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Finite Element Methods for Elliptic Equations

Using Nonconforming Elements

By Garth A. Baker

Abstract.   A finite element method is developed for approximating the solution of the

Dirichlet problem for the biharmonic operator, as a canonical example of a higher order

elliptic boundary value problem.

The solution is approximated by special choices of classes of discontinuous func-

tions, piecewise polynomial functions, by virtue of a special variational formulation of

the boundary value problem. The approximating functions are not required to satisfy

the prescribed boundary conditions.

Optimal error estimates are derived in Sobolev spaces.

1.  Introduction.  In this work a finite element method is proposed for approxi-

mating the solution of the Dirichlet problem for elliptic equations.

Although the method is applicable to general 2mth order operators with inhomo-

geneous boundary condition, for reasons of clarity and ease of exposition, the method

is displayed here on a simple 4th order case, the Dirichlet problem for the biharmonic

operator with homogeneous boundary conditions.

The main features of this method lie in the fact that it uses nonconforming ele-

ments, optimal error estimates are derivable in the space L2, and the piecewise poly-

nomial functions used to approximate the solution are not required to satisfy the pre-

scribed boundary conditions.

There are existing finite element methods treating higher order elliptic equations;

for examples of expositions we cite the least squares method [5] and the more standard

variational method in [9].   These variational methods require that the spaces of piece-

wise polynomial functions used to approximate the solution of the boundary value

problem satisfy certain continuity conditions (imposed on the functions and their deriv-

atives up to a certain order) across the interfaces of adjoining elements.  These require-

ments precipitate rather complicated computations for high order operators.

In the method developed in this work, these complications are entirely avoided.

The spaces of functions used to approximate the solution consist of polynomials de-

fined locally on each element with no conditions of continuity across interfaces, and

are thus subspaces of L2.

The relaxation of all continuity conditions is achieved by working with a special

variational formulation of the boundary value problem, which is compatible with the

relative arbitrariness of the subspaces.  This in essence involves the construction of

certain bilinear forms which exploit certain "inverse assumptions" satisfied locally on

each element by the approximating functions.  Similar considerations allow the result
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that the members of these approximating spaces need not satisfy the prescribed bound-

ary conditions.  "Inverse assumptions" of a more global type have been used in non-

standard, conforming variational methods in [7] and by the author [2].

It is proven that the method is optimally convergent in L2, and that on each ele-

ment derivatives of the error up to the order possessed by the solution converge also

optimally in L2.

Another advantage of the method lies in the fact that, since there are no con-

tinuity requirements across the interfaces, arbitrarily high order polynomials may be

used on each element, yielding an accuracy of approximation as high as the smoothness

of the solution allows.  In contrast to methods requiring conforming elements, the use

of high order polynomials is restricted by the resulting computational difficulties in

meeting these requirements.

It should be noted that although this nonstandard variational method involves a

bilinear form which is formally more complicated than the standard variational method,

the additional interelement terms are easily computed for example in the case of parti-

tions of the domain into TV simplices or TV-dimensional parallelopipeds.

2. Notation.

2.1. Function Spaces. For D a bounded domain in the space R", of variation

x = (Xj, x2, . . . , xn), HP(D), for real p, will denote the Sobolev space of order p

of real valued functions on D.  (•, ')pn and \\'\\   D will denote the inner product and

norm, respectively, on HP(D).  For definitions and the relevant properties of the spaces

HP(D) for p > 0, we refer to [6]. D and bD will denote the closure and boundary of

D, respectively.

The space of infinitely differentiable functions on D (D) we denote by C°°(D)

(C°°(D)).  Following [8] we note that for p > 0, the norm IHI_PiD on H~P(D) is de-

fined by

\M\-p,d=     sup  _    ^2*. vEH-p(D).

