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Class Groups of Quadratic Fields

By Duncan A. Buell

Abstract.   The author has computed the class groups of all complex quadratic num-

ber fields Q(\f^~D) °f discriminant - D for 0 < D < 4000000.   In so doing, it was

found that the first occurrences of rank three in the 3-Sylow subgroup are D =

3321607 = prime, class group C(3) x C(3) x C(9.7)   (C(n) a cyclic group of order

n), and D = 3640387 = 421.8647, class group C(3) X C(3) X C(9.2).   The author

has also found polynomials representing discriminants of 3-rank > 2, and has found

3-rank 3 for D - 6562327 = 367.17881, 8124503, 10676983, 193816927, all prime,

390240895 = 5.11.7095289, and 503450951 = prime.   The first five of these were

discovered by Diaz y Diaz, using a different method.   The author believes, however,

that his computation independently establishes the fact that 3321607 and 3640387

are the smallest D with 3-rank 3.

The smallest examples of noncyclic 13-, 17-, and 19-Sylow subgroups have

been found, and of groups noncyclic in two odd p-Sylow subgroups.   D = 119191 =

prime, class group C(15) X C(15), had been found by A. O. L. Atkin; the next such

D is 2075343 = 3.17.40693, class group C(30) X C(30).   Finally, D = 3561799 =

prime has class group C(21) X C(63), the smallest D noncyclic for 3 and 7 together.

Introduction.   Throughout this paper, —D < 0 will denote the discriminant of

an imaginary quadratic number field, and "smallest" will refer to D, not to - D, so

that "smallest D" means "largest discriminant."

The author has computed the class groups of all quadratic number fields Q(y/-d),

d > 0, of discriminant - D, for 0 < D< 4000000.  By a theorem of Gauss, if D has

k distinct prime factors, the 2-Sylow subgroup of the class group has rank k — 1.  Apart

from this, the groups tend to be cyclic.  Even the 2-Sylow subgroup tends to be k - 2

elementary 2-groups and one large cyclic factor collecting the other powers of two in

the class number, so that the 2-Sylow subgroup of the subgroup of squares is cyclic.

In computing the 2-Sylow subgroup, then, we actually computed that subgroup of the

subgroup of squares, and shall, by abuse of language, call this the 2-Sylow subgroup,

calling the group cyclic if the subgroup of squares is.  The subgroup of squares is, in

the terminology of Gauss, the principal genus, and a discriminant for which the prin-

cipal genus is noncyclic is called irregular.  Thus, what we call a discriminant with a

noncyclic 2-Sylow subgroup is a discriminant which Gauss would call irregular.

Statistics were kept on the frequency of occurrence of noncyclic groups, and of

the noncyclic p-Sylow subgroups for p = 2, 3, 5, 7.  Special listings were also made of

the noncyclic p-Sylow subgroups for p > 11, of the p-Sylow subgroups C(pa) x C(pb)

with a and b>2, and of the class groups noncyclic in more than one p-Sylow sub-

group.  We note here that 95.74% of the class groups turned out to be cyclic.  The
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method of computation is outlined in Appendix A; the results are listed and discussed

in Appendix B.

In the process of computation, we found that D - 3321607 = prime has class

group C(3) x C(3) x C(9.7), and D = 3640387 = 421.8647 has class group C(3) x

C(3) x C(9.2). These are the smallest D for which the class group has p-rank greater

than two, for p > 3.  That an infinity of discriminants with 3-rank 3 exists has been

proved by Craig [1], and numerous examples were given by Shanks and his collabora-

tors [2] -[5], the smallest D being 63199139.

We developed a method for obtaining quartic polynomials representing, for all

squarefree negative integer values within certain bounds, discriminants with 3-rank > 2.

With this method, we found six more discriminants with 3-rank 3. The method and

these immediate results are detailed in Section 1.

Subsequent to our investigation, we learned that Diaz y Diaz [6], [6a] had made,

by an entirely different method, an extensive search for discriminants with 3-rank > 3,

and had found, in addition to our five smallest D, ninety-four others smaller than

63199139.  We feel, however, that our computation is the first complete verification

of the fact that 3321607 and 3640387 are the smallest D with 3-rank 3.

In Section 2, we investigate an identical relation between forms obtained by the

method of Section 1, and obtain a connection between the group composition of forms

of discriminant — D and the group law of the elliptic curve Y2 = 4X3 - D.  Finally,

in Section 3, we consider problems and conjectures of our method.

All of the computations were made on the IBM 370/158 computer at the Uni-

versity of Illinois at Chicago Circle, Chicago, Illinois; we thank the University for mak-

ing the computer facilities available.

