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Computational Investigations of Least-Squares

Type Methods for the Approximate Solution

of Boundary Value Problems *

By Steven M. Serbin

Abstract.    Several Galerkin schemes for approximate solution of linear elliptic bound-

ary value problems are studied for such computational aspects as obtainable accuracy,

sensitivity to parameters and conditioning of linear systems.   Methods studied involve

computing subspaces (e.g., splines) whose elements need not satisfy boundary condi-

tions.   A Poisson problem study on the square produces computed error reflective of

theoretical L2 estimates and Lœ behavior optimal for smooth data but loss according

to Sobolev's lemma for nonsmooth data.   Insensitivity to parameters is evidenced.

Analogous one-dimensional methods enhance the conditioning study.   Studies are in-

cluded for parallelogram and ¿-shaped domains.

1. Introduction. The purpose of this paper is to present the results of several

numerical experiments which have been performed with least-squares and related

methods for the approximate solution of linear elliptic boundary value problems. We

consider such computational aspects as obtainable accuracy, sensitivity with respect to

weighting parameters, and conditioning of resulting linear algebraic systems for each of

these methods, which have the common characteristic that the elements of the finite-

dimensional subspace in which the solution is approximated need not satisfy the bound-

ary conditions of the problem.

In Section 2 we describe the class of problems under consideration and develop

the notation we will use.  In Section 3, we present the three approximation methods

with which the studies have been performed and include a theoretical result pertaining

to a quadratic form of one of these methods.  In Section 4 we discuss the particular

computational details of our implementation of these methods; it is believed that these

details may be of interest to some members of the scientific community.  In Section 5

we detail several experiments performed on the Poisson problem in the unit square and

compare results with various approximating subspaces and boundary weightings.  In

Section 6 we look briefly at some problems on other domains, including the ¿-shaped

region.  In Section 7 we present some analogous methods for two-point boundary value

problems and use these mainly to examine conditioning behavior. We conclude in Sec-

tion 8 with a discussion of results and a mention of ongoing experiments.

2. The Problem.  The class of boundary value problems upon which the experi-

ments have been performed may be described as follows (we adopt the notation of [7] ).
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Let R be a bounded domain in R^ with piecewise smooth boundary bR. (Bramble and

Schatz in their original paper on least squares require that dR is C°°; however, one of

our aims is to study computationally domains, such as rectangles, for which this is

violated.)

We shall be interested in approximating the solution of the problem

(2.1) Au=f   inR,      u=g   on  bR,

where

N N

(i) Au = Z  a.föDßjiu) 4 Z bt{x)Dt{u) 4 c(x)u
¿7 = 1 ' = 1

and A is uniformly elliptic in R; that is, there exists a constant C> 0 such that

N

c-1\s\2<  Z «,M <CM2
i,j = l

for all x = (xj, x2,. . . , xN) E R and \ E RN.

(ii) D¡ = b/bXj and all coefficients a¡-, b¡, and c are assumed to be real-valued

and C°° in R.

(in)   The data satisfy (at least) f.E L2(R), g E ¿2(9i?)-additional smoothness on

g is required to obtain optimal error estimates in [7] and [4].

When R is a smooth domain, the problem (2.1) is viewed in a weak form [7],

wherein the data is approximated by C°° data (/„, gn ) which converge in appropriate

Sobolev spaces (see below) to the data of (2.1) the problem is solved for smooth solu-

tion un, and a limit used to define u.  However, this process fails in domains with

corners.  Although theoretically our problem should also be viewed in a weak sense, for

computational purposes, solutions will be obtained in the classical sense.

The following notation will be used:   On L2(R) and L2(bR) we have the respec-

tive inner products (0, \p) = fR(t>\pdx and <0, i//> = ShR<ptydo.

Let Q, be a fixed open set containing R. /f"(£2) and HMib£l) axe the Sobolev

spaces of order m of functions £2 and 9Í2 respectively with norms denoted by II • llm

and | • |". (See [14] for definitions of these spaces when 3Í2 is C°°; in the case of

polygonal domains, though, a different definition of //""(Bfi), due to Kellogg [21] is

appropriate.) Denote //<■"••*) = /T(Í2) x If (9Í2). S1^ k is any finite-dimensional sub-

space of /7m(£2) which satisfies the approximability assumption:

(2.2)  For any u E //fc(i2), k>m, there exists a constant C (independent of the

parameter ft and of m) such that

m

inf      £ft'llM -Xlf <Cftfcll«l£.
Xe-5«,* i=°

This is not exactly the assumption of [4], but for many practical subspaces, both as-

sumptions hold.