Similarly Hp(dD) will denote the Sobolev space of order p of real valued func-

tions on dD, with \'\pjD denoting the corresponding norm.  Again for definitions and

the properties of these spaces we refer to [6].  For brevity, we shall write the inner

product and norm on L2(dD) = H°(dD) as

(<p, \r>)dD = }dD<p\pdo   and    l^lao = {<^, ̂ >}1/2»

respectively.  The space of infinitely differentiable functions on bD we denote by

C°°(dD).

We shall also use the notation

d(D)=   sup   \x-y\,

where x'yeD

I \1/2

w-(£*) ■
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2.2.  The Boundary Value Problem.  Let n be a bounded domain in R" with

boundary 9Í2 which is assumed to be an (n - l)-dimensional manifold of class C°°. We

are interested in approximating the solution of the following boundary value problem.

A function u defined on n is sought satisfying

(2.1)

The operator A is defined by

A2u=f   ini2,

u = 0

du on an.

\  bn
0

A = X  —    and    A2« = A(Au).
f=i   bxf

fis a given function.

Concerning existence, uniqueness and regularity of the solution we have the

following theorem.

Theorem 2.1 (cf. [6]).  The mapping P: C°°(Sl) -* C~(n) x C~(9n) x C°°(b£l)

defined by Pu = (A2u, u, bu/bri) and completed by continuity, is a homeomorphism

ofH\Sl) onto #*~4(n) x Hs-1/2(bSl) x Hs~3l2(bn)for all s > 4, and there exist

constants as and ßs such that

bu
bn <ß,H«ll,,h-||M||J)íí<aJ{||A2u||í_4jíí + |i/ls_1/2)3n +
""    s-3/2,5Si

Henceforth we make the following assumption on the data / of the boundary

value problem (2.1);/€/f'J_4(n), for some s > 4.  Thus by Theorem 2.1, the bound-

ary value problem possesses a unique solution u 6 Hs(£l).

2.3. Partitions o/n.  Let nft(n) = {Çllf n2, . . . , nm} be a finite collection

of subdomains of n, where

h, = d(Sl¡),      i =1,2, ,m,

and

h =   max   h¡.
1< i < m

We shall say that fl,,(n) is of class Gj,(n) if

(0 U™,ñf = ñ;
(ii)  n,. n n; =0 for / #/, /,/ = 1, 2, . . . , m;

(iii)  Each n,. is a regular domain in R" (i.e., the divergence theorem holds on

n¿), and is starlike, /' = 1, 2, . . . , m.

(iv) The surface 9n,- D 9n- is an (n - l)-dimensional manifold which is mea-

surable with respect to Lebesgue measure on R"_1 induced by Lebesgue measure on

R".

(v)  There exists a constant 0 < v < °° such that

max  d(S¡) < v   min   d(S¡),
Ki<m Ki<m
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where S, denotes the circumscribed sphere of n, and S¡ denotes the inscribed sphere

of n,-, /' = 1,2, ... ,m.

It follows from (v) that

(2.2) h <vht,      i=\,2,...,m.

Henceforth, it will be assumed that the domain n is partitioned as nft(i2) 6

Gj,(n) for some fixed v independent of h¡,i = 1,2, ... , m.  This process is referred

to as the divison of n into "regular" finite elements. Note that the condition (iii)

above on the elements ensures that n,,(n) includes partitions of n into convex ele-

ments and more general elements.

With fl^n) we associate the following notation, defining certain important sets.

We define the surfaces

anf>/= an, n an,.,    /,/= 1,2,... ,m.

The orientation of 3nf • is defined to be such that the normal points in the direction

outwards from the interior of nf at each point.

N,= {/: bSlu±0},      i =1,2.m;

an,* = an, n an, /= 1,2,... ,m-,

an* is nonempty in the case where n, and n have portions of their respective bound-

aries in common.

The following matrix will be useful; define

(1,      «'</,

(0,    />/,
tu = < /',/= 1,2, ... ,m.

\0,     i>j,

If v is a function defined on n, then t/'* will denote its restriction to n,, /' = 1,2,

. . . ,m, and we shall denote by v the corresponding ordered m-tuple of functions

(v^,V^2\ ...,VW).

