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Existence of Gauss Interpolation Formulas

for the One-Dimensional Heat Equation

By David L. Barrow

Abstract.   Let C = {(x(s), t(s)): a < i < b} be a Jordan arc in the x-t plane satisfying

(x(a), f(a)) = (a, f.), (x(b), t(b)) = (b, f „), and t(s) < tt when a < s < b.   Let a <

xt < b.   We prove the existence of Gauss interpolation formulas for C and the point

(x„ f„), for solutions u of the one-dimensional heat equation, ut = uxx.   Such

formulas approximate u(xt, tt) in terms of a linear combination of its values on C.

The formulas are characterized by the requirement that they are exact for as many

basis functions (the heat polynomials) as possible.

1.  Introduction.  We consider the problem of solving the one-dimensional heat

equation

(1) bu/bt = b2u/bx2,

when u is known on an initial-boundary curve C in the x-t plane.  Specifically, we are

interested in formulas of the form

N

(2) uix*, r*) = £ Asuixs, t¡),

i=i

where the points (x¡, t¡) are on C and the weights A, are positive. The formulas are

of Gauss type in the sense that the points and weights are chosen to give zero error

for a maximum number of basis functions (approximately 2TV of them).  The basis

functions used are the heat polynomials of Appell (see Section 3).

Shriver [10] studied such formulas, as well as generalizations to the «--dimensional

heat equation.  He proved the existence of the formulas in certain cases, and described

some numerical results in obtaining and using them.  In [12] and [13], Stroud

discussed similar formulas for the Dirichlet and Neumann problems.  Barrow and

Stroud [2] proved the existence of Gauss formulas for the two-dimensional Dirichlet

problem using topological degree. This result was announced in [14].  Davis and

Wilson [5 ] proved the existence of interpolation formulas for solutions to second

order elliptic equations over bounded domains in R".  However, these were jV-point

formulas exact for TV basis functions, and hence not of Gauss type.

In Section 2 we introduce some definitions and notation, present some results

from the theory of Tchebycheff systems, and then state the main result of this paper,

Theorem 1. Section 3 is concerned with the heat polynomials and some of their

properties.  In Section 4 we introduce some basic properties of finite-dimensional

topological degree and use them to complete the proof of Theorem 1.  Section 5 con-

tains a numerical example from Shriver's thesis.
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2.  Definitions and Statement of Existence Theorem.

Definition 1.  Let t*, a, b be fixed numbers with a < b.   Let C = {(x(s), tis)):

a < s < b} he a continuous, nonselfintersecting curve (i.e., a Jordan arc) in the x-t

plane satisfying (x(a), r(a)) = (a, r*), (x(¿>), ¿*(Z>)) = ib, r#), and f(s) < r* when a < s

< ô.   Then C will be called an initial-boundary curve or data curve, and we let C denote

the collection of all such curves.

Definition 2.  For k a nonnegative integer, let uk he the polynomial solution to

Eq. (1) defined by

(3)
[k/2] yk-2jtj

where [a] means the greatest integer less than or equal to a.   For n a nonnegative

integer, let Hn denote the real vector space spanned by the {uk}k=Q.  If p =

2,k=0akuk with an =£ 0, we say p is a Äear polynomial of degree n.

Definition 3.  Assume w0(s), Wj(s), . . . , vv^is) are continuous functions defined

on an interval a < s < Z>.   These functions are said to be a Tchebycheff system if the

determinant

w0(s0)    wo(si)'- •wo(s»)

w,is0)   Wjis,) • • • w^s,,)

wn(so)   w/,(si)---w«(s«)

is strictly positive whenever s0, s,, . . . , sn satisfy a < s0 < Sj < ■ ■ • < sn < b.

Definition 4.  Let {wkis)}k=0 be a Tchebycheff system.  The moment space

Mn +, associated with this system is the subset of Euclidean space R" +1 determined

as follows:

K+i = { c = (co> Cv..., c„): ct = ja w¡is)do(s)\,

where o(s) traverses the set of all nondecreasing right continuous bounded functions.

