =

h(p, n), we define s(p, n) and qfp, ri) like s and q¡.

We say n¡ h-divides n2, nY \h n2, if for all p, h(p, «j) | h(p, n2); nx q-divides n2, ny \ a n2,

if for all p, s(p, n/) g s(p, n2) and q¡(p, nx) = q¡(p, n2) for 1 g j ^ s(p, «j). Clearly,

nx \qn2 implies nt \k n2.

Lemma.   Ifn¡ \Q n2, or ifn¡ \k n2, then n, \ n2 anda(n,) | a(n2).

This result accounts for the usefulness of the concepts \h and |„. The proof is easy.

In the context of opn's, we define a prime power / > 1 to be ordinary if a =

0 mod 2 (i.e. A is odd); exceptional if p = 1 mod 4, and a = 1 mod 4 (i.e., A is singly

even); inadmissible otherwise. For k = 0, 1, 2, • • • , define Ek = {n: exactly k of the

components of n are exceptional, and the rest are ordinary}. Euler proved that

3. Trees. Let Cbe a set of choices c; X a fixed symbol; C* = { v : v = Xc¡c2 • ■ ■ c¡

where c, G C} (/ = /„ ^ 0 is called the level of v) ; and C(• ) a function C( • ) : C* -> 2c

(we denote the image C(v) by C„). Then a unique tree T = TCi.), rooted at X, is

defined as the smallest set T of nodes v such that X G T, and such that if

v = XciC2 • • • ct G T, then vc = XcLc2 ■ ■ • ctcl+l G T fox all c = cl+i G C„.

4. Opn-Trees. We will define such a T, called an opn-tree, with the following

properties.

At each v G T, of level /, there will be defined a sequence /?, = (p„ • • ■ , p,) of /

restrictions (truth-valued functions) pk(n) on the variable n. Let N, = \n : pk(n) is

true for all Pk G Rr\; let Í2„ = JV, H Í2. Clearly Rx = 0, Nx = N, üx = Q. At some v,

it might become known that Q„ = {n\ where n is known to be an opn. We will call

this v an opn-node. At some other v it may become known that Í2, = 0. In either

case, v is a terminal node, and we do not branch from it. Otherwise, we will select,

and branch on, some function /„("), known to be defined for all n G Œ-, with "ade-

quate" ra«ge C„, i.e., such that /„(fi„) Q C„ ÇZ C. Thus, if we define the sons of v

to be all vc for c G C, then at each vc we define /?,c = (pu ■ • • , pu p,+1) where

pi+1(«) is '/„(«) = c'. Clearly, {ß,c : c G C} is a disjoint partitioning of Í2„. Hence,

every m G 0 (if any) lies on a unique path from X down T.

At v = X, we branch on pmi„(n), with C„ = P — {2}. At every other v G 7" of

level / > 0, we will branch (if at all) on q, ,(pt, n), i.e., on the y,th prime divisor of

h(pi, ri), for suitable p¡, /¡ (both depending on v) and C„. As a result, at every v =

Xc¡c2 ■ ■ ■ Ci G T of level / > 0 we will have i?, = (p,, p2, • • • , p,) where

Pl       IS      '/>mi„(")   =  c/,

Pi    is    V,t-,(A-i, «) = ci'    for   A: = 2, 3, • • • , I.

Of course, pk-i,jk-u anda C,t_, were defined at cA_[ = Xdc2 ••• ct_!,andCiG C„4_,.
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The sequence pu p2, ■ ■ ■ , p¡-i may contain repetitions. Let its distinct elements,

in order of first appearance, be pu p2, ■ ■ • , p„ and let ^4, = {/>,}. The later conditions

on branching will ensure that pi = c¡ and that, for each /?,, the subsequence of the

pk (2 g k ^ /), for which pk_x = /?,, will have consecutive values 1, 2, • • • , s, (i 2ï 1)

