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Higher Order Local Accuracy by Averaging

in the Finite Element Method

By J. H. Bramble and A. H. Schatz*

Abstract.   Let u^ be a Ritz-Galerkin approximation, corresponding to the solution u

of an elliptic boundary value problem, which is based on a uniform subdivision in the

interior of the domain.   In this paper we show that by "averaging" the values of Uu

in the neighborhood of a point x we may (for a wide class of problems) construct an

approximation to u(x) which is often a better approximation than UyAx) itself.   The

"averaging" operator does not depend on the specific elliptic operator involved and is

easily constructed.

1.  Introduction.   In this paper we shall discuss some local "superconvergence"

results for a large class of Ritz-Galerkin methods, which are used to approximate solu-

tions of elliptic boundary value problems.  Briefly, let SI be a bounded domain in Rw

with boundary bSl and for simplicity consider the boundary value problem

(u)     i" = ",|,4fïW^) + l/iW^ + cW" = / inn-

(1.2) bu = g   on bSl,

where L is uniformly elliptic on SI and b is some boundary operator such that the

problem (1.1), (1.2) has a unique solution.

Suppose that for each 0 < h < 1 we are given a linear space of finite elements

Sh (which we roughly think of as being a space of piecewise polynomials defined on

some partition of Í2) and an approximate solution un E Sh of (1.1), (1.2) determined

by one of the many Ritz-Galerkin methods which have been proposed.  For a survey

of some of these we refer the reader to [2].  Let Í2, CC SI.  For many of these

methods, un satisfies the interior equations

r   ( N àuh   9<£       N       bun \

= B(u, <p) =  f  fy dx

o o

for all f E S^Sl^, where ̂ (íí,) = {fi\ f E Sn(Sl), supp(i¿>) C Í2, }.  Roughly speak-

ing, suppose that Sh has the property (and some others described in Section 3) that

for each « belonging to the Sobolev space Hr,

inf II«- mitSll <C*r-1|l«llr,n1-
i/<esh
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Here r > 2 is a given integer and for s > 0, || • ||s n   denotes the norm on Hs(Sll).  It

was shown in [15] that for £20 CC Slx the interior estimate

(1.4) II« - «fcllo,n0 < Wll«||r,„ t+iu- M-p,fl,}

holds.  Here p is a nonnegative integer and || • ||_    n   is the norm on the dual space
o "'1

of Hp(Sl1) (the completion of (^(ííj) under || • || ).  Under the further assumption

that the restriction of elements of Sh to Sli are piecewise polynomials defined on a

uniform mesh, it was shown in [4] that

(1.5) I" - «Jo,n0 < WllwlU(Jv72] + i,n, + "" " «fclLp.n.}-

Here | • |0 n    denotes the maximum norm on Sl0 and [A72] is the integral part of

N/2.

For many methods, estimates for ||e||_    n   already exist in the literature.

Noting that IMI_Pf n   < .IMLPi« md taking p = r - 2, one often finds that

\\u - uh\\2_  n < C7z2r~2||w||/. n.    Hence in these cases, if« EHr(Sl) and r > 3, this

latter term is of higher order in h than the first terms on the right in (1.4) and (1.5).

Instead of considering uh, in this paper we shall consider certain "averages" of

uh as approximations to «.  More precisely, the averages are formed by computing

Kh * uh, where Kh is a fixed function and * denotes convolution. We shall see that

the function Kn has the following properties:

(i)   Kh has small support,

(ii) Kn is independent of the specific choice of Sh or the operator L,

(iii) Kn * uh is easily computable from un.

Furthermore we shall prove the following estimates (where again we assume Sh

to be defined on a uniform mesh on Í2,):

II« - KH * uh\\0,a0 <C{h2r-2\\u\\2r_2tíii + II« - M-p.Ot>

and

\U-Kh* W„l0,iî0 < C{Ä2r-2H"ll2r-2 + [iV/2]+l,ni   + H« " «/.H-p,«,}-

Hence in the cases in which r > 3 and ||« - uh\\2_r n   < C%2''-2||«||r n, Kn * u is

of order h2r~2 locally and therefore, for h sufficiently small, better approximates u

than does un.

It is important to note that Kh * uh may be computed at each point in Í20.

However if we restrict our attention to specific points, say, for example, mesh points,

then it very often takes on a very simple form; this will be discussed in Section 5.

An announcement of some of the results obtained in this paper was given in [7].

For some superconvergence type results for two point boundary value problems the

reader is referred to [9], [10] and [11].  For some interior superconvergence type

results for multi-dimensional elliptic problems see [6].  For parabolic problems we

refer the reader to [17] and [18].

An outline of this paper is as follows:   In Section 2 we collect some notation.
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In Section 3 we discuss the necessary properties of the subspaces and in Section 4 we

discuss the interior equations and collect some further preliminaries.  In Section 5 the

averaging operator is defined and its computation is discussed.  Section 6 contains our

main superconvergence results.  In Section 7 we give some applications of the results

and in one example show how to obtain superconvergence up to the boundary when SI

is the unit square, Lu = - Au in SI and bu = u on bSl.

