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The Numerical Solution of Boundary Value

Problems for Stiff Differential Equations

By Joseph E. Flaherty* and R. E. O'Malley, Jr.**

Abstract.   The numerical solution of boundary value problems for certain stiff ordinary

differential equations is studied.   The methods developed use singular perturbation

theory to construct approximate numerical solutions which are valid asymptotically;

hence, they have the desirable feature of becoming more accurate as the equations be-

come stiffer.   Several numerical examples are presented which demonstrate the effective-

ness of these methods.

1.  Introduction.  Stiff initial and boundary value problems for ordinary differen-

tial equations arise in fluid mechanics, elasticity, electrical networks, chemical reactions,

and many other areas of physical importance.  Singularly perturbed problems, which

are characterized by differential equations where the highest derivatives are multiplied

by small parameters, are an important subclass of stiff problems.  These problems must

often be solved numerically; however, because they typically feature boundary layers

(narrow intervals where the solution varies rapidly) their accurate numerical solution

has been far from trivial.

Several schemes have been developed for the numerical solution of stiff initial

value problems for ordinary differential equations; among them we note Gear's method

[14] and the method of Bulirsch and Stoer [4].  These schemes work well for mod-

erately stiff systems; however, as the stiffness increases they all require the use of very

small mesh spacings over portions of the domain of integration.   Thus, computational

cost increases and accuracy decreases as the stiffness increases.  Numerical schemes

for two-point boundary value problems are not nearly as plentiful.  This becomes clear

when referring to the recent papers in Willoughby [44].   However, we note the work

of Dorr [8], [9], Abrahamsson, Keller and Kreiss [1], Yarmish [45], and Ferguson

[10].   Adaptive grid finite-difference schemes have been developed by Pearson [36],

[37] for second order equations and by Keller [17], [18] and Keller and White [20]

for systems of first order equations.  Keller's schemes have also been applied to partial

differential equations [19].  Both Pearson's method and Keller's method use imbedding

techniques to construct finite-difference grids which are dense within boundary layers;

hence, while both techniques have been successfully applied to several problems, they

require considerable computational effort for very stiff problems.
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We have developed algorithms which numerically construct asymptotic solutions

of ordinary differential equations belonging to either a class of linear equations or quasi-

linear second order equations.  In essence our methods use singular perturbation theory

to construct the leading terms in formal asymptotic expansions of the solution. We

solve for these leading terms using standard numerical techniques. We recall that classi-

cal singular perturbation methods (cf. Cole [5] or O'Malley [29]) separately solve a

reduced (or outer) problem away from boundary layers and add appropriate solutions

of boundary layer (or inner) problems where nonuniform convergence occurs. The outer

solution follows from a regular perturbation (nonstiff) procedure, as do the inner solu-

tions (although on a semi-infinite interval in the appropriate stretched boundary layer

variable).  Our numerical procedures avoid difficult stiff integrations in analogous fash-

ion. While our methods are based principally on the work of O'Malley [32], similar

ideas have also been used by Miranker [25], Aiken and Lapidus [2], Murphy [28], and

MacMillan [23] for initial value problems.  Their methods, like ours, have the important

advantage of becoming more accurate as the equations become stiffer.  This is because

our solutions will be asymptotically valid as the small leading coefficients of the differ-

ential equation tend to zero.

Many important physical phenomena result in problems featuring nonuniformities

away from the boundary points. Such interior nonuniformities can occur only when a

turning point is encountered. This study does not consider these interesting, but more

difficult problems, as it avoids solutions with turning points. Among numerical studies

considering such possibilities we mention Dorr [9], Pearson [36], Abrahamsson, Keller,

and Kreiss [1], and Miranker and Morreeuw [26]. Somewhat related difficulties with

stiff equation routines are the subject of Lindberg [22].

Our most complete results are for linear boundary value problems (Section 2);

however, we also present results for some second order quasilinear problems (Section 3).

We hope to later use Howes' recent study [16] to develop numerical algorithms for non-

linear boundary value problems with turning points.  Several examples comparing our

results with exact solutions, when known, and numerical solutions obtained by either

a shooting procedure or by Pearson's method [36] are presented in Section 4.  These

results show that our methods can obtain accurate solutions to very stiff problems with

very little computational effort.