We shall make a particular choice of such subspaces (splines) below; we mention

also some other subspaces that have been studied by others.  S. Hubert [13] details
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the construction of multi-dimensional Hermite functions.  Schultz [17] has studied

many such spaces on rectilinear domains in R".  Strang [20] gives several examples and

presents easily verifiable conditions for pointwise approximation of smooth functions to

specified order and also for L2 approximation.  Bramble and Zlámal [8] and

Di Guglielmo [9] use subspaces in which the "elements" (here, the support of the trial

functions) are nonrectilinear and thus have better chance of conforming to irregular

boundaries.

Finally, we require the Dirichlet integral

and denote by i//„ the outward normal derivative, V„ the outward normal derivative,

ysxp the surface gradient for \¡i E HxibR), and 7 > 0 and 0 < ft < 1 parameters.

3.  Methods.  I.  The least-squares method of Bramble and Schatz [7] may be

described as follows:  For (/, g) E IP*0'0\ the solution u to (2.1) minimizes over

//"*(/?) (m = 2 here is the order of the differential operator) the functional

(3.1) G(x)= Wf-AXW2 4yh-*\g-x\2

(where the zero subscript on the norms has been omitted).  Equivalently, if we define

the bilinear form

(3-2) L{x¡i, x) = iAxP, AX) 4 yh~3 ty, X>,

then m satisfies

(3-3) L(u,x) = (f,AX)4yh-Hg,x)

fox all x EH2(R).

We define SHm k to be the restriction to R of 5^ fc(i2). The approximation

method, using the Galerkin idea, is to find w E S2 k such that

(3.4) L(w,x) = (f,Ax)4yh-\g,X)    fox all XE SH2<k.

For computational purposes, we select a basis {<ps }^LX of S2 k, (M is inversely pro-

portional to a power of ft) and setting w = 'LM=.cs<t>s , (3.4) yields

M

(3.5) Z cA*r <t>r) = (f, A<t>r) 4 yh~3 (g, <t>r),      r = 1, • • • , M.
s=l

The matrix of this problem is symmetric, positive definite, and with the choice of

basis discussed below, a band matrix.   Fix and Larsen [11] provide the result

that the spectral condition number of the least-squares matrix behaves as OQi'1*); in

view of the fact that the usual Rayleigh-Ritz methods are known to demonstrate

0(fi~~2) conditioning, an investigation of possible ill effects of roundoff in (3.5) is thus

indicated, and those studies are presented in Section 5.

We also study what happens if bR is not C°°, the sensitivity with respect to the

weight y, and compare obtainable accuracy vs. theoretical estimates.  The original error

estimates for domains with C°° boundary which were obtained by Bramble and Schatz
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have been verified and their proofs simplified by Baker [4].  The particular estimate

with which we shall be concerned may be stated:

Suppose R is a bounded domain with C°° boundary.  If m G IP(R) for 2 < s < k

(k > 4) satisfies (2.1) and w E S2k satisfies (3.4), then the L2 error satisfies

(3.6) lu -wKCff lui,.

This says that the least-squares technique reproduces the order of best approximation, a

condition we shall refer to as being "optimal".

In [19] we obtain a like result for k \> 4 when R is the unit square, but for

brevity's sake we shall not include this proof.  Note that the proofs do not hold for the

case k = 3, and we shall investigate this in Section 5 to see if the techniques of proof are

at fault or if indeed one cannot achieve optimal accuracy.

II.  Now, let ^4 = — A (A is the Laplace operator;   Am = zZf-.b2u/bxJ). Let us

write the boundary value problem in weak form:

(3.7) -(-/-Am, x)4 ig- u, yh~xX ~ X„ > = 0    for all X e H2iR)

which can be rearranged as

(/, X) + <g, lh-xx - X„ > = -(Am, x) + <". yh'lX ~ X„ >

= Diu, x)- <X, «„>-<«, X„> + 7Ä_1<", X>

using Green's theorem.  If we define the bilinear form

(3.9) N(xP,x) = D(<P,x)-<4>,X„) - <X,^„>4yh-x<xP,x)

our problem becomes

(3.10) M«. X) = (/. X) + <g, lh~xx- X„ >•

Nitsche's method [15] is then:   Find w E S2 k such that

(3.11) N(w, x) = (/, X) + <g, Jh-Xx-X„>   for all x G Sh2k.

Some of the properties of Nitsche's method for smooth domains with solutions in

^(R) axe

if) L2 error estimates are optimal for k > 2.

(ii)  The condition number is OifT2).