2.  Notation and Some Preliminaries.  Let SI be a bounded open set in R^.

For m a nonnegative integer, Cm(Sl) will denote the space of real-valued functions

having continuous derivatives up to order m on SI with the norm

(2.1) l«L =    Z     S"P   \Dau(x)\.
|a|<m xen.

Cq(SI) will denote the infinitely differentiate functions on SI whose support is con-

tained in SI. Hm(Sl) (resp. Hm(Sl)) is the completion of C°°(Sl) (resp. C^(Sl)) with

respect to the norm

(2-2) \M\m,a = (z       [\Dau\2dx\'\

Note that H°(Sl) = H°(Sl) = L2(Sl).

For m a nonnegative integer H~m(Sl) is the completion of Cq(SI) with re-

spect to the norm

(2.3) llHlLm.n =     SUP

jn uvdx («, v)
sup

For ß a multi-integer define the translation operator T% u(x) = u(x + ßh) and

the difference quotients,

\j"=h-l(ThÍ,2-Th~,>-

Here e- is the multi-index whose /th component is 1 and all others 0.   For any multi-

index a we set

*> - QlU • ' ' *!&)«.

We shall also need the following results:

Lemma 2.1 (cf. e.g. [12]). Let Sl0 CC Slv  If u EH^Nl2^ + l(Sl1),then

(after possible modification on a set of measure zero) u E C°(£20) and

(2.4) l"lo,n0 <cll"H[iV/2l + i,iî o

where C = C(Sl0, Í2,) and [N/2] is the integral part of N/2.

Lemma 4.2.   Let SlQ CC Sl1 and s be an arbitrary but fixed nonnegative in-

teger.   Then there is a constant C such that

(2-5) H«Honn<C   £    II^IUiV
'     ° \a\<s
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Proof.   Without loss of generality we may assume that Sll is smooth and Sl0 CC

Sll CC R^.  First suppose that supp « CC Í2,.  In this case the proof proceeds by in-

duction.   For s = 0 (2.5) is trivial.  Assume (2.5) for s> 0, then for any a with

|a| <5

(Dau, v)

(2.6) ■**■-*«!-      ^       M—'

Let g be a solution of - Ag = v. in Sl1, v = 0 on bSll.  Since « has compact

support, integration by parts and Schwarz's inequality yields

N    I b be
^u,V)=Z[^^u,^

(2.7) i=1 \°Xi

<c(       Z       ..^«IL.-i.n.W+a-
\\ß\ = \a\+\ J

But by elliptic regularity (cf. [13])

IWI,+2,n1<CIK,n1.

In view of this, (2.7) and (2.6), it follows that

Z   Höa«ILsn<     E      \\Dßu\\_s_ucl,
\a\<s \ß\<s+i

which completes the proof for u with compact support in Slx. More generally let

w E C°°(Sl1) with w = 1 on Sl0 and supp w CC Sli.  Applying (2.5) to the function

wu we obtain

ll«Ho,n   <c Z    \\Da(wu)\\_Sin
0 \a\<s

Using Leibniz's rule and the definition of the H~s(Sl1) norm it is easily seen that

Z \\D"(wu)\\_s¡n   <C   Z   WDau\LS:n
\a\<s \a\<s

which completes the proof.

3.  Piecewise Polynomial Subspaces.  In the following sections we shall be con-

cerned with Ritz-Galerkin methods in which the functions used for approximation are

piecewise polynomials on a uniform mesh.  More precisely, let {Qa}, ß E ZN (the

multi-integers) denote a family of disjoint open sets which partition R^. We shall

assume that the partition is invariant under translations by v, for any v E ZN.  Let

r > 2 be an integer.  S[ will denote a linear space of functions which are polynomials

on each Q„ and belong to Hl(Sl) for any SI CC R^.  Furthermore we assume that S[

is translation invariant in the sense that if tp E Sj, then Tfip E S[, for all a E ZN.

For each 0 < h < 1, let 0 - hQß. Then the family {Q% } forms a partition of

R^ which is invariant under translations by hv, v E ZN.  For £2, CC RN, Srh (Í2,) will

denote the finite-dimensional subspace of Hl(Sll) consisting of functions which are the

restrictions to £2, of functions of the form *p(x/h), where ip(x) ES[.  Let S¡¡ (SI) =
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{¡p! ip E Srh(Sl), supp <p Ç SI}. We note that if Í20 CC Í2j and a E ZN, then for A

sufficiently small (depending on a), 9{¡> G S¿(£2,) for all <p G S£(fi0). We shall also

make the following approximability assumptions:

A.l. Let Sl0 CC J2j. There exists an hQ > 0 such that for all A G (0, h0] and

«G///'(Í20)

f3n taf       ll«-^li,n0<CA/-1ll«lly,n ,      Kj<r,

where C is independent of « and h.