1.   Let D be a positive squarefree integer.  The solutions in integers of the Di-

ophantine equation

(1) 4a3=b2+c2D,      0<a<s/D/T,0<b,(b,c)<2,

correspond to ideals  û = (a, {b + cyf^D)/2) in the ring of integers of Q(s/^D) whose

cube is principal:  a3 = ((b + c\J^D)¡2)   [4].  More simply, if (a, b)= 1, there is a

quadratic form (a, b, a2) of discriminant -c2D whose cube is principal:

(a, b, a2)2 ~ (a2, b, a) ~ (a, - b, a2) ~ (a, b, a2)'1.

Let us assume c = 1 in (1), and drop the restriction on the size of a, and call this

Eq. (la). We seek to produce discriminants -D with a large 3-rank in the class group

by obtaining parametric representations

(2) -D - A(x) = S* - 4C3 *'S» - 4C3 = S23 - 4C3

where the S¡ and C¡ are polynomials in x:

S.(x) = x2 + a.x + b.,      C.(x) = ex + d..

Then (2) implies

(S. + S.)(S. - S.) = 4(C. - Cf)(C2 + C.C. + C2),      1 < i, / < 3, i < /.
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If we insist that the linear term on the right divides the linear term on the left, that is,

(3) S, - S2 « K(Cl - C2),      St - S3 = K(C1 - C3),      5, - S3 = K(C2 - C3),

for K an integer, we obtain the equations:

b\ - M\ = b\ - 4d¡,   (bl - b2)l(dl - d2) = K,   (a, - fl2)/(c, - c2) = AT,

(4) ax = rX/SXe, - c2) + (2¡K)(d2(2c2 + c,) + dl(2cl + c2)),

2£ = (2Cj + c2)2 + 3c2

and two other sets of equations from the latter two of Eqs. (3). Considering the last

equation in each set, we get, by the theory of automorphs of the form (1,1, 1), that

cx + c2 + c3 = 0. Using this, we can reduce the relations among the coefficients to

the following:

(bx - b2)/(dl - d2) = (£, - b3)/(dl -<< \ = (b2- b3)/(d2 - d3) = AT,

(5)
2K = (2« + u)2 + 3v2,      (Cj, c2, c3) some permut.   jn of (», v, - u - v),

ax = Cj/: + (2lKXcldl + c2d2 + c3d3) = cxK + M,

a2 = c2K + M,      a3= c3K + M.

Thus, if we assume bv b2, b3, dv d2, d3, K, u, and v satisfy the first three of Eqs. (5),

we obtain, except in certain special cases, six distinct polynomials A(x) for each solu-

tion («, v, - u - v), corresponding to the two 3-cycles of the solution.  (If K = 6w2

we have u = v, and if K = 2«2, we have u = - v.  In the former instance only one

cycle results; in the latter, only one cycle up to a change of sign, which, as we shall

note, does not affect the polynomials obtained.)  It appears to be the case, though we

have not yet proved it, that exactly one of the two 3-cycles yields integers a¡, while

the other yields only rational solutions in general.  In the special cases, the a¡ appear

to be integral.  Since the triple (cx, c2, c3) is determined only up to a sign change, we

choose as a convention that the largest of the \c¡\ should be chosen negative, noting

that A(Cj, c2, c3, x) = A(-Cj, — c2, -c3, -x).

We show now that only the first two of Eqs. (5) are independent; for all K such

that the first two equations are solvable, 2K = u2 + 3v2 has integer solutions « and

v.  The first equation can be partly rewritten

(b1 + ¿2X*, - b2) = (di - d2)((2d2 + dx)2 + 3d2).

Dividing by 4(d1 - d2), we obtain

((bl + b2)/2)(K/2) - {{2d2 + dx)2 + 3rf2)/4.

The left-hand side is thus the norm of an integer in Q(y/- 3).  The only reason, then,
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that 2K = u2 + 3v2 might not be solvable would be that p\(K/2) and p\((bx + b2)/2),

for p a prime which is = 2 modulo 3.  But then we must have p\dx and p\(2d2 + d^);

there are no primitive representations p2 = u2 + 3v2 for such p.  That p\(K¡2) and

((¿>j + b2)/2), however, implies that p\bx and p\b2, so that p2\-D = b\ - Ad\.  Thus,

if D is squarefree, 2K = u2 + 3v2 has integer solutions u and v.

We now have a list of discriminants A(x), and we establish conditions for inde-

pendence of the forms.  If (Q, P, Q2) and (S, R, S2) lie in the same or in inverse class-

es, then we can find integers a, b, c, d, such that ad - be = + 1 and that

AQS = (2Qa + Pc)2 - c2A(x),      AQS = (2Sd - RcJ2 - c2A(x),

where ct equals c if the classes are the same, and - c if they are inverse to each other.