2.  Numerical Method for Linear Boundary Value Problems.  We consider a linear

ordinary differential equation of the form

m d'y

(2.1) j&*>2-°

on the bounded interval 0 < x < 1 subject to the linear boundary conditions

\,-i

/*i>(0) +  Z V(/)(0) =fi'       i=h2,...,r,
(2.2a) >=°

m > Xj > X2 > ■ • • > Xr,
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\,-l

y^,)(l) +  y   b./'Xl) = /,;       / = r + 1, r + 2, . . . , m,
(2.2b) /=o

w > Xr+1 > X,+2 > • • • > Xm '

We assume that the leading coefficient am(x) is small, but nonzero, throughout 0 < jc

< 1.   Furthermore, the coefficients am_l(x), am_2(x), . . . , an + 1(x) are (like am)

small throughout 0 < x < 1, but, an(x) is not small on 0 < x < 1.  No specific depen-

dence on a small parameter is assumed.  We also assume that the boundary conditions

have bounded coefficients by and f¡ which may be small.

We call the lower order differential equation

(2.3) z «¿*yyu\x) = o
/=0

obtained by neglecting the small leading coefficients in (2.1), the reduced differential

equation.   Since an(x) is nonzero, the reduced equation will be nonsingular, and the

full equation (2.1) will not have turning points.  (We refer the reader to Wasow [43],

McHugh [24], or Olver [34] for a general discussion of turning point theory.)

Asymptotic solutions of (2.1) are determined by the roots p,(jc), i = I, . . . , m,

of the characteristic polynomial

m

(2.4) Z   a/Wto = 0,

which has m - n large roots determined asymptotically by the roots of the lower order

polynomial

m—n

(2.5) Z   an+j(x)p>(x) = 0.
/=o

We assume that the roots p¡(x), i — 1, 2.m — n, of (2.5) all have nonzero real

parts and are distinct throughout 0 <x < 1.   Furthermore, suppose that they are

ordered so that

(2.6)

[Re\p¡(x)] <0,        /= 1,2, . . . , a,

l Re\p¡(x)] >0,       i = a + 1, a + 2, . . . , a + t = m - n.

Under the above assumptions O'Malley proves [32] :

Theorem,   (i) // the reduced problem

Z af(x)yU\x) = 0,
7=0

\,-l

(2.7)      <   ^,0(0) +   £   bt/'\Q) =f{,        i = a + 1,-r,
/=o

\,-i

/*/>(l) +  Z   V(/)(l) = fti       i = r + t + 1.m,
/=o

has a unique solution z(x) and, (ii) // the two matrices
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(2.8)
/', / = 1, 2, . . . , a,

and

,K+r^r+T

(2.9)    T = /', / =  1, 2, .  .  . , T,

are both nonsingular, then there is a unique solution of the problem (2.1), (2.2) having

the form

(2-10) y(x) = L(x) + l(x) + R(x),

where

a   c^4,(x)exp[/0x p,(s)<ii]
(2.11a) L(x) = Z

and

(2.11b) R(x)

= i    maxi<fc«>*(0)l*CT

m-n      2>4,(x) exp[/f p¡(s)ds]

«=a+i  max1<fc<Tlpff + fc(l)l^+^

The A¡(x) are bounded and are chosen so that A¡(0) = 1 for i < o and A{(\) = 1

otherwise.  Furthermore, zlx) and y(x) tend asymptotically to z(x) within 0 < x < 1.

We note that the boundary conditions for the reduced problem (2.7) are obtained

by cancelling the first a boundary conditions (2.2a) at x = 0 and the first r boundary

conditions (2.2b) at x = 1.  Thus, the signs of the large roots of the characteristic

polynomial (2.4) are critical in defining the reduced problem.  In particular, the re-

duced problem would not be defined if there were fewer than a boundary conditions

at x = 0 or fewer than r boundary conditions at x = 1.  Indeed a limiting solution

will not generally exist in such cases.   Several additional consequences of the theorem

are discussed by O'Malley [32], based on earlier work by Wasow [41] and O'Malley

and Keller [33].

If the coefficients in (2.1) are sufficiently differentiable, then (2.10) can be dif-

ferentiated repeatedly and provides an asymptotic representation of the derivatives of

the solution.  This can be used, as follows, to obtain more specific results about the

solution y(x) itself:

Corollary.   Under the hypotheses of the theorem, the asymptotic solution of

the problem (2.1), (2.2) satisfies

(2.12) y(x) -* L(x) + z(x) + R(x)

uniformly within 0 < x < 1. Here L(x) is asymptotically zero unless XCT = 0 and the

left boundary layer jump JL= fa~ 2(0) is nonzero.   Then, however,

(2.13) L(x) ~ Z C/ep'{0)x,

i'=i
where the c, are uniquely determined by the linear system
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(2.14)

Similarly, R(x) is asymptotically zero unless \r+T = 0 and the right boundary layer

jump JR = fr+T - z(l) is nonzero.   Then

(2.15)

where

R(x)~   Z    c,e-P<(1>(1-*>,
i=a + l

"a+1

'a + 2

(2.16)

In particular, L(x) and R(x) are asymptotically zero within 0 < x < 1.