(iii)  But, "inverse theorems" (bounding higher Sobolev norms by lower ones with

appropriate loss of powers of ft) are required on the computing subspaces in order to

make Ni\\i, \\i) positive definite.

III.  Bramble and Nitsche [6] have combined their methods in order to utilize

the best properties of each. We define the bilinear form

K0i4t,x)= D(^,X)- <*. X„>- <X,<r-„>

(3'12) + ft2(AX, A*) + yh-x <vV, x> + 7A< v>. Vsx>-

Method K0 then becomes:   Find w ES2k such that

K0(w, x) = *0(u, X) = (/, -X + h2AX) 4 (g, yh~xX ~ X„ >

+ <V,ft yhVsX)   for all X GS$k.
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This method has K0(x¡j, xp) positive definite for all 7 > 70 and hence we seek both

theoretical and computational estimates for y0.  The proof of the following may be

found in [19].

Proposition 1. Let N = 2 and R be star-shaped.  By this we mean that if x E

bR and the unit outward normal n exists at x (at all but possibly finitely many cor-

ners), then x • n> k> 0. Suppose that | x(-1 < xM and let a = xm/k .   Then if y > y

= Vt(a 4 Va2 + (a + Vi + a) ), K0(\p, $)>0,\p¥:0. In particular, on the unit

square K = l,xAf = l,a=l, and y sa 1.8.   Note that all constants are indepen-

dent of ft.

Since a matrix is positive definite if and only if its eigenvalues are all positive,

we may use the inverse power method to estimate the least eigenvalue for several

values of ft in S2 4 when R is the unit square to obtain a comparison with 7, which is

a bound for all ft. In Tables 3.1 and 3.2 we see that K0(\p, \p) is positive definite for

7 > 1, while Nitsche's form N(\p, \p) (for which the theoretical analysis was not done)

is definite for 7 > 6.7.

Table 3.1. Least Eigenvalue (X) in Modulus for Matrices of Method K0

h =1/6 M =81 ft = 1/12              M = 225

7 X y                          X
4 .162 x 10~2 4 .168 x 10-2

2 .120 x lu"2 2 .125 x 10~2

1 .952 x 10~2 1 .992 x lO"3

31/32 <0 31/32                     <0

Table 3.2. Least Eigenvalue in Modulus for Matrices of Nitsche's Method

ft = 1/6 M = 81 ft = 1/10 M =169

7*7 X

7 .183 x 10"s 7 .214 x 10"s

6.75 .281 x 10"6 6.75 .506 x 10~6

6.71875 .806 x 10-7 6.6875 .847 x 10"7

6.6875 <0 6.5625 <0

IV.   For practical purposes, we omit the tangential derivitives:

(3.14) K{\ji, x) = K0ixP, x) - yfUVj, V,X>-

The Galerkin equations are

M / 90 \
(3.15) Z cA<t>s> 4>r) = (/- -4>r + h2Hr) 4 (g, yh-x<pr - ~J ,

where Green's theorem allows us to write

K(4>s, 0,) = - (0r, A0,) -(0,, A0r) - D(<t>r, 4>s)

(3-16) + h2(A<pr, A0.) + yh~x{<t>r, <ps).
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This method requires inverse theorems to get K(xp, xp) definite, but its condition

number is 0(h~2).

4. Computational Details. We have chosen to compute with subspaces whose ele-

ments are tensor products of one-dimensional spline functions referred to by Babuska [2]

as "hill" functions. These coincide in fact with 5-splines defined by Schoenberg [16] and

the resulting tensor products are just the splines in R^ discussed by Bramble and Hubert

[5].

We define 0j(x) = X<_y  i/,x(x) where Xia bx(x)is the characteristic function of

the interval [a, b]. Then, define recursively ^k(x) = (tyk_x * 4*)(x)- i/-k has support on

[~k/2, k¡2], is a piecewise polynomial of degree (k — 1) and is Ck~2(— °°, °°). Segethova

[18] has developed a stable recursive procedure for generating representations-of the hill

functions up to very high order, and we adopt her expansion method. We represent the

hill functions and derivatives in local coordinates with Legendre polynomials P¡(x) (or-

thogonal on [—xh, V¡]):   Let

(4.1) 0f (x) = Z aífW
7 = 1

and then

(4.2) ^k(x) = Z W (* - 2V ~2* " %{v-x-m,»-HM<d>
v=l N '

where the ak¿ are coefficients given in [19].