If A(x) < 0 and AQS < - A(x), we must choose c = 0. This forces S = Qa2 and

Q = Sd2, which imply S = Q.  Thus, of the forms (C¡, S¡, Cf), if we can satisfy 4(7,6}

< — A(x) for A(x) < 0 and /' =£ /, we are guaranteed that the 3-Sylow subgroup of the

class group of Q(\/A(x)) has rank at least two.  (That we cannot guarantee rank three

by the existence of the third form will appear in Section 2.)

It remains to be seen that solutions (d¡, b¡), i - 1, 2, 3, and K exist for the first

two of Eqs. (5).  The smallest D for which 3\h(Q(\f-D)) is D = 23, and we do indeed

find solutions. However, since A(x) is a quartic polynomial, it assumes only finitely

many negative integer values, and for these A{x) the discriminants less than zero are

much too small to be interesting.

The appearance of D = 3321607, however, with thirteen pairs of solutions to

(la), provided numerous useful polynomials A(x). From (94, 27), (152, 3275), (538,

24891), K = 56, (cv c2, c3) = (4, 2,- 6), we get

A(x) = (x2 + 133x + 27)2 - 4(4x + 94)3 = (x2 + 2\x + 3275)2 - 4(2x + 152)3

= (x2 - Alix + 24891)2 - 4(-6x + 538)3.

This A(x) is negative for integers x, -8 < x < 75, and A(70) = - 6562327 =

- 367.17881 has class group C(3) x C(3) x C(9.2.7).

From (152, -3275), (284, 9397), (1868, 161461), K = 96, (c\, c2, c3) =

(4, 4, - 8), we get a A(x) which is negative for integers x, — 1 < x < 201.  A(60) =

- 193816927 = - prime has class group C(3) x C(3) x C(3.5.53).  A(108) =

- 390240895 = - 5.11.7095289 has a class group whose 3-Sylow subgroup is C(3) x

0(3) x C(27).

From (128, -2251), (202, 5445), (2374, 231333), K = 104, with (c1;

c2, c3) = (6, 2, - 8) (which has nonintegral a¡), we find that A(169) = - 503450951 =

- prime has class group C(3) x C(3) x C(27.103).

We now take the constant in A{x) to be -6562327, and choose (118, 99),

(248, 7379), (418, 16899), for which K = 56.  If we let (cv c2, c3) = (2, -6, 4),

A(7) = - 8124503 = - prime has class group C(3) x C(3) x C(9.29); if we let (c,, c2,

c3) = (A, 2, -6), we find that A(7) = - 10676983 = - prime has class group C(3) x

¿(3) x C(3.5.7).
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2.  The group law on an elliptic curve may be described simply by saying that

collinear points sum to zero.   That is, if the three (counting multiplicities) points of

intersection of the curve with a straight line arePl,P2, andP3, thenPx + P2 + P3 = 0.

The composition of binary quadratic forms is considerably more complicated, in

part because the elements of the group are not the forms themselves, but the classes

of forms equivalent under the transformations of the modular group.  One algorithm

for composition is as follows:

To compound (a, b, c) with (a, b', c'), both of discriminant -D, let b" =

(b + b')¡2, m = (a, b"), and n = (a', m). Solve the equation ax + b"y = m for x and^,

and then the congruence

mz/n = (b" - b)x - cy    (mod a'/n)

for z.  If we then let A = aa'/n2, B = b + 2az/n, and C = (B2 + D)/AA, the class of

(A, B, C) is that compounded of the classes of {a, b, c) and (a', b', c). In general,

(A, B, C) will not be reduced.

Now, let D = - 1   (mod 4) be a squarefree positive integer, and let (d¡, b¡), i =

1, 2, 3, be the points of intersection of the elliptic curve Y2 = AX3 - D with the line

Y = KX + L. We assume that dv bv d2, b2, and K are integers, and let Fx = (d1,

blt d\) and F2 = (d2, b2, d\) be the corresponding forms. We note, as symmetric

functions of the roots, that

(6) K2IA = dl + d2 + d3    and   L2 + D = Adxd2dy

By the first of these, K is even if and only if d3 (and hence b3) is integral.  In this

case, we have a third form F3 - (d3, b3, d3).

If K is odd, then d3 = r/4 and b3 = m/4, for t and w odd integers.  We notice

4r3 = (2m)2 + 64Z); barring the restriction on the size of a, we have a solution of (1).

The ideal which we obtain is a = (r, u + Ay/- D).  Dividing (1) by 4, we notice that

t = 1   (mod 8), and we rewrite the basis of a as follows:

0 = if, u + Ay/^D, «(1 - 0/4 + (1 - t)y/^D) = (t,ù + Ay/^D, u(l - 0/4 + y/^D)

= (f, w(l - 0/4 + V^D) = (t, h(1 - 0/4 + rt + y/^D) = (r, U),

where r can be any integer. We choose r to be an odd integer such that tt(u — Ar).