Proof.    Using (2.11a), we see that the left boundary layer correction is asymp-

totically negligible unless XCT = 0, i.e., the last boundary condition cancelled at x = 0

has the form y(0) = fa.  When XCT = 0, a boundary layer will generally be required at

x = 0, otherwise y(x) will converge uniformly there, although its derivatives will not

do so.   Likewise, using (2.1 lb), we see that R(x) is asymptotically negligible unless

Xr+T = 0, when we generally get a boundary layer at x = 1.

If XCT = 0, the boundary layer behavior at x = 0 can easily be asymptotically

determined by finding limiting values for the constants "c¡ of (2.11a).  To this end, we

. Pa tOsubstitute (2.10), (2.11) into (2.2a) and make use of the largeness of pi.

obtain

^iX_
/=1,=1 max1<fc<alpfc(0)lA" + £ b" max1<k<alpfc(0)l^

(2.17)

+ jW(o) + z V(0(°)[~//'    i=h...,o.
1=0

Because Xa = 0 and X, > Xa for / < a we asymptotically obtain (2.14), where c¡ ~

c, for /• = 1, . . . , a.  By hypothesis (ii) of the theorem, (2.14) has a unique solution,

which is trivial if JL = 0.  Similar arguments at x = 1 lead to (2.16).

Algorithm. We have used the above theorem and corollary to construct the fol-

lowing algorithm which yields approximate numerical solutions of the boundary value

problem (2.1), (2.2).

(i)  Determine the reduced equation (2.3) by sampling the coefficients in (2.1)

for several values of x on [0, 1].  Also check that the leading coefficient am(x) of



STIFF DIFFERENTIAL EQUATIONS 71

the differential equation and the leading coefficient an(x) of the reduced differential

equation are nonzero on [0, 1 ].

(ii)  Find the roots p.(x);j = 1, . . . , m - n, of (2.5) using Muller's method [27]

with the distinct initial guesses [-a„(0)Azm(0)]1 /<"»-").   Check that the p¡(x) all have

nonzero real parts and are distinct throughout [0, 1].  Calculate a and t as defined in

(2.6), and, hence, determine the boundary conditions for the reduced problem.

(iii)  Calculate the matrices S and T defined in (2.8), (2.9) and check that they

are nonsingular by using Gaussian Elimination to evaluate their determinants.

(iv)  Solve the reduced problem by numerically finding a fundamental set of solu-

tions of the reduced equation (2.7), i.e., by finding numerical solutions zk(x), k = 1,

2, . . . , /i, of

Z   afiyy^ix) = 0,
/=o

(2.18)
y(')(0)

Jk-1,/>
0,  1, ,n- 1,

where 8k , is the Kronecker delta.  The solutions zk(x) are found on 0 < x < 1 using

a fourth order implicit Adam's method (cf. Gear [14]).  The step size ft for the numer-

ical integration is selected so that the maximum local discretization error r(h) is such

that

7(h)

(2.19) max 0«x«l \zk(x)\
max 10"

max
max

n + l^Km \a,(x)\

0<x<1     max0<l<n\a,(x)\

This insures that a solution with more accuracy than necessary is not obtained.  The

solution of the reduced problem is calculated as

z(x) =  Z  akzk(x),
k=\

(2.20)

where the ak are the solutions of the linear algebraic system

%+i +   Z   V/+1 =4        i= o+ \, . . . ,r,
/=o

(2.21)

/„       f-r + T+1, .
n

z
k = \ /=0

m.

If this system is nonsingular, then the reduced problem will have a unique solution.

We note that the reduced problem is not stiff, hence, the reduced problem is solved

without using a small step size.

(v)  Add any boundary layer corrections to the reduced solution using (2.13),

(2.14) and (2.15), (2.16).  The matrices S and T are saved from step (iii) in factored

form so that (2.14) and (2.16) are easily solved by forward and backward substitution.