For the square Rs = (0, 1) x (0, 1), we impose a uniform mesh of spacing ft

where ft-1 is an integer and choose

S;,, = Span{*t(i^)*t(^),

«./-I**1].*-^W\}-
When A is a constant coefficient operator, the representation (4.2) and the orthog-

onality of the Legendre polynomials allows the inner products in the matrices of (3.5),

(3.11), or (3.15) to be accumulated by analytical means, in which only Euclidean inner

products are performed. By suitable changes of variables, only terms of the form

(4-3) ÇHj2 eka(x)ekUx(x)dx

need be evaluated, and from (4.1) we obtain, with p = v 4 Sx,

SWll2ela(x)^(x)dx = ¿ «*>*f( 27Zl) .

The software has been designed to handle terms corresponding to mesh points near the

boundary.
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For special cases, e.g. A = A, the matrix has a very specific structure if we order

the basis functions consecutively along horizontal rows: <¡>s = ipk((x — ih)¡h)

• ^k((y -fh)/h) with s = (j - iyjM4i and M = (ft-1 + jfe - l)2.   If we denote the

matrix problem of (3.5) by Tc = d, the matrix T is a band matrix with upper band

width equal to ik — 1)\JM 4 k.   Dividing the matrix into a block structure with M

square blocks, each block assumes the same banded structure element by element as

the overall matrix assumes block by block.  In particular, tr+ßS+fl = trs if both

supp {0r+M n bR] and supp {<¡>r n bR} axe empty. Borrowing from a definition of

Strang [20], we might call this structure quasi-convolution form; in this regard the

matrix behaves quite like a finite-difference matrix.

The data terms d must be accumulated by numerical integration. We have used

Romberg quadrature to ensure as much accuracy as desired; in practice, quadratures

using a small number of function evaluations would be used.  Herbold [12] and Fix

[10] treat the problem of selecting "consistent" quadratures for Rayleigh-Ritz schemes.

Various techniques have been used to solve the linear systems; we finally selected

a Cholesky decomposition modified for band matrices as being most efficient for rea-

sonably small (M < 200) problems.

The error quantities of interest in our experiments are llcll0, the L2 error, where

e = m — w, and llell^, the supremum norm error for which sharp estimates do not

exist.  In attempting to determine the order of accuracy of a method, we assume that

Hell = Chx as h —► 0 and wish to determine X.  The quantity which we actually com-

pute is the error reduction

^^logdle^OII/lle^HVlog^./ftp,

where h¡ and ft- are different mesh spacings.  In [19], our tables present the computa-

tions of A,- for all possible combinations of / and /;  for brevity here we shall only

tabulate X- ,+1.

We shall present evidence that the pointwise error exhibits oscillatory behavior.

This requires that we estimate llell0 by Simpson's rule using at least eight points between

mesh points; we use these same points to estimate llell^ .

5.  The Poisson Problem on the Unit Square.  We now present the results of

several computational experiments with the methods described in Section 3. We have

selected for presentation here only a portion of the experimental results found in [19].

With the exception of the least-squares method for the square, we have no theoretical

foundation for any of our results, since all domains considered are polygonal.  All ex-

periments have been performed on an IBM 360/65 system.  Computations have been

done in double precision to minimize roundoff difficulties, unless otherwise noted

(Tables 5.5 and 5.7). We consider model Problem 1:

Am = 2e{x+y)    in Rs,      u = e(x+y)    in bRs.

For the least-squares method, Table 5.1 presents evidence of optimal fourth-order con-
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vergence for the subspace S2 4 of bicubic splines. Along with the more comprehensive

sensitivity study in Table 5.2, these results indicate that the least-squares method is not

very sensitive to the choice of the boundary weighting y.

Table 5.1. Problem 1, Least Squares, Bicubic Splines, Wide Parameter Range

y ft L2 Error        L2 Reduction        L„ Error        /,„ Reduction

(x 10"5) (x 10-4)

10 1/6 .414 - .352

1/8 .129 4.06 .113 3.95

1/10 .0521 4.04 .0466 3.97

1/12 .025 4.03 .0226 3.97

100 1/6 .396 - .158

1/8 .125 4.00 .0517 3.87

1/10 .0512 4.00 .0222 3.78

1/12 .0247 4.00 .0111 3.82

1000    1/6 .392 - .163

1/8 .124 3.99 .0533 3.90

1/10 .0510 3.99 .0222 3.92

1/12 .0246 4.00 .0109 3.93

Table 5.2. Problem 1, Least Squares, Bicubic Splines, Full Parameter Study

ft y L2 Error (x 10-s) ¿„Error (x 10-4)