Then the norm of U is ts, where s is prime to t, and / is the norm of a.  Since t is

odd, we can choose as basis t and U/2: a = (t, £//2). We note that since t = 1   (mod

8), and r is assumed odd, U is odd, and (U + y/- D)/2 is an integer in Q(yf^D).  By

the correspondence between classes of ideals and classes of forms [7], a induces a

form (r, U, v) of discriminant -D, and has t and U/2 as an integral basis. We choose

an equivalent form for F3 :

F3 = (r, u(l - 0/4 + t, ux).

We now state and prove the following

Theorem.   With the above notation,

F  o f  o f  ~ (1; 1; (£, + i)/4) = grwp i¿entity.



CLASS GROUPS OF QUADRATIC FIELDS 615

Thus, the composition of classes of forms coincides with the group law of the elliptic

curve.

Proof.  We rewrite the first of Eqs. (5):

00 (¿, + b2)K = A(d\ + dyd2 + d\).

If pic?, and p\(bx + b2), for an odd prime p, then p\d2. This, however, implies that

p|(ôj - b2), hence p\bx, and p2|D.  Thus, in compounding, m and n are powers of 2

(or are 1).  Simple congruences modulo 8 show that dx and d2 (and d3, if it is integral)

are even if and only if D = - 1   (mod 8) and odd if and only if D = - 5  (mod 8).

We now distinguish three cases:

(i) K is even.   We know that dx - d2 is even, and that by and b2 are odd. We

write ¿>j = Ak + r, b2 = Aj + s, with r, s = + 1 or + 3. Then

bx-b2= A(k - /) + (r - s) = K(dx - ¿2) = 0   (mod 4).

Hence r = s, and b" = 2(k + j) + r, which is odd.  Thus n = 1.

We now compound the first and second forms, defining b", m, and n as above,

and solving dxx + (bx + b2)y¡2 = m for x and y.  Then

mz = (b" - bx)x - d2y    (mod d2)

= (b2 - bx)x/2 - d\y = (-Kl2)x(dx - d2) - d\y

= (- K/2)xdx - d\y s (- tf/2Xm - 7(6, + *2)/2) - d\y

= (-Km/2)+yK(bx + b2)/A - d\y.

But a:(6j + i2)/4 = d\ + dxd2 +d\=d2x   (mod d2), hence

wz = - ATot/2   (mod d2),

z = -K/2    (mod d2),    since (/w, i/2) = 1.

The compounded form is thus (dxd2, b¡ - Kdv C), for some integer C.  From

Eqs. (6), we see that C = d3, so the composition is, remembering bx - Kdy =

b2 — Kd2 = b3 — Kd3 = L,

ííi^. ¿3 - Kd3, d3) ~ ¿r¿ - br d\) ~ (d3, b3, d\r ».

(Ü) K is odd, andD = - 1   (mod 8).   From (7), 4|(Z>! + b2), hence ¿>j = - b2

(mod 4). Write bt = Ak + r, and b2 = Aj + r + 2. Then K = (A(k - j) -2)/(dl - d2),

which implies that exactly one of dl/2 and d2/2 is odd. We assume, without loss of

generality, that dt/2 is odd.  Then m = n = 2. We solve for x, y, and z as before, and

find that z = - K (mod d2/2). The compounded form is then (dxd2/A, by - Kdx, t)

where we again use (6) to find the third term of the form.  Since t = 1   (mod 8), and

(« - AY)/4 = L, which is odd, we see that (K - u)/A is odd.  This implies that

(u - Kt)lA = (1 - 0"/4 + t   (mod 20;

hence
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FX°F2~ (dxd2/A, L, 0 ~ it, - (1 - 0«</4 + t, vx) ~ FJ1.

(iii) K is odd, and D = - 5  (mod 8).  Since ctj is odd, m = n = 1. Again, we

solve for x, y, and z, and find this time that z = (d2 - ÍQ/2  (mod <i2).  Then Fx o

F2 ~ (dyd2, L + dxd2, J), where / = ((¿ + d,^)2 + D)/Adxd2.  Using (6), we find

-L - dyd2 + AJ = L + t, so (<¿l(¿2, ¿ + <¿l(i2, J)~ (J, L + t, t).  Now, (m - Kt)¡A

= Z, is even, and r = 1   (mod 8); we see K = u  (mod 8).  This is sufficient to prove

that

L + r,= a(l - 0/4 + f   (mod 20;

hence

(/, L + t, 0 ~ (Í, - (1 - 0"/4 + t,vx)~F3x,

and the theorem is proved.