Conversely, for any ordered /w-tuple of functions (i/1*, t/2\ . . . , t/m)) with

ü^) measurable on n, we denote by v the function defined a.e. by

v(x) = u(,)(x),      x E n„ / = 1, 2, . . . , m.

With each subdomain n, of Hh(£l) we associate the following boundary operators

associated with the boundary value problem (2.1); for v sufficiently smooth on Í2,,

we define

B0v = v, *l«> = j£.

Sov = -fo¡(Av)>      SlV = -Av.

The operator Sk is "naturally" associated with the operator Bk prescribed in

the boundary value problem (2.1) via the Green's identity for the operator A2.  For

u, v sufficiently smooth on n,,
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(2.3) (Am, Aw)        = (A2U, u)on. - £ {Sku,Bkv)da..
1 '      fc = 0

Wherever the operators S0 and 5, appear in the inner products, the normal

derivative is taken in the direction in which the normal in the surface is oriented.

The following lemma will be used repeatedly.  For an outline of a proof see [3].

Lemma 2.1.   There exists a constant 0 < C < °° such that for any n, e Tlh(ü),

ifvE Hk+ 1(n,), k a nonnegative integer, then

bkv

bnk
an,

for any n > 0.  77/e constant C is independent of h¡,i = 1,2, ... ,m.

Throughout the rest of the paper, C will denote a generic constant, not necessarily

the same in any two places.

3.  Finite Dimensional Function Spaces on nft(n).  Given flh(n) E G„(n) we

assume the existence of function spaces Sh (n,-), /' = 1, 2, . . . , m, consisting of real
re-

valued functions defined on n,.  These spaces of functions are each required to satisfy,

(1) Sj,.(n,) is finite dimensional.

(2) Sh (ß,) C H'(n¡) for some / > 4.

(3) There exists an integer r> I and a constant C independent of h¡, such that

for any v E H'(SIX Ks<r,

inf       ¿*íl»-Xll/A<C*J||»||
■■/

(4)  There exists a constant C independent of h¡ such that for any x e Shm(Sl{),

llxll^ < Ch7(f>-<*)\\x\\a<n¡   for all a < ß < /.

From the assumption (4) and (2.2) it follows that

(2-4) llxllß,n,<CÄ-("-a)llxlla)n,

The assumption (4) is referred to as an "inverse assumption".

For example, if fl^(n) consists of a triangulation of the domain n (the peripheral

triangles will have one "curved" side, i.e., the an*), and we take Shj(Sli) = Pr_1(^li),

the set of polynomials of degree < r - 1 on n,, then all the assumptions (1)—(4) may

be verified.

In particular, Sh (íl¡) C C°°(n,),

inf       ¿Ä/l|ü-xll/>n <Or»||ü||.n.
XGi»^!(n,)   /=0 ' '

for all n e HS(Q.{), s < r. See [4] for proofs.

Finally we set
m

i=i
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A generic point of Mh shall be denoted by x = (X(1), • • • . X(m)) with x(0 S S „(SIX

/= 1,2, . . . ,m.

It is important to observe that the function spaces Sh_(Sl{) are entirely independent

of one another.  It is for this reason that the projection method to be defined below,

which uses these function spaces to approximate the solution of the boundary value

problem, is said to use nonconforming elements.  That is there is no conforming con-

dition (continuity or continuity of derivatives) imposed on the functions (say poly-

nomials) as one crosses the interfaces of adjoining elements.  Each point of Mh may be

interpreted as a function in the space L2(n).

The basic idea in the projection method is that if u is the solution of (2.1), then

we shall approximate u locally by approximating i/M by a member of Sh (SIX i =
i    '

1,2, . . . ,m.