We now discuss some basic properties of Tchebycheff systems (cf. [6, Chapter

2]).  The moment space Mn + 1 can be identified with the set of nonnegative linear

functionals on Cn [a, b], the real vector space spanned by the {wk(s)}k=0.  The

interior of Mn+l corresponds to the set of strictly positive linear functionals. (A

linear functional L is nonnegative if p G Cn [a, b] and p(s) > 0 imply Lip) > 0; it is

strictly positive if pis) > 0 and pis) ^ 0 imply Lip) > 0.) L can be represented in

Mn + 1 by the vector iLw0, . . . , Lwn).  Each point c = (c0, ■ • • > c„) GMn + 1 can

be represented in the form

(4) ci = Z ¿/Wf(*/)»
7=1

/ = 0, . . . , n,

where each A¡ > 0 and a < st < s2 < ■ ■ • < s   < b.  The index of the representation
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is defined to be the sum obtained by counting one for each a < s- <b and one-half

for s- = a or b.

The following result is proved in [6, pp. 44-47] : Let c he an interior point of

Mn + l.  Then c has precisely two representations of the form (4) which have index

in + l)/2.  One of these involves the point b, and the other does not.  Furthermore,

there is no representation for c having a smaller index. Theorem 1, below, is analogous

to this result; it is, in fact, a direct consequence of it for certain data curves C.  We

first give two more definitions.

Definition 5.  Let C G C and let a < x* < b.   For an interpolation formula (2)

with distinct points (xt, t¡) €E C, we define its index to be the number obtained by

summing over the points in the formula, counting one if f. < r+ and one-half if t¡ = t*.

Definition 6.  Let C and x* be as in Definition 5.  If a formula (2) with points

on C is exact for all u G Hn and it has index (n + l)/2, we say it is a Gauss interpola-

tion formula (for C, ix*, ?*), and Hn).

Theorem 1. Let C be a curve in C, and let n be a positive integer.  Let a < x*

<b.   Then

(i) there are at least two Gauss interpolation formulas for C, (x*, r*), and Hn;

one of these involves the point ib, r*) and the other does not;

(ii) the vectors («0(x,., /,), uxix¡, t¡), . . . , unix¡, t¡)), i = 1.N, where the

ix¡, tt) are the points in a Gauss formula, are linearly independent;

(iii) there is no interpolation formula for C, (**, /*), and Hn having index

smaller than in 4- l)/2.

3. The Heat Polynomials. In the paper [1], Appell introduced the heat poly-

nomials ukix, t) (Eq. (3)) which he defined as the coefficients of z"/n\ in the power

series expansion of exp(zx + z2t), i.e.,

ezx+z2t= ¿ ukix,t)z"ln\.

k=0

Each uk is a solution to (1), and can in fact be derived as the polynomial solution to

(1) satisfying the initial data ukix, 0) = xk, by a Taylor's series expansion in t.

In [9] Rosenbloom and Widder considered expansions of solutions of (1) in

terms of heat polynomials. Widder [15] showed that the set {uk}k=0 is complete, in

the maximum norm, in the space of solutions to (1) which are analytic in a neighbor-

hood of the origin; i.e., if uix, t) is a solution to Eq. (1) which is analytic for \x\ < c,

\t\ < c, then u can be approximated arbitrarily closely by a finite linear combination

of the functions {«fc}¡°=0. Colton [3, Lemma 2.1] showed that the {uk}k=0 are

complete for the space of strong solutions to Eq. (1) in a region R = {(*, r): |jc| < 1,

0 < t < T} which are continuous on R.   In [4], he extended this result to regions of

the form {(*, r): 0 < t < T, s,(f) < x < s2(i)} where x = s^t) and x = s2(r) are

analytic arcs satisfying Sj(f) < s2(r) for 0 < r < T.   It follows easily that for such

regions (and their translates), a sequence of interpolates (2) will converge, as TV —*■ °°,

to uix*, /*) for any strong solution u continuous on R.
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In this section we develop the properties of heat polynomials required in the

proof of Theorem 1, the most important being Lemmas 5 and 6.

Lemma  1. IfpGHn, then

n     bkp(x0, tQ)   UkjX -XQ,t- tQ)

p(x, t) = £ ——-f.-•
/c=o       bxk K-

Proof. Both functions are polynomial solutions to the heat equation which are

equal on the line t = t0, as follows from a Taylor's series expansion in x of pix, t0).

Hence, by a Taylor's series expansion in t, they are equal everywhere.

Lemma 2.  The functions ukix, t) satisfy

buJx, t)
(0 khx     -kuk_.(x, t),     ft-1,2,...,

and

(ii) ukix, t) = xuk_xQc, t) + 2tik - lyuk_2ix, t),      ft = 2, 3,...  .

Proof.   Both functions in (i) are polynomial solutions to Eq. (1) which equal

fcc*-1 when t = 0, and so they are equal everywhere.  Similar reasoning proves (ii),

where (i) is used to show that the right side of (ii) satisfies the heat equation.