3.  The odd discriminants of complex quadratic number fields are congruent

either to — 1 or -5 modulo 8.  We have so far applied the method of Section 1 only

to the former type, beginning with —3321607 as the constant term.  The odd discrim-

inants thus obtained are always congruent to — 1 modulo 8 because the a of Eq. (la)

are always even.  One could also begin with the constant term — 3640387 = - 5 (mod 8),

but the series which arise are inherently less useful, half of the discriminants being even

and not fundamental.  (It follows from (6) and the representation of 2K that the c¡

are even if D = 1   (mod 8) and that exactly two of the c¡ are odd if D = 5  (mod 8).

Thus, for D = 5  (mod 8), the a¡ are even, if they are integral, hence S¡(x) is even for

odd integers x.)

Using Scholz's theorem [8], we can deduce the 3-rank of the real fields Q(y/3D)

from that of the complex fields Q(y/— D).  However, in all of the eight discriminants

found the 3-rank of the corresponding real field is, by the theorem, only two.

The major question which we have not been able to answer has already been

raised:   Why should one 3-cycle of solutions to 2K = u2 + 3v2 yield integer coef-

ficients (2;, and one 3-cycle not do so?  We have noted further that when four 3-cycles

exist, as for K = 728, only one of these yields integer values a¡.

The fact that quartic polynomials represent discriminants of complex quadratic

fields only finitely many times is a limiting condition on the method we have develop-

ed. We considered cubic and sextic polynomials first, as they do not have this property.

If, in (2), one lets the S¡ and C¡ be linear, one finds easily that there are no solutions

with rational integer coefficients.  We were successful in solving (2) with the S¡ and

C¡ monic cubic and quadratic polynomials, respectively, so that A(x) has leading term

— 3x6.  However, A(x) was inherently not squarefree except in rare instances.   For

this reason we concentrated our attention on the quartic polynomials of Section 1.

Appendix A.  The basic method of computation of the class numbers and class

groups was suggested by Atkin, who used it to compute some tables of his own.  The

method of computing the class group was published by Shanks in [9].  The program

was written entirely in FORTRAN, and was run in segments, each segment computing

the class numbers, groups, and statistics for a block of discriminants of length 200000,
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even and odd discriminants comprising different segments.  (Thus, one such segment

contained the odd discriminants -D, 600000 <D< 800000.) An array of length

50000, CLANO, was used to store the needed information on the discriminants,

CLANO(A/) corresponding to D = D(N) = AN + i + S, where S is the appropriate

multiple of 200000 for the program segment being computed, and i is 0 or -1, de-

pending on the parity of the discriminants in that segment.

The discriminants were first factorized, adding 10000 to CLANO for each prime

factor, and adding — 1000000 if a factor appeared twice.  This allowed an easy separa-

tion of the fundamental from the nonfundamental discriminants, as neither the num-

ber of factors nor the class number would be large enough to make the entry of CLANO

positive later.  Also, since the actual class number is only about y/D, the number of

genera could be computed from the number of factors of D by using FORTRAN arith-

metic to separate the digits of CLANO from one another.

The class numbers for all discriminants in a segment were computed together by

executing a triple loop on the coefficients b, a, and c (from the outermost to the inner-

most loop) of the binary quadratic form (a, b, c) and then incrementing the counter

CLANO(/V) for the appropriate -D(N) = b2 - Aac.  That is, instead of fixing a value

for D and then computing the reduced forms for that D, we computed all reduced

forms with discriminants in the range of the segment and kept a count for each D.

Some care was taken to optimize these loops and remove all unnecessary multiplication;

D was computed each time by adding to the previous D, rather than by direct computa-

tion.

The primary list of discriminants, number of genera, and number of forms per

genus was now computed and printed, and a secondary list of "possibly noncyclic"

groups was extracted.  (In what follows, we describe the computation for an odd

p-Sylow subgroup; the suitable changes for the case p = 2 are easy, but the descrip-

tion in words is cumbersome.) A group was "possibly noncyclic" in the p-Sylow sub-

group if p2\h, where h is the order of the group (the class number).  Each group in

the list of possibles was then tested in the following manner:   If h = p'm, (m, p) = 1,

one chooses "at random" (to be described in the next paragraph) up to eleven forms

of the group and computes the hp1 ~'th power of each.  Should any of these not be

the identity, the group is cyclic, and we proceed to the next discriminant.   If that

power of each of the eleven forms in the identity, the group is assumed to be noncyclic,

and an actual computation of the p-Sylow subgroup is made, under the assumption

that the group is noncyclic.