A.2. If <p G StfSlJ, h G (0, A0], Sl0 CC Í2j, u> G C^ifi^.then there exists an

7?G5^(i2,) such that

(3 2) llt«;ip-77ll1>n0<CA||ip||1)ni,

where C is independent of h and <p.

Often in practice subspaces which satisfy the above conditions can be described

in the following manner: There exist functions ipj, . . . , <pm, in Hl, which are piece-

wise polynomials with compact support, such that <p G S£ (SI) is of the form

m

(3.3) *(*)=£    L    aiqQi-ix-ß)   for xE SI.

Here the coefficients aj are real.

Example 1.  An example of subspaces of this type are those generated by the

Ä-splines of Schoenberg [16].  These will play a central role in what follows.  Let us

describe them more precisely.

For t real, define

x(0 =
in < a,
u\>%,

and for / an integer, set

(3.4) T^i'^ÍO = X * X * * * * * X.    convolution / - 1 times.

The function i//^ is the one-dimensional 5-spline basis function of order /.  Then

iV

(3.5) *(,)(*) = n *(p(xj)

is the A-dimensional 5-spline basis function of order /.  In this case every element of

Sh on Í2 is of the form

(36) <p(x)=   Z   aa^(h-lx-a),      xESl.

aezN

Example 2.  A more general class of splines than (3.6) which satisfy our assump-

tions are the tensor products of one-dimensional splines.  They may be described as

follows:   Let us subdivide R1 into intervals I- of length h.  Let Mhk ̂R1) = {<p | <p G

Pr-i(Ij), <f> G Ck(Sl) for any SI CC R1}, where Pr_l(Ij) are the polynomials of degree
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< r - 1 restricted to L. Mk r(RN ) is then defined to be the N-Md tensor product of

M^r(Rx) and for any SI CC R^, M*r(Sl) is the restriction of AT*^(R*) to Í2. We

note that if k = r - 2 then these are the ß-splines defined above.  If m is a positive in-

teger, r = 2m and k = m — l.then these are the so-called piecewise Hermite polyno-

mials (cf. [4]).

Example 3. It was shown in [15] that the triangular elements of Bramble and

Zlámal [8] satisfy our conditions. Here we take them on a uniform triangulation of

R".

4.   Interior Equations for Ritz-Galerkin Methods and Some Preliminaries.  Let Sl1

be a bounded open set in R^ and B(u, v) a bilinear form defined on Hï(Sll) x Hl(Slx)

given by

r       /     N N \
(4.1) B(u,v) = j Z   a^D.uD^ + Z   ^(x^D^v + c(x)uv\dx,

ni \i,j=l i'=l /

where for simplicity the coefficients a,-, 2^., are assumed to be of class C°°(Sli) and a«

= a». We note that in general B(u, v) may not be symmetric. We assume throughout

that B(u, v) is uniformly elliptic on Í2,; i.e., there exists a constant C> 0 such that

for all x G Sîj and real vectors Ç = (jgl,. . . , ¡-N) i= 0,

N N

c Z tf < Z "iMr
i= 1 i,j=N

Let « G Hl(Sli) and un G 5^(12,) and suppose that « - uh satisfies the "interior"

Ritz-Galerkin equations

(4.2) B(u-uh,*) = 0

o

for all ip G S£(£2j).  Here uh may be thought of as an approximation to « on Sll ob-

tained by using some Ritz-Galerkin method on a larger set SI.  Instead of investigating

the properties of the error u - uh we shall be interested in investigating the properties

of the difference between « and certain averages of un.  In order to do so we shall

need some results concerning « - un derived in [15] and [4].

Lemma 4.1. Let Sl0 CC Sll CC RN, u G//-r+|a|(i21), a a multi-index, uh G

Sh(Sl1), r > 2 and p be a nonnegative integer, arbitrary but fixed.   Suppose that A.l

and A.2 are satisfied and that « - uh satisfies (4.2).   Then for h sufficiently small

(4.3) ||3«(„ - «,)||2_r>„o <C(Ä2'-2||«||,+ |al>ni + II« - uJLpi0l).

Here C is independent of u, uh and h but in general depends on p, a, SlQ, Slt and the

coefficients a», b¡ and c.

Proof.   Clearly it is sufficient to prove (4.3) for 9£ replaced by the forward dif-

ference operator 9^ = T^/2b^, and Sl0 replaced by Sl'0 with Sl0 CC Sl'0. Now let

Sl0 CC Sl'0 CC Sl\ CC Sl1.  It follows from (6.8) of [15], that for h sufficiently

small and e = u - un
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(4.4,   tf-t-fa.á&í-')**«***'»0''*-

V<pESh(Sl'0).