We introduce the following notation:

/fc(c) = ukix, cx2)/xk,      ft = 0, 1, 2.

where c is any real number. Thus,/0(c) = l,/,(c) = l,/2(c) = 1 + 2c, /3(c) = 1 +

6c, etc. The recursion relation in Lemma 2 implies

(5) fkic) = fk^ic) + 2cik - l)fk_2ic),      ft-2, 3,...   .

Lemma 3. There is a sequence {ck}k=, satisfying -1 = Cj < c2 < ■ ■ ■ < ck

< • • • < 0, such that for k = 2, 3, . . .

(0* fkick) = 0 and fkic) >0forck<c<0.

(i0*/*<**-i)<0.
Proof.   Let c2 - -lâ; then (i)2 and (ii)2 are clear. Now let k > 2, and suppose

(i)n and (ii)n are true for n < k, n > 2.  Then by Eq. (5),

4(^fc-i ) = 4-i(<*-,) + 2cfc_.(ft - i)4_2(cW < o,

by the induction hypothesis.  This proves (ii)k.  Now since /k(0) = 1, there is a ck >

ck_1 satisfying (i)k, and the lemma follows by induction.

Lemma 4. Let p &Hn be nonzero and let Z(/e, t) be the number of distinct

zeroes of pix, t) in the interval Ie = {-e <x < e},for a given e > 0. Assume p(0, 0)

= 0.  Then there are positive numbers e and Ô such that exactly one of the following

is true:

(i) ZQe,t)=l,      -8<t<8,

Zile,t) = 0,      0<t<5,

(ii) =1,     r-0,

>2,      -5<r<0,
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,..,s ZiL,t)=l,      0<r<5,(in) v e   '

>3,      -5<t<0.

Proof.  Case (i), 9p(0, 0)/bx i= 0. The Implicit Function Theorem implies there

is a unique solution x = x(r) to pix, t) = 0 in the region \x\ < e, \t\< 5, for sufficiently

small e, 5, and (i) is proved.

For cases (ii) and (iii), we assume 9p(0, 0)/9jc = 0.  Then by Lemma I,pix, t)

= ~Lk==Nbkukix, t), where TV > 2 and bN # 0. Without loss of generality, we take

bN=\.

Case (ii), N = 2m.  Then pix, 0) = x2m + bN+ 1xN+l + • • • , so there are

e > 0, 5, > 0 such that pix, 0) > 0 for 0 < |x| < e and pi±e, t)>0 for |f|< S,.

It follows from the maximum principle [8, p. 168] that pix, t) > 0 for \x\ < e, 0 <

t < 5j.   For t < 0, we consider pix, t) on a curve r = ex2, c < 0. On such a curve,

pix, t) = pix, ex2) = x2mfNic) + bN+lxN+1fN+1ic) +■■■   .  Hence, for |x| small

and nonzero, the sign of pix, ex2) is equal to the sign of fNic).  By Lemma 3, there

is a c_ < 0 such that fNic_) < 0. We can therefore find a 5 < S j so small that for

-5 < t < 0, pix, t) changes sign at least twice on Ie, and hence has at least two zeroes

there.  This  proves (ii).

Case (iii), TV = 2m + 1.  We first apply the results of (ii) above to bpix, t)¡bx to

obtain e,^ > 0, Sj > 0 such that bpix, t)/bx > 0 for \x\ < el and 0 < t < 5,.  Now

since pix, 0) = x2m + 1 + bN+1xN+1 + • • • , there are 0 < e < ep 0 < §2 < 5X

such that pix, 0) < 0 for -e < x < 0, pix, 0) > 0 for 0 < x < e, p(-e, t) < 0 for

|fI < S2 and pie, t) > 0 for |r| < ô2.  It follows that pix, t) has exactly one zero on

Ie when 0 < t < 52.  For r < 0, there is a c_ < 0, as before, such that fNic_) < 0,

and we deduce that for some 0 < S < 52, pix, t) has at least three sign changes on 7e,

and hence at least three zeroes there, when -5 < t < 0.  This completes the proof of

the lemma.

Remark.   If p G Hn and pix0, t0) = 0, we can use Lemma 1 and a change of

variables to prove that a corresponding result holds near (x0, t0).