We now describe the "random" method for obtaining forms of a given discrim-

inant:   If, for a given -D, there is an a such that -D is a quadratic residue modulo

a, then there exists a form of discriminant -D and leading coefficient a.  We checked

through the odd primes under 1000, in increasing order, to find one for which -D

was a residue.  Taking this prime for the coefficient a, we searched for the smallest b

such that b2 = - D (mod a), obtaining a form (a, b, c), which we then reduced.  A

reasonably thorough testing of this method and a continued use of it have not revealed

any obvious patterns in the forms produced, so we have assumed that it was suffi-

ciently random for our purposes.
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Appendix B.  The smallest D for which the class group of Q(y/^D) is noncyclic

in the p-Sylow subgroup are listed in Table 1, even and odd discriminants being listed

where known.  No even discriminants with a noncyclic 17-Sylow subgroup were found.

We note also that D = 1016083, 1438483, 1663747, 2407267, and 2942227, all (ne-

cessarily) prime, have class group exactly C(13) x C(13).

Of interest also are the groups which are noncyclic in more than one Sylow sub-

group. There were 418 of these in all.  Most of these were C(12) x C(12), the first

(even and odd D) being 64952 and 104255.  The first C(20) x C(20) subgroups oc-

curred for D = 472196 and 280847; the first C(28) x C(28) subgroups were for D =

858296 and 465719. The class group C(15) x C(15) for D = 119191 had been found

some time ago by A. O. L. Atkin; surprisingly, the next examples are quite large. We

list them in Table 2. Throughout Tables 1-10, column A is the discriminant -D,

column B the factorization of D, and column C the class group of Q(y/^D), where,

for example, 15x15 signifies the group C(15) x C(15).

The question of which finite Abelian groups occur as class groups of quadratic

fields has been discussed at length in the literature (for example, [15], [16], and [17]).

In Tables 11-13 we list some of the more unusual groups that occurred.  Columns A

through D are, respectively, the group, the smallest D for which that group occurred,

the factorization of D, and the number of occurrences of that group.  In Table 11

are listed, for p > 3, the groups which are themselves, or whose principal genera are,

p-groups C(pa) x C(pb) with a and b>2. Note the single example of p > 5.  In

Table 12 are the 2-groups which contain a C(4) x C(A) x C(4) subgroup, that is, the

2-groups whose principal genus has rank 3.  There were no groups found with a sub-

group C{pa) x C(pb), a and b > 3 and p > 2; we list in Table 13, however, the class

groups whose principal genus contained a subgroup C(2a) x C(2b), a and b > 3.

Finally, in Tables 14 and 15 we collect some statistics on the frequency of oc-

currence of noncyclic groups.

£

3
5
7

11
13
17
19

-3299
-11199
-63499
-65591

-228679*
-1997799*

-373391*

prime

3.3733
prime

107.613
11.20789
3.59.11287
67.5573

Table 1

c

3x9
5x20
7x7

11x22
13x26
34x34
19x38

-3896
-17944

-159592
-580424*
-703636*

B

8.487
8.2243
8.19949
8.13.5581
4.175909

3x12
5x10
7x14

22x22
13x26

-3419828*    4.854957 19x38

Table 2

-119191
•2075343
-2403659
-2690455
-2766392
-2982783
-3072743

B

prime

3.17.40693
prime
5.37.14543
8.59.5861
3.809.1229
83.37021

15x15
30x30
15x45
30x30
30x30
30x30
15x60

-3150391
-3358427
-3492051
-3561799
-3860484
-3862148
-3874699

B

prime

349.9623
3.941.1237
prime

4.3.321707
4.67.14411
467.8297

15x105
15x30
30x30
21x63
30x30
30x30
15x30
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Table 3

Groups with a 20 x 20 subgroup

-280847
-458695
-472196

-1323896
-1567495
-1627451
-1633487
-1663023
-1751335
-1847795
-2007172
-2025560
-2176955
-2295736
-2326904
-2452439
-2524247

B

53.757
199.461
97.1217
7.47.503
251.1249
29.8017

19.149.577
3.457.1213
5.23.97.157
5.101.3659
4.337.1489
8.5.79.641
5.11.39581
8.31.9257
8.239.1217
11.113.1973
11.29.41.193

20x20
20x20
20x20
2x20x20
20x40
20x20
20x40
20x40
2x20x20
20x20
20x20
2x20x20
20x20
20x20
20x60
20x120
2x20x40

-2540344
-2664955
-2713144
-2729255
-2814299
-2910615
-2922488
-2925944
-2985995
-3044455
-3174951
-3256568
-3270307
-3390483
-3401615
-3642743
-3972344

B

8.17.18679
5.29.18379
8.7.48449
5.19.28729
17.19.8713
3.5.61.3181
8.401.911
8.7.52249
5.199.3001
5.41.14851
3.13.81409
8.7.58153
17.47.4093
3.457.2473
5.7.17.5717
13.17.53.311
8.97.5119

20x20
20x20
20x20
20x60
20x40
2x20x20
20x40
20x40
20x40
20x40
20x80
20x40
20x20
20x20
2x20x40
2x20x40
20x80