4.  The Energy Space.  Associated with Un(ST) we define a normed linear space

Hh to be the set contained in the space fl£l lH4(SlX a generic point of which we de-

note by v = (u(1), . . . , u(m)), with i/M e H4(SIX furnished with the norm \\-\\H   de-

fined by:

IMItfÄ=(£JllA^)llo\ni

+ Í\ Zru(h(2k-V\BkvM-BkvW\2

(4.1)
fc=o|_/eM,

+ h-«k-V\SkvW\2n. .)
«./

HÍ/+ A<"-3>|Bkü»i3„. + /r<2fc-3>iv<''>|

It is to be understood that the normed linear space Hn is not complete; however,

if M G H4(Sl) is the solution of (2.1), then u = («(1), . . . , u<m>) E Hn.

Also, clearly,^ is a finite dimensional subspace of Hh.  The following propo-

sition states precisely how points in Hn are approximate by points in the subspace

Mh.

Proposition 4.1.   There exists a constant 0 < C < °° such that if\EHh and

is such that »<*> E HS(SIX i = 1, 2, . . . , m, for 4 < s < r, then

inf

XEMh

m

\v-X\\„.<Ch°-2 ZWv(i\,n,
i=i '

where C is independent of h¡, i = 1,2, ... ,m.

Proof.  Let v E Hn.  By the property (3) of Section 3 of the spaces Sh_(SlX there

exists a x G Mh such that

(4.2) |»C0 - x(0||.ni < arf\\¿Xtílf,      i =1,2,..., m,

for allO </</.
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Set w = v - x-  Now from (4.1),

51

"»* < L
¿=i

wC0||2
2.Í2,-

(4.3)

+ Z [ Z Tui(2h(2k-3MkwU\2       + 2//<2*-3>|¿?kw<»|2

+ h-«*-»V¡kw«>\la¡j)

+ M2fc-3)|5kW«|2n.  + /j-(2fc-3)|5fcW(0|2n?

Also by choosing t? = ft, in Lemma 2.1 we have, for k = 0, 1,

(4.4)

l*kw«|2n.=
aM°

a«fc
<

lan
<,/

ci^y^m^ + M^ft+iV

<CÄfC-^lHtriOtl^ < c^s-k)-!^)^

where we have used (4.2) and the fact that 2(s - k) - 1 > 0.

Similarly, for k = 0, 1, we have,

IV^Ik-
ll-fc

(Aw<'))

an,

<4.5)
<

a«1-»

C{//7i||Aw0-)||a_kíi¡ + h{\\A^\\l_kMi}

< Cr/2<î+k>-7||u<''>||2n. < Ch2<s+"^Wv^Uln.,

again since 2(s + k) - 7 > 0.

Now using (4.4), (4.5) and (4.2) with/ = 2 to bound the appropriate terms in

(4.3) we obtain:

12

wll2    <0/2(î-2)"H Lii"(í)ii^,<cU-2xiiu(')||í)íifj

And so,
m

lIv-xlW „«^III^IU" í= i '

which concludes the proof.

5.  A Bilinear Form.  We define a bilinear form B^(', •): //",, x Hn —► R1 as

follows: for u = (m(1), . . . , u<m>) and v = (v^, . . . , u(m>) £ Hh,
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m       1

Ä2(u.v)=L    (An«, Aw«)0>n/
i'=i

i

+ z
fc = 0

(5.1)

yew, './

+ <Jßku(')-jßfclJ(/),5fcU(o>3n

+ yh«k-»<BkuW -BkuU>,Bkv«> -Bkv<-f>)iSliJ

+ (Bku«\SkvV\a. + WkvV\SkuV\n1

+ yh(2k-V(BkUM,Bkv«\n.

Here 7 is a positive constant depending on the constant associated with the inverse

assumption (4) of Section 3. Below, it will be shown in Proposition 5.1 that for 7

chosen sufficiently large, the form5^(', •) is positive definite on the subspace Mn.

Again in (5.1) the surfaces an, • and an,* are oriented so that the normal points

in the direction outwards from the interior of n,; wherever the operators 5, and S0

appear in inner products, the normal derivative on the surface is taken in this direction.

Proposition 5.1.   There exists a constant 0 < 7 < °° such that if y > y, there is

a constant c > 0, independent ofh¡, i = 1, 2, . . . , m, such that

Bl(w, w) > c|| w fHh   for all w G M„.