of jk-i, and nondecreasing prime values of ck. Consequently, we can replace R,

by the equivalent

PmiAri) — Pl,

Qi(Pi, n) = <7i,    for    i = 1, 2, • • • , r; j = 1, 2, • • • , sit

where px = cu r and the S; are known (2 s{ = I — 1), and the qu are a known per-

mutation of the ck (k > 1); or equivalently

Pmin(n)   =   Pl,

m |„ n,

where m = mr = U-i Pt''1 and A, = Ui-i la-
All of /, pk-i, jk-i, ck, r, Pi, Si, qif, hi, m are functions of v. Since we generally

consider a typical v and its sons vc or father v~, we omit this dependence on v from

the notation, except that for / = /„ and m = m, it is optional. Such sets as N„ 0„, A,

will always bear the subscript.

5. The Computation of o-(m). For 1=1, a(m) = m = 1. For I > 1, we are

assisted in calculating c(m) by the assumed previous factorization of a(m~), where

m~ = my-. For that i such that p¡ = pt-i, writep for /?¿, s for s,, # for ^ „ A for A¿/<7.

Thenp appears in m~ asph~l (possibly asp0 = 1) and in m as/?'"'-1. Thus, <j(m)/<j(m~)

= <Kp*,_1)/«KP*"1) = (/' - 1)/(P* - 1) = Il^i) fd(p). where D - {d : d \ hq A
d\h\. The factorization of <r(m) may therefore be found from that of u(m ) and of

each Fd(p). In the important special case 5 = 1, A = 1, p \ m~ we have simply

a(m)/c(mT) = <t(/_1) = Fq{p). In the 1036-tree, only this case arose.

If we define b(p, m) = a(p, <r(m)), then a(m) = IL,/'"'"11. Define B, = {p ^

2 : b(p, rri) > 0). We will ensure, inductively, that m El E0KJ EL. (For / ^ 1, m =

1 G EQ.) If m ÇE E0, then no qu = 2, and 6(2, m) = 0. If m G £i, then just one

#,, = 2, for some i, and j = I; p{ is the exceptional prime, and A(2, m) = 1.

6. More Details on Branching. At each node v ?¿ X we define a set P, of /?

which are admissible to be p = px. If / = 1, let P, = {/^l, where px = c^ If / > 1,

let P, = \p ?¿ 2 : 6(/>, m) > a(/», w)}, i.e., the set ofp ^ 2 which are "over-generated"

by cr(-). The proof of our next result may be found on p. 29 of [6].

Theorem. If ly S; 1, andP, = 0, then m = mv is an opn, and 0„ = [m\. Thus v

is an opn-node.

Otherwise, consider any p G P„ 7e 0- For every n G íí„ a(p, ri) = b(p, ri) Si

b(p, m). If / > 1, b(p, m) > a(p, m). Hence, a(p, ri) > a(p, m). The latter also holds

for / = 1. Thus, h(p, ri) > h(p, m); and since m\an, s(p, ri) > s(p, m).

Thus, qs(Pîm) + 1(p, ri) is defined for all n G Œ„, so that it is admissible to branch on

it. There are two cases.

If p (£ A, (in particular, if / = 1), then s(p, m) = 0. It is thus admissible to branch
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on qi(p, ri), with C» = P if p is admissible as the exceptional prime, i.e., if p = 1 mod 4

and m G E0. Otherwise, C, = P — {2}.

If /? G i4„ say/? = p¡, then .?(/?,, /n) = s¡ > 0. It is then admissible to branch on

q.i+i(P„ n), with C, = {<7G7>:</?i2A<7^ (7,.,).
The use of any of the above p as p¡ preserves, at all vc, the properties assumed

at v. In particular, if c = 2, then v G -Eo and >>2 G jBi; otherwise, v and ¡>c both belong

to E0 or both belong to Eu Thus the property m E EQ\J Ei at v is preserved at all vc.