We note that our procedure obtains a numerical approximation to the leading

terms of the appropriate asymptotic expansion of the solution without explicitly identi-

fying the small parameters involved.  This approach has also been used by several
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physicists and mathematicians (cf. Froman and Froman [13]).   The asymptotic error

of our approximation is uniformly 0(e), where we may take e as either

a¡(x)

an(X)

l/(m-n)

(2.22a) e = max
0<x<l;n+Kj<m\

or

(2.22b) e = min 1/!?,■(*) ' •
0<JC<1 ;Ki<m-n

This would be comparable to a relatively high order 0(hp) of discretization error re-

sulting from integration with a moderate step size ft.   Our results could be strengthened,

if necessary, to a higher order asymptotic validity in e.

Our algorithm has been successfully applied to several examples which are dis-

cussed in Section 4.

3.   A Method for Some Second Order Quasilinear Equations.  To develop a gen-

eral theory for analogous nonlinear boundary value problems would seem very difficult

(cf. O'Malley [29] for some of the several complications that can occur).  We note,

in particular, that nonlinear initial value problems are far more tractable than two-point

problems, which generally require growth restrictions of Nagumo-type on the nonlinear-

ities.  Except for the linear problems already discussed, we shall not treat initial value

problems.  We note, however, that methods based on such initial value problem algo-

rithms have successfully been applied to classical optimization problems by Boggs [3].

Our objective herein is to study only quasilinear scalar equations, although we

anticipate that our ideas have wider applicability.  Hence, we confine our attention to

the boundary value problem

(3-]) a0(x, y)y" + ax(x, y)y' + a2(x, y) = 0,       0 < x < 1,

(3-2) y(0)=f,,     Xi)=/2.

where the a,'s are bounded for y bounded and a0 is small, but nonzero throughout

0 < x < 1.  We further restrict our attention to the two special cases when either (i)

al = 0 or (ii) \al/aQ\ is nowhere small compared to \a2/a0\.

Singular perturbation problems with a0(x, y) = e2 have been considered for both

cases (i) and (ii) by O'Malley [29] and for case (i) by Fife [11], [12].  In particular,

we recall Fife's result for the equation

(3.3) e2y"=g{x,y), 0<x<l,

subject to the boundary conditions (3.2).  He obtains a limiting solution z(x) satisfy-

ing the reduced equation

(3.4) g(x, z(x)) = 0

within (0, 1) provided that g   > 0 along z(x) and

(3.5a) j        g(Q,y)dy > 0     for m between z(0) and (including) fx
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and
Ju

é?0>y)dy > 0    for u between z(l) and (including) f2.

There are boundary layers at both endpoints.  These conditions are weaker than more

familiar ones requiring that g   remain negative in the boundary layers.

Analogously, O'Malley [29] has shown that the equation

(3-6) e2y" + f(x, y)y'+ g(x, y) = 0

subject to boundary conditions (3.2) has a limiting solution z(x) satisfying the terminal

value problem

(3.7) fix, y)y' + g(x, y) = 0,      y(\) = f2

within (0, 1], provided that, for some k > 0,/> k along z(x) and

(3.8) (/i - z(0)) J""(0) /(0, y)dy > 0    for u between z(0) and /,.

There is then a boundary layer at x = 0.  If instead f(x, y) were negative, the limiting

solution would satisfy the boundary condition at x = 0; and there would be a bound-

ary layer at x = 1 provided that the appropriate integral inequality is satisfied there.

Thus, for the boundary value problem (3.1), (3.2) without explicit dependence

on a parameter, we may expect any bounded limiting solution z(x) to satisfy either

the reduced algebraic equation

(3.9) a2(x, y) = 0

in case (i) or the reduced differential equation

(3.10) al(x,y)y' + a2(x, y) = 0

in case (ii).  Many of the potential limiting solutions can be rejected as being inappro-

priate.   However, our requirements are more stringent than necessary, so that we may

eliminate some potentially valid limiting solutions.   For example, because of their

inherent difficulties, we avoid turning points by requiring that a2 (x, z(x)) ¥= 0 when

(3.9) applies and ax(x, z(x)) =£ 0 when (3.10) applies.

Applying Fife's results, we obtain:

Theorem.   Consider the boundary value problem

(3.11) a0(x, y)y" + a2(x, y) = 0,   y(0) = fx,   y(\) = f2.