Hence, referring to [15] in particular, from (5.6) of Theorem 5.2, (4.3) of Lemma 4.2,

(6.5) following Theorem 6.1 and (4.4) above we have that

(4.5) H3l;e||2_rin.<c(/t2'-2||«||r_2+lai>ni+l|e|LP(n.4- £  \\dßhe\\2_r,a\
0 \ ' 1      ß<a J

The proof now proceeds by induction on |a|.  If a = 0 then (4.3) follows from (4.5).

Assume now that (4.3) holds for |a| < m.   If |a| = m + 1, then applying (4.3) to the

third term on the right of (4.5) on the domains £2', and £2j the inequality (4.3) for

|a| = m + 1 is obtained, which completes the proof.

Lemma 4.2 [4].   Under the conditions of Lemma 4.1 there exists a constant

C> 0 such that

(4.6) l^-^O.fio^ WK+ICVI+[AT/2 ] + l,fij +H«-M-p,n,).

where C is independent of u, uh and h but in general depends on p, a, Sl0, Slx and the

coefficients a«, b¡ and c.

5.  A Qass of Convolution Operators.  In this section we shall introduce a par-

ticular class of convolution operators and discuss some of their properties.  In the next

section we shall use these to show (under certain conditions) that a certain convolution

of the Ritz-Galerkin solution un is closer to u than uh is itself.

We shall begin by defining the kernels of the above-mentioned convolution oper-

ators.  In each case it is an Af-dimensional smooth spline which is the product of a

single suitably chosen one-dimensional smooth spline.  More precisely let i//^ be the

one-dimensional smooth spline of order / defined by (3.4).  For I = r - 2,r> 2 given,

and x G R^ set

(5.1)        *„«- n( ï?   h-ikj*r2)«>-lxm-o)-
m = l \/=-(r-2) /

Here the constants Ä"'- are defined as follows:

(0   k'_j = k'j,j = 0,...,r-2.

(ii) k'0 = *o and k'j = kj/2,j= \, . . . ,r - 2,

where the k,,j — 0, . . . , r — 2, are determined as the unique solution (see Lemma 5.1

below) of the linear system of algebraic equations.

(5.2)     z ki J   ^~2\y)(y + /)2m <ty = ].
7=0 Rl [

r-2 ,     _ „ \l     if m = 0,    .

0   ifm = 1, .. . ,r-2.

We note that the constants k- can be easily computed and depend only on the choice

ofr.

The convolution operators in which we are interested are of the form
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(5.3)   (Kh*u)(x) = h-Nf JU     Z   k¡^-2\h^(xm-ym)-i)\u(y)dy.
JRIy ^m = l j=2-r

If we set k'j = 0 for |/| > r - 1 and for ß a multi-integer define k'~ = itíLjfcg ,

then (5.2) and (5.3) may be rewritten as

(5-4) Kh(x) = h-NZk'ß<Pir-2)(h-1x-ß)
ß

and

(5.5) (Kh * u) (x) = h-N{ N Z k'ß V"-2)(h-l(x - y) - ß)u(y) dy,
R       (3

respectively.

In what follows we shall be interested in Kh * uh as an approximation to «.  Be-

fore investigating the properties of Kh, let us first consider the computation of Kh *

uh.  If, in the region to be studied, uh is of the form (3.3), that is

x
(5.6) uh = Z    Z   al^h-'x-a),

/=> aezw

then using (5.5) and making a change in variables we have

(Kh * «„) (x)

(5 7) m .  /

= L Z  *'J Z kß f Ny-2(h-lx-v-ß-<x)*i(v)dx
i=iaezN     Wz"      Jr ,

Although the terms k'ß f N \pl(h~ 1x - t? - ß - a)<p. (n) dr\ and hence Kh * uh

may be calculated at any point, we shall, for simplicity restrict our attention to points

of the form x = hy, y E ZN.  In this case

m \

h *uh)(hy) = Z    Z   <(  Z   k'ß   Lv*      (T-ß-"-^)<M
/=!  a^ZN        \ß&ZN JK '

or

(5.8) (Kh * un)(hy)= Z      Z     a'y-5dÍ'

where

4 = Z   k'ß( Nr~2(8-ß-V)fi(n)dv-
ßezJV

Thus the values of Kh * uh at mesh points are determined by taking a fixed

finite linear combination of the values of the coefficients a]a.  There are only a finite

number of nonzero coefficients d'&.  They may be computed a priori and are indepen-

dent of h and the particular mesh point.

As an example, let us take the case where uh itself is a smooth spline.    Then
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1, tpj = ^     and uh is of the form

(5.9) "*
a<EZ™

Z    aa^r\h-lx-a).

szr

Setting d'b = ds in this case, we have

(5.10)    d6 =   T    k'ß er~2(3 -ß)=Ud's^n(   Z       k'n ̂ 2-2(S/ - r») .
ß(=ZN '=1 /=1   \r)=-(f-l) J

Here the d¡ correspond to the weights d5 in the one-dimensional case.  A table of the

one-dimensional coefficients d\ from which the A-dimensional weights ds in (5.10)

may be formed will be given in the appendix.  We remark that the computation of the

d' may also be reduced to the product of the one-dimensional case if we take Sn to be

the more general class of tensor products of one-dimensional splines given in Example

2 of Section 3.