-465719
-632687
-858296

-2471624

Table 4

Groups with a 28 x 28 subgroup

B

37.41.307
11.113.509
8.17.6311
8.521.593

28x28
28x28
28x28
28x28

-3055571
-3158111
-3326771

B

37.269.307
11.53.5417
7.137.3469

28x28
28x84
28x28

-11199
-12451
-17944
-30263
-33531
-37363
-38047
-39947
-42871
-50783
-53079
-54211
-58424
-61556
-62632
-63411
-64103
-65784
-66328
-67031

Table 5

Noncyclic 5-Sylow subgroups for D < 100000

B

3.3733
prime

8.2243
53.571
3.11177
prime

prime
43.929
43.997
43.1181
3.13.1361
23.2357
8.67.109
4.11.1399
8.7829
3.23.919
13.4931
8.3.2741
8.8291
17.3943

5x20
5x5
5x10
5x30
5x10
5x5
5x15
5x10
5x30
5x50
10x20
5x10
10x10
10x20
5x10
10x10
5x40
10x10
5x10
5x80

-67063
-67128
-69811
-72084
-74051
-75688
-81287
-83767
-84271
-85099
-85279
-87971
-89751
-90795
-90868
-92263
-98591
-99031
-99743

B

199.337
8.3.2797
7.9973
4.3.6007
prime
8.9461
29.2803
211.397
11.47.163
7.12157
107.797
13.67.101
3.29917
3.5.6053
4.22717
257.359
19.5189
167.593
7.14249

5x30
10x10
5x10
10x10
5x35
5x10
5x50
5x30
10x20
5x10
5x40
10x10
5x60
10x10
5x10
5x30
5x90
5x30
5x60
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Table 6

Noncyclic 1-Sylow subgroups for D < 500000

-63499
-118843
-124043
-149519
-159592
-170679
-183619
-185723
-220503
-226691
-227387
-227860
-236931
-240347
-240655
-247252
-260111

B

prime

prime

163.761
prime
8.19949
3.56893
139.1321
prime

3.31.2371
prime
prime

4.5.11393
3.78977
prime
5.48131
4.61813
prime

7x7
7x7
7x14
7x91
7x14
7x56
7x14
7x21
14x28
7x35
7x21
14x14
7x14
7x21
7x28
7x14
7x77

-268739
-272179
-275636
-294935
-299627
-301211
-308531
-318547
-346883
-361595
-366295
-373655
-465719
-480059
-489576
-491767

B

31.8669
prime

4.68909
5.61.967
103.2909
prime
29.10639
113.2819
19.18257
5.13.5563
5.73259
5.74731
37.41.307
prime

8.3.20399
37.13291

7x28
7x21
7x42
14x28
7x28
7x21
7x28
7x14
7x28
14x14
7x56
7x84
28x28
7x49
14x28
7x42

Table 7

Noncyclic 1 l-Sylow subgroups

-65591
-126407
-175031
-272231
-423335
-527019
-580424
-593183
-680767
-694907
-767147
-857099

-1161239
-1314676
-1451639
-1471423
-1654147
-1689371
-1734395
-1764687
-1963419
-2148079
-2253971
-2608212
-2628123

B

107.613
19.6653
383.457
prime
5.11.43.179
3.175673
8.13.5581
prime

prime

571.1217
prime

prime

prime

4.11.29879
7.207377
prime
11.150377
509.3319
5.13.26683
3.588229
3.167.3919
307.6997
prime
4.3.217351
3.876041

11x22
11x22
11x66
11x33
2x22x22
11x22
22x22
11x77
11x33
11x22
11x33
11x33
11x99
22x22
11x132
11x33
11x22
11x66
22x22
11x44
22x22
11x110
11x55
22x22
11x22

-2659099
-2661639
-2668715
-2697779
-2741799
-2747743
-2828680
-2913679
-2934312
-2946299
-3032179
-3037459
-3130027
-3131864
-3152315
-3251123
-3301883
-3418507
-3426456
-3431179
-3497892
-3645907
-3781607
-3810631
-3894239

B

23.115613
3.17.52189
5.7.76249
7.385397
3.913933
43.63901
8.5.70717
109.26731
8.3.122263
prime

prime
127.23917
prime

8.23.17021
5.103.6121
113.28771
13.499.509
149.22943
8.3.11.12979
prime

4.3.291491
883.4129
173.21859
11.346421
prime

11x22
22x44
22x22
11x66
11x88
11x66
22x22
11x132
22x22
11x55
11x33
11x44
11x33
22x44
22x22
11x44
22x22
11x22
2x22x22
11x33
22x22
11x22
11x110
11x132
11x297
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Table 8