1/5 1 1.68 2.06
4 .979 1.02

64 .826 .357

256 .814 .324

4096 .809 .331

1/8 1 .189 .325

4 .135 .160

64 .125 .0559

256 .125 .0525

4096 .124 .0536

The results presented in Table 5.3 for the subspace S2 6 of biquintic splines

demonstrate the greatly improved accuracy available if one is willing to pay the price

of added bandwidth.  The L2 error reduction is indicative of optimal 6th-order ac-

curacy;  the L„ reduction does not evidence quite this high an order (using a least-

squares fit to plot log(L„ error) as a function of log ft, we determine a slope X =

5.36). We see no reason why the actual L„ error should not also be of 6th order and

attribute our numerical results to the effect of roundoff error, which begins to contrib-

ute more significantly when our approximation method becomes more accurate.  We

present only the results for y = 100;  a similar result is obtained with y = 1000.
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Table 5.3. Problem 1, Least Squares, Biquintic Splines

y ft L2 Error L2 Reduction Lm Error Lm Reduction

(x 10~8) (xlO-7)

100 1/3 14.6 — 4.36 -

1/4 2.48 6.15 .858 5.66

1/6 .233 5.83 .104 5.20

1/7 .0956 5.78 .0454 5.38

For the case of biquadratic splines (type S2 3), we have mentioned that error esti-

mates do not indicate optimal 3rd-order convergence, and our results in Table 5.4 seem

to show that only 2nd-order convergence should be expected. Our data for the ¿^

error are anomalous; we know that the /,„, error cannot be of higher order than that

of L2 error, hence if we take smaller meshes, we predict this order also to go toward 2.

Regardless, we see little to recommend the use of biquadratic splines.

Table 5.4. Problem 1, Least Squares, Biquadratic Splines

y ft L2 Error        L2 Reduction        L„, Error        ¿„ Reduction

(x 10-3) (x 10~3)

100 1/6 .295 - .900

1/8 .153 2.29 .415 2.69

1/10 .094 2.17 .224 2.75

We have also used Problem 1 to make one study of the overall conditioning of

the methods. Using double precision, we obtain an approximate solution and deter-

mine its error ed (ft). We then assume that

(5.1) Wed(h)\\=ChK 4C'ddh-°,

where o is the conditioning effect and 9d is the double-precision unit roundoff error.

Similarly, if we compute in single precision, we determine an error e^(ft) satisfying

(5.2) Wes(h)\\ = Chx + Cejí-",

where 6S is single precision unit roundoff and ds ->Qd-   If we assume that C'ö^ft-0 is

negligible, the error "reduction" in Table 5.5 is essentially a in T(ft) = lle^ft)!! —

lled(ft)ll « (Zdji-0. Our results are not extensive, but they do evidence the 0(ft~4)

conditioning for the least-squares method. A further conditioning study will be dis-

cussed for one-dimensional problems in Section 7.

Table 5.5. Problem I, Least Squares, Bicubic Splines, Conditioning Study

(Single Precision Computation)

y ft L2 Error "Reduction" L^ Error "Reduction"

(x 10"4) (x 10-3)

100 1/6 .807 - .158 -

1/12 16.0 -4.31 3.11 -4.30

Proceeding on to similar studies with Method K, the results in Table 5.6 again

demonstrate the optimal 4th-order convergence with bicubic splines; we omit the

tabulation of the results for biquintic splines but mention that 6th-order convergence in

L2 error is shown.
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Table 5.6. Problem 1, Method K, Bicubic Splines

y                  ft L2 Error        L2 Reduction L„ Error         L„ Reduction

(x 10-6) (x.10-5)

10               1/6 3.96                   - 4.08

1/8 1.19 4.16 1.31 3.95

1/10 .474 4.14 .541 3.96

1/12 .224 4.12 .262 3.97

1000           1/6 3.57- 1.55

1/8 1.11 4.06 .502 3.91

1/10 .449 4.06 .209 3.93

1/12 .214 4.06 .102 3.94

The conditioning study in Table 5.7 for Method K indicates that it experiences

only an Oih~2) deterioration due to roundoff.

Table 5.7. Problem 1, Method K, Bicubic Splines, Conditioning Study

iSingle Precision Computation)

y h L2 Error (x 10~4) "Reduction"

100 1/6 .266 -

1/8 .381 -1.25

1/10 .696 -2.70

1/12 1.02 -2.08

In contrast to the least-squares method, Table 5.8 shows that even with quad-

ratic splines Method K yields optimal 3rd-order accuracy.