For technical reasons in what follows we shall make use of a slightly more general

class of convolution operators than those defined by (5.3). We shall now introduce

these and discuss some of their properties.  The following result will be needed.

Lemma 5.1 (cf. [6, Lemma 8.1]). Let t > 1 and I > 1 be arbitrary but fixed in-

tegers.   There exist uniquely determined real constants k,, / = 0, . . . , t — 1, which

satisfy the linear system of algebraic equations.

Here, with a slight abuse of notation, we have suppressed the dependence of the solu-

tions of (5.11) on t and /. We note that (5.2) and (5.11) coincide in the case / =

r - 2 and r = r - 1.

As before let k'0 = kQ, k', = k/2, k'_- = k', for/ = 1.t — 1 and fc. = 0 for

l/l > t.   For j3 G Z^ set k'ß = LTJl, k'ß, and define

KV,i^) = h~N   Z   k'ßV(h-lx-ß)
ßezN

(5.12)

n
m = l

h'1     Z       k'j^P(h-ixm-j)\
/=-(f-D J

We remark that supp(A^',(*)) is the cube with side of length (2t + I)h centered at the

origin.  Note also that K.2hr~}2(x) = Kh(x).

The function Kh ¡(x) was constructed in such a way that K2ltl * u, where * de-

notes convolution, is an approximation of order h2t to u.   More precisely we have the

following:

Lemma 5.2.   Let t > 1 and l> 1 be fixed integers and Sl0 CC Slx.  Then for

h sufficiently small

(5.13) l«--K2fi*«lo,o0<C*,l«Uo1.      0<s<2i,
and



HIGHER OREDR LOCAL ACCURACY 103

(5.14) ll"-*/u*"llo,n0<Cfcíll"llí,ív      0<s<2t.

The proofs will not be given.  We only remark that (5.13) and (5.14) follow as a

simple consequence of the Bramble-Hilbert Lemma (cf. [3]), using the fact that Lemma

5.1 implies that Khul * u reproduces polynomials of degree not exceeding 2f — 1 in

each variable (cf. [6, Lemma 8.1]). We also note that (5.13) may also be proved using

this latter fact and Taylor's Theorem.

We shall need some other properties of K2ltl * u.

Lemma 5.3.  Let t, I, h, Sl0 and Í2, be as above.   Then

(i) For any multi-index a and u E L2(Sly)

(5.15) bah(K2tl*u)(x)=K2tl*bahu(x),      xCSl0.

(ii) // s is any fixed integer (positive or negative) and a is any multi-index with

aj<l,j=l,...,N,

(5.16) WW,! * «)ll4,o0 < C\\ bah «||sii i    for all u G Hs(Sl,)

and

(5.17) \Da(K2htj*u)\0,si0<c\K»\o,n1    for all u EC0 (SI x).

Here C is a constant which is independent of h and u.

Proof.   The identity (5.15) follows very simply using a change of variables.

For simplicity in notation we shall prove (5.16) and (5.17) in the case N = \.

The multi-dimensional case follows in essentially the same manner.  For N = 1 we have

(K2t, * «) (x) - /r1 f ,   Z   k'j *i'?(Ä" '(* -?>- ft "(^dy-
JR    /=-(r-l)

If 0 < a < I define

j=-(t-i)

Then it is easy to see from (5.15) and (3.4) that

D«(K2¿l*u)=v2!l_a*b«hu.

Now since ip(/_a) > 0, h~l /   , ^-^Qrlx - j)dx = 1 and supp^'-0^*-1*)) is

an interval of length (/ + 1 - a)h, it follows that for h sufficiently small

<5-18) lvft_a*a^i0>no<ci3««i0>iîi

and

(5.19) ll^,i/-a*a^«llo,n0<C||9^«||oni.

The inequality (5.8) is just the inequality (5.17) and (5.19) is the inequality (5.16)

in the case that s = 0.  In the case that s is nonnegative, the inequality (5.16) follows

from (5.9) on observing that for any nonnegative integer m,



104 J. H. BRAMBLE AND A. H. SCHATZ

lT>(D«(K2tJ*u))=Vlt>l_2*Dmbh'u.

For s a negative integer we have

iai-2'
ll£%,z*«IU0=     sup

ll|Jll-s,n,
uec0(n0) "-*.»o

(V"/-« * 9^ «, u) (3« u, v2ya * v)
=     sup-=    sup        -

vGC0(n0)        IMI-,,n0 uGCÔ(n0)        ll"IL,tn0

ll^^n^l^-a^lUn,
<       sup      -_

It is easily seen that

llBi?j_«*"IL..ni<C|l»ILI,n0

where C is independent of h and v G CJ°(Í20).  This completes the proof.