Noncyclic 13-Sylow subgroups

B c A

-228679
-703636

-1016083
-1022639
-1043999
-1192367
-1201667
-1277843
-1328359
-1384831
-1438483
-1440659
-1582399
-1663747
-1968323
-2074760
-2407267
-2524487

11.20789
4.175909
prime

prime
11.107.887
11.61.1777
503.2389
7.182549
41.179.181
7.181.1093
prime

11.130969
7.13.17389
prime
7.281189
8.5.51869
prime
7.43.8387

13x26
13x26
13x13
13x91
26x52
26x26
13x26
13x26
26x26
26x26
13x13
13x52
26x26
13x13
13x26
26x26
13x13
26x52

-2676383
-2708135
-2772843
-2793752
-2795939
-2942227
-2943271
-3081748
-3220040
-3519247
-3544952
-3715559
-3730568
-3756504
-3799192
-3805224
-3991559

B

prime
5.23.23549
3.924281
8.13.26863
17.163.1009
prime
19.97.1597
4.770437
8.5.79.1019
prime
8.347.1277
prime
8.466321
8.3.156521
8.474899
8.3.158551
11.13.103.271

13x117
26x78
13x26
26x26
26x26
13x13
26x26
13x26
2x26x26
13x65
26x26
13x143
13x52
26x26
13x26
26x26
2x26x52

-1997799
-2667895
-2890903

B

Table 9

Noncyclic \l-Sylow subgroups

C A

3.59.11287
5.17.31387
1019.2837

34x34
34x34
17x34

-2984171
-3112639

B

47.63493
prime

17x34
17x85

-373391
-1078919
-2505135

Table 10

Noncyclic \9-Sylow subgroups

B c A

67.5573
prime

3.5.167009

19x38
19x57
38x38

-3419828
-3479127
-3837956

4.854957
3.1159709
4.959489

19x38
19x38
19x76

9x9
9x27
9x81
9x18
9x54

B

-134059
-351751

-1332167
-208084
-690503

prime
prime

prime

4.52021
11.62773

Table 11

D A

18x18
18x54
2x18x18
25x50

B

-727087
-1871295
-2442020
-1390367

37.43.457 18
3.5.124753 7
4.5.7.17443 5
11.126397 1

Table 12

4x4x8
4x4x16
4x4x32
4x4x64

B

-503659
-550712
-863455

-3600632

13.17.43.53
8.23.41.73
5.19.61.149
8.7.113.569

4x8x8
4x8x16
2x4x4x16
2x2x4x4x8

B

-2209467
-1456131
-2172651
-2188920

3.13.181.313
3.61.73.109
3.13.17.29.113
8.3.5.17.29.37
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16x16
16x48
16x80
16x112
16x32
16x96
16x64

B

-618947
-936183

-1831031
-1602095
-971095

-2747399
-1008095

7.29.3049
3.313.997
29.103.613
5.11.29129
5.359.541
43.181.353
5.11.18329

Table 13

D A

16
12

3
1

17
1
6

16x128
32x32
2x16x16
2x16x48
2x16x32
2x2x16x16

B

-3194495
-2365599

-804639
-3228215
-1987215
-3909576

5.29.22031
3.421.1873
3.11.37.659
5.17.163.233
3.5.17.7793
8.3.11.59.251

1
1

17
2
2
1

Table 14

A

Odd D    810578

Even D    405276

Total    1215854

B

265739

166296

43203S

Ç
32.78

41.03

35.53

D

32507

19345

51852

A=number of fundamental discriminants
B=number of possibly noncyclic groups

C=100xB/A
D=number of actually noncyclic class groups
E=100xD/B
F=100xD/a

E_

12.23

11.63

12.00

F

4.01

4.77

4.26

Table 15

Noncyclic p-Sylow subgroups

£-2
Odd D
Even D
Total

Odd D
Even D
Total

Ez5_
Odd D
Even D
Total

2zl
Odd D
Even D
Total

A J5

810578 122971
405276 101029

1215854 224000

810578
405276

1215854

810578
405276

1215854

810578
405276

1215854

B

115904
57264

173168

B

37485
17639
55124

J5
16877
7620

24497

C D

15.71 20837
24.93 13862
18.42 34699

14.30
14.13
14.24

4.62
4.35
4.53

2.08
1.88
2.01

10132
4832

14964

1419
648

2067

295
149
444

16.94
13.72
15.49

8.74
8.44
8.64

3.79
3.67
3.75

1.75
1.96
1.81

2.57
3.42
2.85

1.25
1.19
1.23

.18

.16

.17

.04

.04

.04

A=number of fundamental discriminants
B=number of possibly noncyclic p-Sylow subgroups

C=100xB/A
D=number of actually noncyclic p-Sylow subgroups

E=100xD/B
F=100xD/A
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