Any well-defined global selection rule(s) (i.e., for all v G T) for p G /\ ^ 0

will define a particular tree. A set of such rules is given on p. 40 of [6]. In the 1036-tree,

these rules always reduced (for I > 1) to p = max{p G (B, — B,-)); and always

p G A,. Hence, the branching was always on qjjj, ri), so that always s{ = 1, /?, = /?,,

hi = q,i (i = 1,2, • • • , r), r = I — 1; but the more general case may be needed for

the infinite tree.

Thus an opn-tree is defined. Its previously assumed properties hold, by induction

on /. It is enumerable, in fact by various admissible sequences, in which the father

v of any vc is processed before vc.

If n is any opn, it lies on a unique path from X, and will be recognized at the

node v on this path which has level / = 1 + zZ'f-i s(p{, ri).

7. Contradiction-Nodes. This tree can be pruned, during construction, by

taking into consideration two conditions which can give contradictions to n G fi»,

thus showing that 0„ = 0, so that we can make v a terminal node. These are dis-

cussed in the next two paragraphs.

For every p G B„ p \a(m)\ c(ri) = 2«, for all n G fi». Hence if 3 p G By such

that/? < pu this contradicts/?! = pmin(n), and we have a least-element-contradiction-

node at v.

For every n G fi», (1) m |, n, (2) <x(m) | 2n, (3) n G Eu Let iVj = [n : (1) A (2) A

(neí)A(íiG£,ifm£ £i)(, where £ = O^-o Ek- Let w' = minjn G #,) =

gcdjra G Ar;}; m! is readily determined by its \a(p, m')\ in terms of {a(p, m)\ and

{/?(/?, m)\. (Cf. [6, pp. 37-39]; and note, for example, that 2 = a(p, m) < b(p, m)(^ 8)

implies a(p, m') = 32 — 1 = 8, a strong contribution to m', and to a(m')/m', especially

for p = 3.) Now m! \ n for all n G fi». If we compute o-(m')/2m', and if this is > 1,

then m' is abundant, and so are its multiples n. Hence, 0„ = 0, and v is an abundance-

contradiction-node. (The 1036-tree was first computed without the use of abundance-

contradictions and had about twice as many nodes, and about twice the depth,

as with their use.)

Although not used as such in [6], the above m' is a lower bound for all n G fi»;

anda "better" bound is m" = min{«: (1) A (2) A («G £i)}, which is >m'\fm' G &•

8. Truncated Execution. For computation, the opn-tree must be truncated

to a finite tree. For simplicity, and because the chief computational effort was in

factoring large F„(p), it was decided to truncate primarily by omitting all vq (truncation

nodes) for which/?'"'-1 > u or > 21/2w, according as hq is odd, or even and > 2, for

a chosen u. Any opn at such a node is > u2. To obtain the same bound at level 1,

we used results of Norton [4] and derived (pp. 35-36 of [6]) these lower bounds

w(pmin(n)): w(3) = 103; w(5) = 1013; w(l) = 1041; vv(ll) = 1090; w(l3) = 10154; etc.

We let X/? be truncation nodes as soon as w(p) > u2. Using u = 1018 and then u = 108,

with max(/?min) = 5 in both cases, yielded the 1036- and 1016-trees.
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ODD-PERFECT-NUMBER SEARCH TREE TO 10**16

(REPRESENTATIVE OF SEARCH TREE TO 10**36)

NODE L E F

0 - ALL ODD PERFECT NUMBERS
3 1 - LEAST ELEMENT 3, HENCE N > 10**3
33 2 - F( 3,3) = 13
332 3 * F( 2tl3) = 2.7 '7'
3323 4   F( 3,7) = 3.19
33233 5   F( 3,19) = 3.127
332333 6   F( 3,127) = 3.5419
3323333 7   F( 3,5419) = 3.31.313.1009
3323333* 3**8.(7.19.311**2.13**1 +.024283
33235 5   F( 5,19) = 151.911
332353 6   F( 3,911) = 830833
33237 5   F( 7,19) = 701.70841
3325 4   F( 5,7) = 2801
33253 5   F( 3,2801) = 37.43.4933