Suppose z(x) satisfies the reduced problem

(3.12) «2(*. z) = °

and further satisfies

a0(x, z)<< a2y(x, z), and

j a (a2(x,y) t

(x,z(x))ty \a0(x, y)
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throughout 0 < x < 1 and that

l «i»

(3.14)

1 çu a2(0, u + z(0))   _^.   _   .       ,
d« > > 0, and

,W _     ]_ ru a2yv, u

u uJo ao(0; Ü + z(0))

»ji(«)

1    «

w. «,(1,5 +KB)

i0(l,« + z(l))

/or m between 0 aw<i including L(0) =f1~ z(0) a«*/ Ä(l) =f2~ z(l), respectively.

Then, there exists an asymptotic solution y(x) to (3.11) such that

y(x) -*■ L(x) + z(x) + R(x)(3.15)

uniformly within 0 < x < 1.  77ie boundary layer corrections L and R are asymptoti-

cally zero within (0, 1).  Their inverse functions are given by

)l(o)

x(R)=l +S*     du/wR(u),

(3.16)
<L) = £ du/wL(u), and

respectively, where

(3.17)
wL(u) = -y/2vL(u) sgn(¿(0)), and

wR(u) = -y/2vR(u) sgn(R(l)).

We note that within (0, 1), the asymptotic theory involves an 0(fi) error for

(3.18) ,2  = max
0<x<l

a0(x, z(x))

a2y(x, z(x))

Within each boundary layer, the appropriate boundary layer equation should be studied

(cf. O'Malley [29]).   Thus, at x = 0 the boundary layer correction L(x) should satisfy

(3.19)
a0(0, L(x) + 2(0)) 77 + a2(0, L(x) + z(0)) = 0,

dx

have the initial value ¿(0), and decay to zero for x > 0.  The differential equation

(3.19) can be formally justified by introducing the small parameter

(3.20) e2 = max\ulv,(u)\

for u between 0 and L(0), and the corresponding stretched variable % = x/e.  Multi-

plying (3.19) by dL/dx and integrating yields the implicit solution (3.16).

We note that the conditions (3.14) are guaranteed by (3.13) provided that the

boundary layer jumps l¿(0)l and 1/2(0)1 are small.  We also note that there is consider-

able practical advantage in obtaining x as a function of L (or R), because L (or R)

varies much more rapidly than x in the boundary layers.  Indeed, Vishik and Lyuster-

nik [40] already used such changes of dependent and independent variables to convert

singular perturbation problems to regular ones.

Relying on O'Malley [29], we obtain:

Theorem.   Consider the boundary value problem
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(3.21)        a0(x, y)y" + «,(*, y)y' + a2(x, y) = 0,      y(Q) - /,,y(l) = f2.

(a) Suppose z(x) satisfies the reduced problem

(3.22)

and further satisfies

75

(3.23)

ai(x, z)z + a2(x, z) = 0,      z(l) = f2

at(x, z)

throughout 0 < x < 1 and

(3.24)

> > 0, and
a0(x, z)

a2(x, z) = 0(ax(x, z))

W,(u)        i   ru a.(0, u + z(0))    _
- du < < 0

1^ ru a,(u, u -t-

" J0 ao(0,« +ov", « ■ z(0))

for u between 0 and including L(0) = fx - z(0).   Then, there exists an asymptotic solu-

tion y(x) to (3.21) such that

(3.25) y(x)-^L(x) + z(x)

uniformly within 0 < x < 1.   77ze boundary layer correction L(x) is asymptotically

negligible for x > 0 and has the inverse function

(3.26) x(L) = ¿£(0) d«/IVL(M).

(b) Suppose, instead, that z(x) satisfies the reduced problem

(3.27)

and that

a^x, z)z + a2(x, z) = 0,      z(0) = /,

(3.28)

throughout 0 < x < 1 a/z<i

WR(«)

«ii*. z)
< < 0, a«d

(3.29)

a0(x, z)

a2(x, z) = 0(al(x, z))

1  Cua.(l,u+z(l))    _
— du > > 0

^w = _l_ p gji.1, m -t-

" «J°«0(l,« + z(0)

/or u between 0 and including R(l) = f2~ z(l).  77/en, rftere exists an asymptotic

solution y(x) to (3.21) such that

(3.30) y(x) -+ z(x) + R(x)

uniformly within 0 < x < 1. //ere, rfte boundary layer correction R(x) is asymptoti-

cally negligible for x < 1 and has the inverse function

(3.31) X(R) = 1 + j*(0) du/WR(u).
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In these results, the asymptotic solution has an 0(p) error within (0, 1) for

a0(x, z(x))
(3.32) p. =   max

0«x«l a¡(x, z(x))

while the error of the boundary layer correction L(x), for example, is 0(e) for

(3.33) e = max
WAu)

with u between 0 and ¿(0).  The appropriate boundary layer equation is

(3-34) ao(0, L(x) + z(Q)) 0 + fll(0, L(x) + z(0)) g = 0.