Proof.   From (5.1), if w G Mn, then

m  Í

*Z(w,w)= z h\Aw«Xtn¡

fc=0   /SN, ''

(5.2)

+ 7ft(2fc-3)|5fcw« ~BkwW\la¡j + 2(Bkw«\Skw%al

+ 7M2fc-3)|5kw('-)|2n.

Now by successive applications of Schwarz' inequality and the arithmetic-geo-

metric mean inequality we obtain

2<¿?kw<í>, Skw«\a. < 2 \Bkw<%a. \Skw<%a.

(5.3) =2{[e-1M2k-3)]1/2|fiku;(')|9n,}{[e-ift(^-3)]-i/2|SkW(0|3n,}

<^p-\Bkw^\2nl + e*-(2*-3>|Skw(0|!n.,

for any e > 0.
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Similarly

2Wkw<-»-BkwU\SkwV\n¡i

53

(5.4)

i,i

<
h(2k-3)

\BkwM -Bkw^\\au + eh-«k-V\Skw«>\la¡¡,

for any e > 0.

Using (5.3) and (5.4) in (5.2),

(5.5)

5¿(w,w)>£   ||AwO')||ÍU

+ L [Z rJfy-'-y^hB^O -BkwU\2

-eh-(2k-»\SkWM\la.  Y

+ (y-l7y2k-V\Bkw(»\2n. - eh-^-^S.w^^

= ZJIIAw(í>lla;íí.

Zru(eh-«k-V\Skw(»l2
ew,      v '•'

+ (y-iy**->MBkWW-BkWW\lslu

-2eft-(2*-3)|5kw<0|2n..)

+ e//-(2k-3)|Skw('-)||n. + (7_I^(2fc-3)|5kw(')|ln.

-2eA-("-3)|ÄfcW(0|2 J|.

Now by Lemma 2.1, with n = ft,, fc = 0, 1,

+ z
fc = 0 L/ew,

I^O|?n =

(5.6)

>i-fc
(Aw«)

an.ar?1^

< C{/,7i||Aw(')||2_k>n. + ht\\AwM\\l_k>ilt}.

Since Aw« G Sh.(Sl¡), we may apply the inverse assumption (4) to obtain

from (5.6),

\Sk^°\lat < C{*T V^W^n, + A,A72(2-*)|| Aw(')||2n J

= Cftpfc-3)||Aw«||2)fi.,     *-0,1.

(5.7)
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Hence from (5.7) and (2.2), since 2k - 3 < 0,

(5.8) ff~{2*-3)\Skwi0\lai < cV-^HAw«!!2^ < C||Aw('-)||2>fii.

Using the bounds (5.8) in (5.5), we arrive at

mi

Ä2(w,w)>^](l-eC)||AwC')||2

/= i /

(5.9) ^^(H)^^"*"^

+ e/,-("-3>|5fcW0|in//)

+ (7 - ^)h(2k-V\BkwM\2n1 + eft-<2k-3)|5kw(')||n.

In (5.9), e > 0 has been so far unspecified.   We now choose ê such that 1 -

êC > 0, and 7 such that 7 - ê_1 > 0.   Then for 7 > 7 we have from (5.9)

5¿(w, w) > CÎwll2^,

where C = min{(l - êC), (7 - ê-1), ê}.   This concludes the proof.

Proposition 52.  There exists a constant 0 < C < °° such that

\Bl(u,y)\<C\\u\\Hh\\nHh,

for all u, v G Hn.   C is independent of ft,, /' = 1, 2, . . . , m.

Proof.   Let u, v G Hh; then applying Schwarz' inequality to each term of

(5.1)

l*Z(u,v)|<£    IIAt/«HonJ|Au<'-)||oa.
1=1 ( ' '

(2k-3\ (2k~3)1

+ z
fc=0

(5.10)

£ru[h     2     \Bku«>-BkuV>\bah      2     \Sk¿%a

+hi~\kvV-Bk¿\aifh^~)Vku<%ílu

+yh(2k-V\BkuM-BkuU\n  .\BkvM-Bkv<>\n

2fc-3-, _C2^Z3'(

2    ^«»lant*      2    IV<0lanj

/-2fc-3\ ,-2fc-3N
. v    1    '. _     /A. .   v    1     '.