332533 6   F( 3,4933) = 3.127.193.331 »111*
3325333 7   F( 3,331) = 3.7.5233
33253333 8   F( 3,5233) = 3.7.31.42073
33253333* 3**8.7**4.(31.371**2.13**1 "331" +.000601
3327 4   Ft 7,7) = 29.4733
33273 5   F( 3,4733) = 22406023 »7»
333 3 - F( 3,13) = 3.61
3332 4 * F( 2,61) = 2.31 '31'
33323 5 F( 3,31) = 3.331 '331»
333233 6   F( 3,331) = 3.7.5233
3332333 7   F( 3,5233) = 3.7.31.42073 "331"
33325 5   F( 5,31) = 5.11.17351
33325* (3.5.11.13)**2 "31" +.063835
3333 4 - F( 3,61) = 3.13.97
33332 5 * F( 2,97) = 2.7**2 '7'
333323 6   F( 3,7) = 3.19
333323* 3**8.(7.13.19.61)**2 +.013531
333325 6   F( 5,7) = 2801
3333253 7   F( 3,2801) = 37.43.4933
33332533 8   F( 3,4933) = 3.127.193.331
33332533* 3**8.7**4.(13.37.43.611**2 +.013367
333327 6   F( 7,7) = 29.4733
3333273 7   F( 3,4733) = 22406023 "7"
33333 5 - F( 3,97) = 3.3169
333332 6 * F( 2,3169) = 2.5.317
333332* 3**8.(5.13>**2 +.006965
333333 6 - F( 3,3169) = 3.3348577
3333332 7 * F( 2,3348577) = 2.1674289
33335 5 - F( 5,97) = 11.31.262321
333352 6 * F( 2,262321) = 2.31.4231
3333523 7   F( 3,4231) = 3.601.9931
33335233 8   F( 3,9931) = 3.211.155821
3335 4 - F( 5,61) = 5.131.21491

The number of nodes in the 103l,-tree could have been reduced somewhat, and

the amount of computation reduced somewhat more, by using the m" mentioned

earlier. This was not done, partly for simplicity, partly to obtain the statement

/ > u = 1018 in the Introduction, and partly not to limit the search for possible

opn's unnecessarily soon.

9. Description of the Listings. The nodes are in lexicographic order. The

field "NODE" shows c¡c2 ■ ■ ■ c¡ (omitting X), with the primes 11, 13, 17, ■ • • ab-

breviated as A, B, C, ■ ■ ■ . "L" shows /. "£" contains ( —, *, blank) according as
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335
3352
33523
335233
3352333
33523333
335235
335235*
337
35
353
353*
355
3552
3552*
3553
357
37
372
3723
37233
373
3732
37323
373233

373233*
3A
3A3
3A32
3A323
3A3233
3A3233*
3B
3B2
3C
5
52

53
533
535
55
553
5532
55323
5533
555
5552
55523
5553
57
5A
7+

3 -
4 *
5
6
7

8
6

3 -
2 -
3 -

3 -
4 *

4

3
2
3
4

5
3
4

5
6

2 -
3 -
4 *

5
6

2
3
2
1
2
2
3
3
2
3
4

5
4

3
4

5
4

2
2
1

F(

F(
F(

F(

F(
F(
F(

F(

F(

Fl

F(

F(

F(

F(
F(
F(

F(
F(
F(

F(
F(

F(

Fill
F( 3
F(

F(
F(

F(13
F( 2
F(17
LEAS
F( 2
F(
F(

F(
F(
F(
F(

F(

F(
F(
F(

F(
F(

F(
FUI

•31»
•331'

"331"