Table 5.8. Problem 1, Method K, Biquadratic Splines

y ft L2 Error       L2 Reduction Lm Error      L„ Reduction

(x 10~4) (x 10-3)

100 1/6 1.97 — .844

1/8 .812 3.08 .385 2.73

1/10 .404 3.14 .207 2.79

As a final study with Problem 1, we present in Table 5.9 the results obtained

with Nitsche's method, and note that we get the best overall results via this technique

(compare with Tables 5.1 and 5.6).

Table 5.9. Problem I, Nitsche's Method, Bicubic Splines

y              h                 L2 Error L2 Reduction L„ Error      L^ Reduction

(x lu"6) (x 10"5)

100             1/6                 2.86                  - 1.02

1/8                    .929                  3.90 .368 3.55

1/10                .387                 3.93 .163 3.66

We have used Problem 2:

Am = 6xyex+yixy 4 x 4 y - 3)   inRs,

u = 0 on bRs,
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which has solution u = 3xyex+yil — x)(l — y) to compare least-squares with the Ray-

leigh-Ritz method in which the approximating functions (bicubic splines) satisfy the

homogeneous boundary conditions.   In Table 5.10 the results of Herbold-Varga [12]

via Rayleigh-Ritz are noted, while our computations via least squares with two boundary

weightings are also included.  The data indicate that with adequate weighting of bound-

ary terms, one need not be troubled with satisfying boundary conditions to achieve ac-

curate approximations, whereas underweighting the boundary (7 = 1) produces less

desirable results.

Table 5.10. Problem 2, Comparison of Rayleigh-Ritz and

1/3

1/4

1/5

1/6

1/7

1/8

1/10

Rayleigh-Ritz

10.8

3.57

1.53

.766

.419

Least-Squares Z,«, Error (x 10 4)

Order       Least Squares       Order

(7= 0

Least Squares     Order

(7 = 16)

3.85

3.80

3.80

3.91

21.3

7.40

.753

.251

4.74

4.86

4.92

5.36

2.23 3.93

.342

.144

3.99

3.89

We also use Problem 2 to illustrate the oscillatory behavior of the pointwise error in

the least-squares approximation by presenting in Figure 5.1a plot of the error on the

cross-section at y = .5 for two different boundary weights 7=1 (solid line) and 7 =

32 (broken line).  Notice how the larger weight has forced the boundary condition to

be more nearly satisfied.

Figure5.1. Pointwise Error (x 10~5) at y = .5, Problem 2, Least Squares)

We shall refer to Problem 3:

Au = n in Rs   with solution
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m = xy ln(x2 4 y2) 4 ix2 -y2)tan~x y/x 4 (it/2)y2

and boundary data determined accordingly as the "singular" problem, although the

singularity actually occurs in the third derivatives of the solution (that is, m E H3~e).

Thus, we may only anticipate from (3.6) at most 3rd-order convergence in L2, for any

¿■j k space, k > 4. Indeed, in Table 5.11, we see that the L2 error is clearly reduced

as 0(h~3) for a wide range of parameters.  Interestingly, the reduction in L„, is clearly

second order; it appears that for nonsmooth solutions the Lx estimates obtainable via

Sobolev's lemma (see, for example, [1]) may be sharp.

Table 5.11. Problem 3, Least Squares, Bicubic Splines

y ft L2 Error        L2 Reduction Z,„, Error       L^ Reduction

(x 10-*) (x 10-3)

4 1/5 1.23 - 3.57

1/8 .301 3.00 1.39 2.00

1/10 .154 3.00 .892 2.00

64 1/5 .903 - 1.86

1/8 .221 3.00 .724 2.00

1/10 .113 3.00 .464 2.00

1024 1/5 .410 - .699

1/8 .174 3.00 .273 2.00

1/10 .089 3.00 .175 2.00

We mention that we obtain exactly the same convergence orders using quintic

splines and that the same behavior is evidenced with Method K.

We also investigate the error on a subdomain (namely, ifh,, 1) x (}4, 1)) away from

the origin, at which the singularity in the 3rd derivative of the solution occurs.  In-

terestingly, the error reduction appears (Table 5.12) to be the optimal 4th order for

bicubic splines; a similar experiment with biquintics yields approximately 6th-order

reduction.  Hence, the effect of the singularity is not felt globally.

Table 5.12. Problem 5, Least Squares, Bicubic Splines, Subdomain Error

y ft L2 Error        L2 Reduction £„, Error       L„ Reduction

(x 10-6) (x 10~s)

100            1/4 5.35 - 5.49

1/6 .978 4.19                       .929 4.38

1/8 .308 4.01                       .273 4.26

1/10 .127 3.98                       .110 4.08

6.  Other Domains. We define Problem 4:

Au 4 euxy =(2 4 e)ex+y   in Rs,

u=ex+y on bRs.