+ ft    2    IV(%n;*      2    |5»ii<ö|d0j

+ 7M2fc-3)|/9kU«|3     |5fcü(0|a
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Again by Schwarz' inequality, applied to (5.10),

55

*Zfr v) < ( E W°llo,n,
1=1

i   r
+ £

fc = 0
Z ru((l + 7)A(2fc-3)l/V(/) -Bk«U)\lsit,

_/eW, '•'

i=i

+ Ä-(«-3)| Sfctt(0|¡       )

+ (1 +7)ft(2fc-3)|5k««|2n. +ft-(2k-3)|V(°l2an?

+ Z [ £ '/./«I + 7)Ä(2fc-3)l5ku(') -5fc»(/>H«,,
k=o|_/eN, '•'

+ ft-(2k-3)|5ku«|2n..)

+ (i + T)A(2fc-3)l5fe«;(,)l|n, +/r(2k-3)IV«l2íí.

<(1 +7)11^1^1^11^,

which gives the result and concludes the proof.

We now show how the bilinear form B^(-, •) characterizes the solution of the

boundary value problem (2.1) via a variational equation on the space Hh.

If u, v G Hh, then an application of Green's identity to each subdomain n,

yields from (2.3),

m

£(AW«,Au«)0)iî.
i=i '

ml 1 )

= Z (A2««, !>(%„- £<V(0> Bkv%J
i=l( '      fc=0 ')

m  {

(5.11)      =z (Avoyflvn,

- Z F Z t,,/«V(0. Ä^)        - <Skt/<», Bkv0\      )
fc=o[_/eN, '•' '•'

+ <V(iW°W

Substituting (5.11) into (5.1),we obtain
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m   [

*Z(».v)=E (¿2"(0,"(i))o,fi.

+ Z \Zru((Bku^ -%w,sAa ,
fe=o [_/eN, '•'

(5.12) + 7ft(2fc-3>(5fcM(''> -BkuU),Bkv(i) ~Bkvu\n_ .

+ (5kW('))(5fc+7Ä(2*-3)5>(I))an?Jj

Hence if m G //4(n) is the solution of (2.1), from (5.12),

(5.13) *2(u,v) = (/,«0o>n    for all vG^.

We remark that (5.13) is the variational equation satisfied by u, the solution of

(2.1).   5?, (u, v) is explicitly computable in terms of the data, /, of the boundary

value problem, for each v G Hh.

6.   The Finite Element Approximation and Error Estimates.   We now prove

the essential results of the paper.   First, we establish the existence and uniqueness of

auhEMn the finite element approximation to u, the solution of (2.1).  It will be

seen that uh is explicitly computable using the data of the boundary value problem, by

solving a certain system of linear algebraic equations.

Finally, we derive quasi-optimal error estimates in the Sobolev spaces H~p(Sl),

0 <p < r - 4 (in particular in L2(n)), and show in addition that the higher order deriv-

atives of un defined locally on each n, converge in L2(Sl¡) to those of«, again at an

optimal rate.

Theorem 6.1. Let u be the solution of the boundary value problem (2.1), with

u E Hs(Sl) for some s > 4. Then for each IIft(n) and corresponding Mh, there exists

a unique uh E Mn satisfying

(6.1) Bl(uh,y) = (f,v)0>il    forallvEMn.

Furthermore, there exists a constant c independent of ft,, /' = 1,2, . . . , m, such

that

(6.2) W*-"h\\Hh<ChS~2\\«\\s,ïi,

(6.3) H"-M-p,n<Cftí+P||W||í)í2   for0<p<r-4,

m

(6-4) Z "¿»V0 - 4°)llo,n. < CÄ*-'a'||ttll, n -
i=i ' ' '

forO< \a\ <s,Ks<r.