"31" +.063835

+.007905

+.018609

13) = 30941
30941) = 2.3**4.191
191) = 7.13**2.31
31) = 3.331
331) = 3.7.5233
5233) = 3.7.31.42073
31) = 5.11.17351
(3.5.11.131**2
13) = 5229043
3) = 11**2
11) = 7.19
3**4.(7.11.191**2
11) = 5.3221
3221) = 2.3**2.179
<3.11)**4.5**2
3221) = 10378063
11) = 43.45319
3) = 1093
1093) = 2.547
547) = 3.163.613
613) = 3.7.17923
1093) = 3.398581
398581) = 2.17.19.617
617) = 97.3931
3931) = 3.7.31.23743
3**6.(7.17.19.311**2
3) = 23.3851
3851) = 13.1141081
1141081) = 2.337.1693
1693) = 3.13.151.487
487) = 3.7.11317
3**10.(7.13.2 3.151.337.487.1693.38511**2 +.000022
3) = 797161
797161) = 2.398581
3) = 1871.34511

ELEMENT 5, HENCE N > 10**13
5) = 2.3
51 = 31
311 = 3.
31) = 5.11.17351
5) = 11.71

+.010190

3<5

3<5

71) 5113
5113) = 2.2557
2557) = 3.
5113) = 3.
71) = 5.11.211.2221
2221) = 2.11.101
101) = 10303
2221) = 3.
51 = 19531
5) = 12207031

3<5
3<5

3<5

LEAST ELEMENT >= 7, HENCE N > 10**41

the exceptional prime has (not yet, just, already) been chosen, "F" shows F(q, p) =

FJp) and its factorization, performed on an IBM 7094. If v has an abundance-

contradiction, the succeeding line v* shows an abundant m \ m', and the value of

\r\(o-(m)/2m) > 0. For a fuller explanation, see pp. 37-39 and 45 of [6]. I am indebted

to a referee for four minor corrections to the hand-computed m. Least-element-

contradictions are indicated by "3 < 5". Any branch-nodes not shown, of other

than terminal nodes, are truncation nodes. The presentation of the 1036-tree [8]

completes the demonstration of the assertions in the Introduction.

For/? = 7, 31, 331 there are 2, 2, 3 nodes vip'° having the same branching func-
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tion, range, and/?min(«) for each /'. For example, at both v(7,l) = X332 and /7,2) =

X33332, the branching is on q¡(7, ri). For any such p, the subtrees rooted at each

v<.v.ii wju nave identicai branchings and factorizations (at least initially), aside from

abundance-contradictions which merely cause different prunings of these subtrees.

The major benefit of identifying these subtrees is to eliminate duplicate execution

of some factorizations. A lesser potential benefit could be to shorten the listings.

In [6], some shortening was obtained by "overlaying" all the subtrees for each such p

onto one of them, on which the separate cases were carried along. In the present

listings, for greater clarity these subtrees have not been overlaid. However, each

has been demarcated by '/ at its root, and "/' at its lexicographically last node.

Some space, but not much computation, could be saved by subsuming the cases

for such a p into one appropriate new case (represented on a separate tree) which

includes appropriate common restrictions. For example, the cases for p = 7 could

be subsumed into a case with the restrictions pmin(ri) = 3, m = 32-(13' or 971) |, n

(hence m G E¡), 21-31-71-131 | <?-(«); branch on qfl, ri). Analogs of mw and m',' could

be defined; for example, let m' = m" = 32-72-131 at the root.

10. A Comparison. The above ^-algorithm is a modification of a simpler

"a-algorithm" [6] which uses branchings on a(p, ri). The "complication" is more

than compensated for by the fewer branches and factorizations. For example, with

u = 1018, the branches at X3, with p = 3, are reduced from 18 cases of / < u to

11 cases of/1-1 < u; at X33, with p = 13, from 12 cases to 7; at X5, with p = 5,

from 19 cases to 9. Each omitted case, i.e., one for which A = a + 1 is composite,

is subsumed in the case of the least q \ h, with retention of the useful common fac-

torization of Fa(p), and omission of the not-yet-needed further branching and com-

putation.
I am indebted to a referee for significant stylistic improvements.
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