We may consider this to be merely a problem in which a mixed second partial deriva-
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tive occurs, or as a simulation of a Poisson problem on a parallelogram R   a with

angle at the origin 7r/o¡ (1 < a < 2) in (x', y') coordinates by changing variables:

S = —tan 7r/a, x = Sx' + y', y = \/l 4 82y', e = 2/vT+ô2. We determine that w/a =

sec_1(2/e). The least-squares theory of [7] yields no error estimates. We present here

only results corresponding to e = \¡2   (a = 3/4) with bicubic splines as the approxi-

mating functions. The results for least squares and Method K appear in Tables 6.1 and

6.2, respectively.

Notice that while sensitivity with respect to y is not too marked for least squares,

there is some decrease in error reduction for y = 256, the largest weight chosen.  Con-

trasting, the L2 error reductions of Method K axe definitely 4th order (as proved in [6] )

with only slight sensitivity noted.  Similar experiments with e = V3 produce even more

pronounced evidence that the boundary term should not be overweighted in least

squares as the operator becomes less elliptic (e —► 2), while Method K shows no such

difficulty.

7

4

64

256

Table 6.1. Problem 4, Least Squares, Bicubic Splines

1/4

1/8

1/16

1/4

1/8

1/16

1/4

1/8

1/16

L2 Error
(x 10-6)

24.6

1.49

.0883

21.1

1.25

.0814

20.1

1.52

.146

L2 Reduction

4.04

4.08

4.08

3.94

3.72

3.39

£«, Error
(x 10-5)

9.00

.583

.040

7.63

.520

.034

6.23

.562

.050

Z.   Reduction

3.95

3.86

3.87

3.93

3.47

3.48

7

64

256

1/4

1/6

1/8

1/4

1/6

1/8

L2 Error
(x 10-s)

1.95

.368

.113

1.87

.367

.114

Table 6.2. Problem 4, Method K, Bicubic Splines

L2 Reduction      L„ Error

(x 10-4)

.720

4.11 .151

4.09

4.02

4.06

.049

.623

.135

.046

Z.„ Reduction

3.86

3.89

3.77

3.76

Our next experiment is a true departure from the square. We study two prob-

lems on an ¿-shaped domain RL, i.e., a six-sided rectilinear domain with one interior

angle 3tt/2 and five interior angles tt/2.  For the problem Am = 2ex+y in RL =

R^iiVi, 1) x (0, }£)}, m = ex+y on bRL, we present in Tables 6.3 and 6.4 evidence

that even for this notoriously difficult domain on which to compute we obtain optimal

convergence.
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100

Table 6.3.

ft

1/4

1/6

1/8

1/10

L-Shaped Domain, Least Squares, Bicubic Splines, Exponential Data

)

L2 Error

(x 10   "

1.98

.371

.124

.049

L2 Reduction

4.13

3.81

4.10

¿oo Error
(x 10~s)

7.49

1.57

.518

.223

L„ Reduction

3.85

3.86

3.78

Table 6.4.  L-Shaped Domain, Method K, Bicubic Splines, Exponential Data

100 1/4

1/6

1/8

1/10

L2 Error

(x 10-5)

1.83

.335

.105

.042

L2 Reduction

4.19

4.03

4.14

L^ Error
(x 10"s)

7.23

1.48

.484

.205

L«, Reduction

3.91

3.89

3.85

In order to study a "singular" problem, we orient RL = Rs\{(0, Yî) x (0, l/i)}.

If we consider the problem Am = n in RL, uQá, y) = 0 on 0 < y < M, u(x, 0) = 0 on

xh < x < 1, with the other boundary data computable from the solution

>¿)2 4y2] 4 [(x - M)2 -y2]tan~x-u(x,y) = (x - M)yln[(x
, rt  2

*+2y>

we have placed the singularity at Qá, 0), not the reentrant corner.  Our results in

Tables 6.5 and 6.6 for least squares and Method K respectively show that we obtain

the same 3rd-order L2 reductions and 2nd-order L„ reductions for this domain as in

the case of the square (Problem 3, Section 4).  Even so, it may be that for smaller

meshes the error reductions will evidence a pollution due to the singularity.