6.  Superconvergence Estimates.  Let u and uh G S£ satisfy the interior equations

(4.2).  The inequalities (1.4) and (1.5) provide estimates for the error in the L2 and

maximum norm respectively.  It is often the case that for specific problems the term

||e||      n    is 0(hr) and hence the estimates (1.4) and (1.5) yield 0(hr) convergence

locally.   For many important problems ||e||_p ft   is in fact 0(h2r~2). We shall show

that if one considers Kn * un instead of uh as an approximation to u, and if lk||      n

is 0(h2r~2), then u — Kh * un is locally of order h2r~2 in both L2 and maximum

norms.  Hence in these cases processing the solution uh yields higher order accuracy

for r > 3.

We emphasize that u - Kn * uh will be 0(h2r~2) at every point of the region in

which the error is measured.  In practice one usually computes the solution at specific

points, for example at mesh points.  In this case Kh * un takes a particularly simple

form.  This will also be discussed. We shall start with finding estimates for « — Kh * «

in L2 norm (Theorem 1) and then in the maximum norm (Theorem 2).

Theorem 1.   Let SlQ CC Í2,, « EH2r~2(Sli), uh G S£(í2j), r >3, where Srn

satisfies A.l and A.2 and u - un satisfies (4.2).  Let Kh be chosen as in (5.1) and let

p be an arbitrary but fixed nonnegative integer.   Then for all h sufficiently small

(6.1) \\u-Kh *«A,ft0<C(/i2'--2||»||2,_2jfti +H"-M-p,n1).

where C is independent ofu and h.

Proof.   By the triangle inequality

(6.2) ||« - Kh * «„||0>fto < II« - Kh * «||0>fto + \\Kh * (« - «ft)ll0,ft0.

Let Sl0 CC Sl'0 CC Sll cc ni •  Since *hfr) = Klr,7-2ÍX) i* follows from (5.14) that

(6.3) \\u-Kh * «ll0;ft0<C/22'-2||«||2r_2;ni.
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Now using (2.5), we have that

(64) "^•fr-«*)llo,n0<     E     UDßKh*("-»h)\\2-r,n'.
v   "  ' u       \ß\<r-2 °

The inequality (6.1) now follows from (5.16), (4.3) and (6.3).

In order to prove a maximum norm error estimate we shall make use of the

following.

Lemma 6.1.  Let Sl0 CC Sll, v G C°(Sl) and N0 = [N/2] + 1.  Then for all h

sufficiently small

(6-5)       l*„*«Vn<cr      Z K«*2_rini+*r-2    Z    I9>l0>ftr
|_!a|<jV0 + i--2 I.Kr-2 _

where C is independent of v and h.

Proof.   By the triangle inequality

(6.6)     \Kh * u|0>iio < IA-2-2 * Kh * v\0^o + \Kh*v- Kl'jl * Kh * v\0>aQ

where K2r^2 * u is defined by (5.12). Let Sl0 CC Sl'0 CC Í2j. Then using (2.4), (5.16),

(5.15) and (2.5) we have for the first term on the right that

Ky*Kh*v\0tSl   <C    Z     ll^/uvo**/,* »llo.no

(6-7) , x
<C     Z     \\Kh*K<,n')<C Z        H9^||2_rn \.

\M<N0 7 \|a|<JV0 + r-2 y

For the second term on the right of (6.6) we have

\Kh*v- K2¿ñ2o * Kh * u|0i„o < Ch'~2\Kh * u|r_2;íí.

<Ch"-2(    Z      I9>l0,ft'   ,
\laKr-2 /

where we have used (5.13) and (5.17).  The inequality (6.5) now follows from (6.6),

(6.7) and (6.8).

Theorem 2. Suppose that the conditions of Theorem 1 are satisfied and that u G

H2r-2+N0 (A^ = [N/2] + jj   nen

(6.9)        !«-*„ *«ftlo,n0<c(/'2''""2ll"ll2r-2+iVo,i2l + ll"-«JLP,n1).

where C is independent of u and h.

Proof.   Using the triangle inequality and setting u - uh = e,

\u-Kh* «Jo,n0 < I" - Kh * "lo,n0 + |Ar* * e|o,n0-

Let Í20 CC Sl'0 CC Sl1. Then using (5.13) and (2.4) we have

\u-K„* «|0 < C7i2'-2|«|2r_2,ftí)< C/i2r-2||«||2,_2+jVo,ft p

Applying Lemma 6.1, (4.3) and (4.4)
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i***«io,n<c(    Z       11^112-^+*r-2   Z   i3^lo,n¿)
0 \|a|<r-2+Ar0 " |.|<r-2 "/

<C(^-2||«||2r_2+^o,ni+ll«-«ftILp>fti)

which completes the proof.

Although K^r~22 * uh can be calculated at arbitrary points in Sl0, Theorem 2

takes a particularly simple form if un is of the form (3.3) and if, for example, we are

interested in points in Sl0 of the form hy, y G ZN.