Lemma 5. Let z¡ = (x¡, t¡), i = 0, 1, . . . , k + m be distinct points such that

t¡ = t0, i = 1, . . . , k and t¡ < t0, i = k + 1, . . . , k + m.  Let n = k + 2m.   Then

the point evaluation linear functionals fz., defined by fz.(p) = PÍz¡), are linearly

independent on Hn.

Proof.   The conclusion of the lemma is clearly equivalent to the statement that

the vectors (w0(z,), «i(z,.), ■ ■ . , uniz¡)), i = 0, . . . ,k + m aie linearly independent.

Suppose that this set is dependent.  Then so also is the set obtained by adjoining the

vectors (9«0(z(.)/9x, . . . , bun(z¡)lbx),  i~k+l,...,k + m.   Hence there is a non-

zero p G //„ such that piz¡) = 0, i — 0, 1,. . . , ft + m and bpiz¡)/bx = 0, / — ft + 1,

. . . ,k + m.  We will show that this is impossible.

Let T> 0 be such that \t¡\ <T,  i = 0, 1, . . . , k + m.   For each t, let Z(i) be

the number of distinct zeroes of pix, t). We claim that Z(- T)> n + 1 ; this will imply

that p(x, -T) = 0, from which p(x, t) = 0 follows.

Let pix, t) have degree r < n.   Then pix, t) = a^ + Rix, t), where Rix, t) has

degree less than r.   Hence, there is some X > 0 such that pix, t) ¥= 0 for \t\ < T and
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bc| > X.   For |r| < T, let x = yx,y2, . . . , y¡ be the zeroes of pix, r).   For e > 0,

let K be the compact set

K = [-X, X]\()Ie+ yt,
i=i

where Ie + y¡ is the interval (yt — e, y¡ + e).  Then Tí is a positive distance from the

zero set of pix, t), so there is a 5 > 0 such that

Z(0 = £Z(/e+.y(,r),
1=1

when |f - t| < Ô.  Let j\, j2, /3 be the number of zeroes of pix, t) of type (i), (ii),

or (iii), respectively, of Lemma 4.  Then by that lemma, and the remark following it,

for S sufficiently small, Z(t) = /, + ;3 for r < f < f + S, Z(t) = j\ + j2 + /3 for f = r,

and Zii) > j1 + 2/2 + 3/3 for t - 5 < f < r.  Hence, as f decreases, Zit) is nonde-

creasing, and it increases by at least two due to each of the m points where t¡ < f0.

Since Zit0) > k + 1, Z(-77) > ft + 1 + 2m = « + 1, as claimed.

Corollary.   A formula of the form (2) with points on a curve CGC and

which is exact for all u G Hn cannot have index smaller than in + l)/2.

Proof.   Let / be the index of the formula.  If the formula has ft points, ft = 0, 1,

or 2, each contributing one-half to the index and m points each contributing one then

I = m + ft/2.  If n = ft + 2m (or is larger), Lemma 5 implies that the functional of

evaluation at (**, f*) cannot be a linear combination of the functionals of evaluation

at the points in the formula.  Hence, n < 21, or / > (n + l)/2.

Lemma 6. Let F be the parabola

x = s,    t = f0 + eis -x0)2,    c>0,    Sj<S<S2.

Then the functions {uk}k=0, when restricted to F, form an extended Tchebycheff

system of arbitrary order (see Karlin and Studden [6, p. 6]).

Proof.    Let vk(s) = uk(s, t0 + c(s - x0)2), and suppose that p(s) =

~Lk=0akvk(s) has at least n + 1 zeroes, counting multiplicities, on s, < s < s2.  Let

n

l(x, t) = £ akukix +x0,t + f0).
fc = 0

Then q G //n, and by Lemma 1,

"    bkqjO, 0) ukjx, t)

fc = 0

Hence, the polynomial

**• » = z   dxk     «

»    bkqjO, 0) /fc(c>fc
«7(s, cs2) = £   ——-rp- = P(s + x0)

fc=o      bx

has at least n + 1 zeroes on Sj - x0 < s < s2 - x0. Therefore, 9kc7(0, 0)/bxk = 0,

ft = 0, 1, . . . , n (since /fe(c) > 0), and this shows p(s) = 0.

4.  Proof of Theorem 1.  To complete the proof, we shall need the concept of

the finite-dimensional degree of a mapping (see Schwartz [11], or Ortega and
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Rheinboldt [7] ).  Let D C RN he an open bounded set, and let F: D —* RN be con-

tinuous.  If q G RN and q ^ F(bD), then the degree F with respect to D and # is

defined, and will be denoted by deg(F, D, q).  The following are some basic properties

of the degree:

(i) If F G CliD) and JF(x¡) * 0 whenever F(x,.) = q (where JF is the Jacobian

of F), then there are a finite number of points x, G Z) where F(x;) = q and

deg(F, £», c7) = 2(.sgn/F(^.).