7

100

7

100

Table 6.5. L-Shaped Domain, Least Squares, Bicubic Splines,

Singularity Away From Reentrant Comer

Z,„ Error

1/4

1/6

1/8

L2 Error

(x 10-4)

1.79

.522

.226

L2 Reduction L„ Reduction

3.04

2.92

(x 10-3)

2.29

1.03

.583

1.97

1.99

Table 6.6. L-Shaped Domain, Method K, Bicubic Splines,

Singularity Away from Reentrant Corner

1/4

1/6

1/8

L2 Error

(x 10-4)

1.68

.496

.208

L2 Reduction

3.02

3.02

I„ Error
(x 10~3)

2.32

1.05

.592

/,„ Reduction

1.97

1.99
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Finally, an attempt was made to place the singularity right at the reentrant cor-

ner. For both methods, the evidence is that overweighting the boundary term ampli-

fies the ill effect of the geometry and optimal order of convergence is not evidenced.

7.   One-Dimensional Studies; Conditioning Effects.   Quite obviously the same

methods we have been considering here can be applied to linear boundary value problems

of ordinary differential equations. On these problems it is economically feasible to con-

sider quite small mesh sizes and hence, recalling from (5.1) that Hed(ft)ll = Chx 4

C'ddh~°, we may allow ft to become small enough that the error "reductions" are

actually estimates of a.

Since we have not included any discussion of the biharmonic problem, we shall

only mention here that an analogous fourth-order boundary value problem has been

studied, and that least squares evidences 0(h~8) conditioning, while a scheme like

Method K shows only 0(ft-4) deterioration.

Our main concern is with second-order boundary value problems and we shall

study

-m" + Cm=/   on(0, 1), C>1,

(7-1) u(0) = u0,      "(D = "i*

In particular, we take C = l,u = e4x and/= — 15e4*. If we define A<j> = —0" + C0,

then by analogy to (3.2), if we define

(7.2) LixP, x) = (Ail, Ax) 4 yh~3[Hl)x(l) + <A(0)x(0)]

then m satisfies

(7.3) L(u, x) = (/, Ax) 4 7ft-3 [miX(1) + uoX(0)]    for all X EH2(R)

and hence the least-squares method is:

Find w E S2 k such that

(7.4) L(w, x) = (/, AX) + yh-3[ulX(D 4 MoX(0)]

Similarly, if we define

(7.5) K(xP, x) = h3L(xjj, x) 4h[(Ax¡j, X) ~ (*, x") ~ «■', x')]

then the analog of Method K is to find w E S2 k such that

K(w, x) = (f, h3AX + X) + ["iXU) + m0x(0)]

(7l6) + ft[MoX'(0) - MlX'(l)]     for all x E 3* k.

The results presented in Table 7.1 for least squares with biquintic splines show

optimal 6th-order error reduction before roundoff sets in, at which time the indica-

tion of 0(ft~4) conditioning is evident.  The data for Method K in Table 7.2 also

show optimal convergence and roundoff becomes a problem only for much smaller ft,

reflective of the 0(h~2) conditioning.  Notice that even when roundoff appears, the

approximations are extremely accurate.

for all x G S* fc.
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Table 7.1. Two-Point Boundary Value Problem, Least Squares, Biquintic Splines

y               ft L2 Error L2 Reduction /,„, Error L„ Reduction

100           1/10 .188 x lO"5 - .730 x 10~s -

1/25 .790 x 10-8 5.97 .404 x 10-7 5.67

1/50 .121 x 10~9 6.03 .691 x 10"9 5.87

1/75 .172 x 10-9 -0.86 .248 x 10~9 2.52

1/100 .560 x 10-9 -4.12 .791 x 10~9 -4.02

Table 7.2. Two-Point Boundary Value Problem, Method K, Biquintic Splines

7                ft                  ¿2 Error L2 Reduction       L^ Error L^ Reduction

100           1/25 .786 x 10~8 - .396 x lO"7

1/50 .121 x 10~9 6.03 .679 x 10~9            5.87

1/75 .110 xlO"10 5.90 .619xl0-10          5.91

1/100 .678 x lO-11 1.70 .119 x 10-10          5.72

1/125 .109 x lo-10 -2.13 .158 x 10"10       -1.26

8.  Conclusions; Further Investigations. We have clearly demonstrated the poten-

tial of these approximation methods, perhaps especially Method K, as practically appli-

cable schemes, and have shown that we need not worry too much about sensitivity to

boundary weighting or effects of ill-conditioning.  In [19], we have considered several

additional classes of problems, e.g., biharmonic problems, general second-order constant

coefficient equations, several methods for parabolic problems, some penalty methods of

Babuska [3], [22], [23], and some methods involving indefinite bilinear forms due to

Schatz.  We are currently considering problems with variable coefficients via the least-

squares method and the application of these ideas to periodic boundary value problems.
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