Corollary. Suppose the conditions of Theorem 2 are satisfied and uh is of the

form (3.3).   Then at points hy ESl0, y EZN

m

SUp IU(hy) - Z Z 4-a Ja
(6.10) hyen0;yez     | /= 1   a

< c(/i2i-2ii«||2r_2+^0)ni + ||« - uh\LPiSli),

where the d'a are given by (5.10).

7.  Examples.  Here the theory given in Section 6 will be exemplified, where for

simplicity we shall restrict ourselves to discussing Dirichlet's problem.  In Example 1

interior superconvergence estimates for two different methods will be discussed.  In

Example 2 a way of obtaining superconvergence up to the boundary, when the domain

SI is the unit square and the subspaces are taken to satisfy the boundary conditions,

will be given.

Let SI be a bounded domain in R^ with boundary bSl.  For simplicity consider

- Au =/   in SI,
(7.1)

u = 0    on bSl.

For the purposes of the applications given here an additional assumption on the sub-

space Srh(Sl) will be made.  Namely we suppose that there exists a constant C indepen-

dent of « and h such that-for all « G H*(Sl); 1 < t < r,

inf      ||«-xll1,ft<CÄf-1||«||ii2.

x&Sfc(n)

In Example 2 the elements of S*(Sl) are required to vanish on bSl.  In this case (7.2)

is assumed to hold only for « G H^Sl) O Hr(Sl).

In what follows we shall assume that the hypothesis of Theorems 1 and 2 are

satisfied, where Í20 CC Slt CC SI.

Example 1. Dirichlet's Problem on a Smooth Domain.   Here we shall assume

for simplicity that bSl E C°°.  In Babuska [1] and Nitsche [14], methods were intro-

duced for approximating the solution of (7.1) in which the approximating subspaces

need not satisfy the boundary condition.  These methods have the same interior equa-

tions; i.e. if uh is the approximate solution determined by either of these methods,

then
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f    Z TJLiTdx=  (   f<pdx
Jft ¿Ti bx¡ bx¡ Jq

(7.3)

= /   tf-^äx.   V,G^("i).Jft ,e, 9x¿ dx,

What is important here is that we may choose Srh(SV) to satisfy all of our conditions

(cf. [4, Example 2], for more details). Now it was shown in [5] that the estimate

(7.4) Il«-"„ll2-,,n<>'''~1"íll"llí,íí

is valid for 1 < t < r.   Using this inequality and the fact that ||u - uh\\2_r n   <

II" - uh^2-r n> we 0Dtain frorn Theorems 1 and 2 the error estimates

(7.5) II« - Kh * «„ll0;fto < c'j2''"2(ll"ll2,-2,n, + H«Hr,n).

and in the maximum norm

\u~Kh *uh\o,n0

(7.6)

<CÄ2-2(||«||2r_2 + [iV/2]+1)ni+||«||r;ft).

If we take N = 2 and for example S¿ to be piecewise cubic Hermite polynomials

or cubic smooth splines, then r = 4 and (7.5) and (7.6) become

II«-** *«A,n0<C/í6(||«„6iííi +ll«ll4)ft),

'«-** *uh\o,n0<Ch6(\\u\\8tni +ll«ll4>ft).

Example 2. Superconvergence Up to the Boundary for Dirichlet's Problem on a

Square.   Let SI be the unit square in R2 (i.e. SI = {x | 0 < x¡ < 1, i = 1,2}), with

boundary bSl and let u be the solution of (7.1).

Let h = I/n, n = 1, 2, 3, .. ., and let / be either 0 or 1.  We shall approximate

« taking our subspace Srh (SI) = M¡¡ r(Sl) = {ip|<p G M*r(Sl), <p |an = 0, k = 0, 1}.  That

is, Mk r(Sl) is the subspace of the space of tensor products of one-dimensional C° or

C1 splines (discussed in Section 3) consisting of elements which vanish on bSl.

Let uh G S¡^(Sl) be the approximate solution of (7.1) defined by

2 9«,,  9<p r
y     I-dx = I    /ip dx
t~j Jn 9x,- bx¡ Jçi

(7.7)
9«   9ip

,^1 J n 9x,- 9x;

We shall show that uh can be extended, in a simple manner, from SI to a larger

domain so that u - Kh * un = 0(h        ) on SI in both the L2 and maximum norms.

The extension uh can be described as follows:
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S2„

SI,

SI,

si3   r4

r,i2rs

r7

r8   si,

si*

si.

SI,

(i) Extend uh from SI to fij, Sl3, Sl5 and Í27 as an odd function by reflection

across the faces r,, r3, T5 and T7 respectively.

(ii)  Then extend uh to Sl2, Sl4, Sl6 and Sl8 as an odd function by reflection

across the faces T2, r4, T6 and T8 respectively.