(ii) If deg(F, D, q) # 0, there is at least one point xGD such that F(x) = q.

(iii) Let Fix, X) be continuous on fl x /, where X GI — [0, 1].   Let F(x, X) =£ <?

for x G 9Z) and X G 7.   Then deg(F(-, X), A <?) is constant for X G I.

Let CG C be as in the statement of Theorem 1, and let C' G C be a parabola as

in Lemma 6, of the form f = ais) = f0 + c(s - *0)2, a < s < b, c > 0.  We will use

the theory of Tchebycheff systems to prove the theorem for C', and then use degree

theory to prove it for C.

Let vkis) = ukis, ais)), ft = 0, 1, . . . , n.   Then {vkis)}k=0 is an extended

Tchebycheff system by Lemma 6.  Let

(6) q = ("0(**> f*), ",(**, f*), . . . , «„(**, f*)).

Lemma 7.  The point q is an interior point of the moment space Mn +1 deter-

mined by the functions {vkis)}k=0.

Proof.   Let Vn be the span of {ufc(s)}"=0. There is a natural isomorphism

between Hn and Vn determined by restriction to C', i.e.,

n n

pix, t) = £ akukix, t) -* £  afeufc(s) ■ pis).
fc=0 fc=0

Let Z, be the linear functional defined on Vn by Lp = p(jc+, f*).  Then <7 = (Lu0, Lux,

. . . , Lun) G Int Mn+ j if Z, is positive.  But this follows from the maximum principle

for solutions to the heat equation on the region bounded by C' and t = t* (see [8,

p. 168]), and the lemma is proved.

We now let Cx,  0 < X < 1 be a continuous deformation of C' into C such that

each CK G C.  Let Cx he given parametrically by {(xis, X), tis, X)): a < s < ¿>}; with

C0 = C' and C, = C   Let

(7) ^(s, X) = ukixis, X), f(s, X)).

To proceed further, we must consider separate cases.

Case (i), n = 2m and the formula does not involve the point Q), f*).  Let D be the

subset of R" + l defined by

D = {x = (A0, A.,...,Am,s,.sm): 0<A( < 1,/- 0.m

and a = s0 < Sj < s2 < • • • < sm < b}.

Let Fix, X) = iF0ix, X), F,(x, X), . . . , Fn(x, X)) be defined by

m

Ffx, X)= £ yl^^.X).
fc=0



GAUSS INTERPOLATION FORMULAS 31

It is clear that F is continuous on D x [0,1]. We observe that a solution to the equa-

tion Fix, X) = q with q defined by (7) corresponds to a Gauss formula for Cx, (x*, f*),

and//„.

Lemma 8. IfxGbD, then Fix, X) =£ q.

Proof.   If x G bD, one or more of the following must be true:

(i) A¡ = 0 or 1 for some i = 0, 1, . . . , m.

(ii) Si = s¡+ j for some i = 0, 1, . . . , m - 1.

(iii) sm = b.

In any of the three cases, a solution to Fix, X) = q would imply the existence of an

interpolation formula, having index smaller than (n + l)/2, in contradiction to the

Corollary to Lemma 5 (observe-that if some A¡ = 1, then A- = 0 for all/ ¥= /, since

F0ix, X) = u0ix*, X*) means Xkn=0Ak = 1).

It follows that deg(F(-, X), D, q) is defined for X G [0, 1] and, moreover, is

constant in X.  Hence, if we can show that deg(F(-, 0), D, q) =£ 0, property (iii) of

degree will imply the existence of the desired formula for C.

Lemma 9. Deg(F(-, 0), D, q) ^ 0.

Proof.   From Lemma 7 and the theory of Tchebycheff systems, there is a unique

je G D such that F\x, 0) = q.  We claim that JFix) # 0.

JFix) = det

"o(so)     üo(sl) - ' ' Vo(sm)    ^lüÓ(Sl) ' - ' Amv'o(Sm)

"l(s0)     Ul(Sl) - • ' ul(sm)     -Vi(Sl) • • " Amv\(.Sm)

vn(so)    Vn(sl) • ■ • Vn(sm)    AlVn(s0 ' " ' AmV'n(sm)

We may factor out the positive A ¡'s, and the resulting determinant is nonzero since

the {ufc(s)} form an extended Tchebycheff system, by Lemma 6.  Hence, property (ii)

of degree shows that deg(F(-, 0), D, q) = ± 1.