Proof. Solving Eq. (6.1) for \xh G Mh is equivalent to solving a system of a(m)

x a(m) linear algebraic equations for the coefficients of uh with respect to a basis of

Mn, where a(m) is the dimension of Mn.
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Since by Proposition 5.1 the form B],(', •) is positive definite on Mh it follows

that the matrix is itself positive definite and so nonsingular.. Hence uh exists uniquely.

To derive (6.2) we first note that by Proposition 4.1 there exists a £ E Mh such

that

(6.5) ||u -S\\Hh<Chs-2\\u\\s>n.

Now since % - vlh E Mn, by Proposition 5.1,

II? "ML <CBM£-uh, i -uh) = CBl(ï-u + u-uh, %-uh)
(6.6)

= CB\(\ - u, S -uh) + CBl(u -uh,\- uh).

Now from (6.1) and (5.13) it follows that

(6-7) Bl(u-uh,x) = 0    forallxGM„.

Hence (6.6) reduces to

(6.8) III -un\\2Hh<CBZ(!:-u,S-un)<CM-u\\Hhn-uh\\Hh,

where we have used Proposition 5.2.

Hence from (6.8) and (6.5)

n-^\\Hh<cn-u\\Hh<œ-2\M\Siil.

Finally combining this last estimate with (6.5),

iiu - un\\Hh < ilu - éii^ + m - uh\\Hh < a*-2n«ii,,n,

which is the required result.

We now derive (6.3). Set e = u - un, and let i// G C°°(ñ).  By Theorem 2.1

there exists a unique ¡p E C°°(Sl) such that

A21¿> = \¡/      in n,

^ = 0 \

\  on an,

b<p/bn = 0 '

and for all t > 4,

(6.9) llfllf.n <aíH'/'llf-4,íí-

Also by Proposition 4.1 there exists a f EMn such that

(6.10) ii*-niHfc<o»MMf.o-

From (5.12) we have

*Z(*,e) = CM)0;n.

Hence from this last equation, (6.7), Proposition 5.2, (6.9) and (6.10) we have
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(*,e)0,n=Bl(<p,e) = Bl(e,<p)

= Bl(e, tp-0< Q\e\\Hh Up - fll^ < Cftf~2IMI,,n \\e\\„h

<C7/í-2||^||f_4>í2||e||///],    4<f<r,

on(^e)0)n/||^||f_4in<C7/i-2||e||^.

Hence

lle|L(f_4)iii<Cftf-2||e||f//);

setting p = r - 4, and using the estimate (6.2),

llell-p,« <Chp + 2\\e\\Hh <Chs+p\\u\\s¡n

for 0 < p < r - 4, / < s < r, which is (6.3).

To derive (6.4), let £ be chosen as in (6.5). Then in particular,

(6.11) llu« - f(0ll/>ni < Chs-'\\u^\\s>n¡    for all 0 < / < /.

Hence for 0 < q < s, using (6.11),

Z He('\ n. < t {ll«(0 - S(/\.«, + «W - <4'\,n,>

(6.12) i=1 ' '     i=1
m m

< O/-" Z ll"(°IU. + Z ll?(0 - "i'\,n,-
i=i '     i=i

Now using the inverse assumption (4) on each n,, (6.12) becomes

m m

Z We(iX,n. < Ch^\\u\\ltSl +CZ «7qni0 - 4%.at
i=i ' i=i '

m

<Ch*-«\\u\\s>íl + Ch-«ifl Z IIS(0 -"WHo,n.
i=i '

<C7rí-*||u||íjn +Ch^n-uh\\0>n

<GY~<>\\u\\s,a +Cft^{||$-«||0>n +ll«-«Äll0,n}-

Finally from (6.3) with p = 0 and (6.11),
m

Z^('\,n.<Cftí-"||«||í)íí.
i=i '

This gives (6.4) and concludes the proof.
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