Notice that since k is either 0 or 1, t/„ E m£ r(SlE), where SlE = [x \ - 1 < x-

<2}.

Theorem 3. Let S£ and Uh be defined as above with r>3. If h is sufficiently

small and

(i) fEH2r-*(Sl),then

(7-8) II« - Kh * Uh\\on < C(A2'-2||/||2r_4>n).

(ii) Iff EH2"-2(SI), then

(7.9) \u-Kh* Uh\on < C(/z2)-2||/||2r_2in),

where C is independent of h and f.

Proof.   Extend u to SlE in the same manner as Uh and call its extension U.  Let

Ai, i = 1, 2, 3, 4, be the squares

A, = {x\-\<xl<l,0<x2<2}, A2 = {jc| 0<Xl < 2, 0<*2 < 2),

A3 = W-Kx1<l,-l<x2<l}, A3 = {*IO<JC,<2,-l<jt2<l}.

We first claim that

(7.10)

2   c   b(U - Un) du)
ZJ.      -^7"97^ = 0'   V^GM^(A,.),/= 1,2,3,4.
7-1   Ai

bX;

Note that Un EM^(A¡) and iî fEHs(Sl) (s > 0 an integer) then UEHS+2(A.) n

//'(A,.), / = 1, 2, 3, 4.   Furthermore

(7.11) ly«,+2.Al<CII/l|f>n.      '=1.2,3,4.

Before proving (7.10), let us show how (7.8) and (7.9) follow from it.  Equation

(7.10) says that Un is the Ritz-Galerkin approximation inM* (A¡) of U on each of the
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domains A,., i = 1, 2, 3, 4.  Hence on each of these domains the interior estimates ob-

tained in Theorems 1 and 2 are applicable.  Let Sl'0 CC A,-, / = 1, 2, 3, 4, be chosen

suchthat Uf=i ^ó cover ^-  From (6.1) and (6.5) we have for h sufficiently small

and / = 1, 2, 3, 4

(7.12) W_K   * /y H      . <C(h2-2\\U\\2r_2>A + Hi/- Uh\\2_,iA)

and

(7.13) \U-Kn* Uh\o^ <C(h2r-2\\U\\2rfA¡ + ||C/- U„\\2_rtSlE).

It was shown in [15] that

(7.14) ll^-t/All2-r,Aí<CA2r~2ll^r,Aí-

The inequalities (7.8) and (7.9) now easily follow from (7.12), (7.13), (7.14),

(7.11) and the fact that (J^i ^0 covers n-

It remains to prove (7.10).  We shall do so in the case i = 1, the other cases fol-

low in the same manner.  Let A = SI U Sll U T,. We shall first show that

(7.15) ¿f?^**^.   V,GM»,(A).

If <p GM* r(A),then let <p = «p° + tpe where

* fri. *2) =-j-

and
<p(x1,x2) + ip(-x1,x2)

/fri. *2) =-2-'

Now <p° EM^r(Slx) anàM^r(Sl), hence using (7.7)

2 9(t/-i/ft) 3vo a 3(i/ - t^)  9/

i=l   JA

*      r    "v-'      ^/j^   dip
^ = 2^: j ——^-^^ = 0.

ojc,       9x,. rri •'ft 9xf 9x

Since tpe is an even function of x1 and U - Uh is an odd function of Xj it follows that

Z   J   -à- a dx = 0'
,= i ^a        9*,-        9x,.

which proves (7.15).

Since £/ and t/^ on Sl2 and Í23 may be obtained from U and t/^ on A by an odd

reflection about the line y = 1, the argument given to prove (7.15) also shows that

(7.10) holds which completes the proof.

Appendix.  Here we present two tables.  Table 1 gives values for the weights fc'-

for various values of r.  For a given choice of basis functions these may be used to

calculate Kh * uh(x) at each point x or just at mesh points using (5.8).  In Table 2 we

give values of the weights d'¡ for various values of r in the case where S¿ is chosen to

be the splines generated by the 5-spline basis ip^r\
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Table 1. k'f, I - r - 2, t = r - 1

0 13/12

1 -1/24

2

3

4

37/30

-23/180

1/90

346517/241920

-81329/322560

6337/161280

-3229/967680

Table 2.   d\

76691/45360

-48061/113400

20701/226800

-1573/113400

479/453600

j\r

0

1

2

3

4

6

7

8

51/72 673/1080

11/72      4283/21600

-1/144 -61/5400

29/21600

1/10800

33055739
58060800

3589969

967, 356, 037
1,828,915,200

3, 841,481,473

16257024 16,460,236,800

-12162977 31,253, 191

1625702400 82,301,184,000

4795283 48, 179, 483

2438553600  27, 433,728, 000

26273
270950400

-58243

812851200

-3229

4877107200

89711
514,382,400

-2905789

16, 460, 236, 800

25867
1,097,349, 120

117083
82,301, 184,000

479/164, 602, 368, 000
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