The proofs for the remaining cases are similar.  We will merely indicate the sets

D and the functions F to be used.

Case (ii), n = 2m and the point (b, f*) is involved.

D= [x = iA0,...,Am,s0, ...,sm_,): 0 <A¡ < 1, a <s0 < • • • <sm = b}.

Fix, X) is the same as before.

Case (iii), n = 2m + 1 and (ft, f*) is not involved.

D= {x = iA0,...,Am,s0,..., sj: 0 < A¡ < 1, a < s0 < • • • < sm < b}.

Fix, X) is the same as before.

Case (iv), n = 2m + 1 and (ft, f*) is involved.

Z>= {x = iA0, . . . ,Am + ,,sl, . . . ,sm): 0<A¡< 1,

a = s0<s, <•••<«„+, =b},

m + l

F¡ix, X) =   £ Akv¡(sk, X),      i - 0,1.n.
k=0
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This completes the proof of statement (i) of Theorem 1.  Statements (ii) and (iii)

follow from Lemma 5 and its Corollary, respectively.

5.  An Example.  In his thesis [10], Shriver calculated several interpolation

formulas, and then used them to approximate the solution to certain initial-boundary

value problems for which the exact solution is known. We shall present his results for

the following problem [10, p. 104] :

bu     b2u ,   .      . ,      .   „
T7~ —7.       — 1 < JC < 1,   f > 0,
ot     bx2

ui-l,t) = uil,t) = 0,

uix, 0) = 100 cos(7tx/2).

Analytic solution:

uix, t) = 100e-(,r/2>2i cos(ttx/2).

The TV-point formulas (2) calculated had all points (x¡, t¡) below the Une f = f*.

Since the index of such formulas is 2TV, they are exact for all heat polynomials of

degree 2TV - 1 or less.  The formulas were calculated by solving numerically the system

of 2TV nonlinear equations

N

£ A¡ukix¡, t¡) = ukix*, t *),      ft = 0, 1, . . . , 2TV - 1.
i=i

In Table 1 we list formulas for the point (jc*, f*) = (.2, .4).

Table 1

Interpolation Formulas for (**, f#) = (.2, .4)

TV A¡ x¡ t¡

2 .4588 3147  -.7435 5958    0.0

.5411 6853  1.0 .4171 7446(-l)

3 .2281 3315 -1.0 .1148 8151

.3726 6462   .7763 2581Í-1) 0.0

.3992 0223  1.0 .1978 9729

4 .1637 2791 -1.0 .1803 6319

.2704 7010  -.4838 2580    0.0

.2507 8416   .6346 7467    0.0

.3150 1712  1.0 .2477 1193

5 .1245 8550 -1.0 .2145 2832

.1020 4925 -1.0 .2681 7914(-1)

.3548 5377   .2289 185 3(-l) 0.0

.1653 0672  1.0 .2257 8853(-1)

.2532 0477  1.0 .2749 8547



gauss interpolation formulas s

Table 2

Approximate Solution of an Initial-Boundary Value Problem

ix*,t*): (.l,.l)    (.2,.l)    (.3, .1)    (.1,2) (.2, .2)    (.3,2)

Exact Solution:     7.7172    7.4310    6.9610    6.0298 5.8062    5.4396

TV

2 7.5884    7.2589    6.8005    5.3908 5.1908    4.8631

3 7.7261    7.4395    6.9691    6.0806 5.8527    5.4799

4 7.7171    7.4308    6.9616    6.0276 5.8040    5.4376

5 7.7172    7.4310    6.9618    6.0299 5.8063    5.4397

ix*,t*): (.1,3)   (.2, .3)   (.3, .3)   (.1..4) (.2, .4)   (.3, .4)

Exact Solution:     4.7114   4.5366   4.2502    3.6812 3.5447    3.3209

TV

2 3.4244    3.2974    3.2020    1.6304 1.7987    1.8694

3 4.8114    4.6334    4.3416   3.8415 3.6990    3.4654

4 4.7040    4.5295    4.2435    3.6643 3.3219    3.3057

5 4.7119    4.5371    4.2506    3.6828 3.5462    3.3224

In Table 2 we give the results of applying the formulas to the problem above.

Five-point formulas are seen to produce 4 to 5 digit accuracy throughout the solution

space.
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