Its unique decaying solution for the given initial value is expressed in (3.26).   If z(0) =

/,, of course, there is no need for the boundary layer correction.

Several complications can occur for the equation (3.1) if ax is allowed to be

small.   If (3.1) has a limiting solution z(x) satisfying a2(x, z(x)) = 0, then a0 and a1

must be small along z(x).  Additional restrictions are required at the endpoints in order

to allow for the necessary boundary layers.  This is clear from the linear problem

(3.35) ey" + ¡¡ay' + by = 0,      b i= 0,

where the solution depends critically on the size of e/u2 as e and ¡i both tend to zero

(see Section 4).   Moreover, the thickness of the boundary layer changes significantly

if al ceases to be small within the boundary layer.   In fact solutions can fail to exist.

O'Malley [32], for example, considered the equation

(3-36) ey" +ai(y)y'-y = 0,

where a1 is a smooth, monotonically increasing function satisfying

(2,      K<y<l,
(3.37) aiO)=i

(0,      0<y<%.

For y(0) = y (I) = 1, the problem has a solution tending to the solution of the reduced

problem

(3.38) 2y'-y = 0,     y(l) = 1

for x > 0 with a boundary layer of thickness O(e).  It was claimed that another solu-

tion tended to zero within (0, 1).  This would be true for y(0) = y(l) < lA, but not

for the prescribed conditions.  (This is because the boundary layer interval with ax >

0 corresponds to a boundary layer of thickness 0(e) at x — 0, rather than the 0(\Je)

boundary layers at both endpoints encountered when ax — 0.)  Thus for nonlinear

problems, convergence for e —► 0 often requires restrictions on the size of the bound-

ary layer jumps.   Such restrictions have been required in the analytic theory (cf. Wa-

sow [42]), but can sometimes be removed.

In both cases (i) and (ii) we have required that the boundary conditions pre-

scribe y at each endpoint.   If the boundary condition, say at x = 0, has the form
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(3-39) y'(0) + b10y(0)=f1,

then rapid decay of the boundary layer correction will require y'(0) to be bounded and

the boundary layer jump to be small to satisfy (3.39).

Algorithm.  We have used the above theoretical results, as follows, to construct

approximate numerical solutions of (3.1), (3.2):

(i)  Find solutions of the reduced problem.

(a) In case (i) we use Muller's method [27] to find all real finite roots of

a2(0,y) = 0.  Then, using these roots as initial guesses, we solve (3.9) for z(x) by New-

ton's method in steps of ft = 1//Y from x = 0 to 1.  We reject any solution that does

not satisfy the sign condition on (a2/a0) .

(b) In case (ii) we use a fourth order Adam's predictor-corrector method to solve

(3.10) subject to one of the boundary conditions (3.2).  The step size ft is selected in

the same manner as described for linear equations in Section 2. We reject any solution

that does not satisfy the sign condition on fli/a0.

(ii)  Calculate vL(u) and vR(u) or WL(u) or WR(u) using the appropriate equa-

tion [either (3.14), (3.24), or (3.29)] by the Corrected Trapezoidal Rule [7] with M

uniform steps of either ft = (/, - z(0))/M or ft = (f2 - z(l))/M for u between 0 and

either /, - z(0) or f2 — z(l), respectively.  We reject any solution which does not satis-

fy the appropriate sign condition on vL, vR, WL or WR.  The Corrected Trapezoidal

Rule is used because of its accuracy and because the derivatives involved must be avail-

able to perform the sign test in (i)(a).

(iii)  Calculate x(L) and/or x(R) from either (3.16), (3.26), or (3.31).  The inte-

grands involved in this calculation are all singular at L or R = 0, so, in order to pre-

serve numerical accuracy, we evaluate them in a modified form.   For example, we re-

write (3.16a) as

The modified integrands are evaluated by the Trapezoidal rule for L = /, - z(0) or

R = f2 - z(l) until either lui < 10-7 or x is outside the interval [0, 1].  (We note

that the hypotheses imposed imply that the boundary layer equations are asymptoti-

cally stable in the appropriate stretched variable.)

(iv)  Add the boundary layer correction(s) to the reduced solution.

4.  Numerical Examples. We have conducted several numerical experiments

which compare the results of our asymptotic methods to exact solutions, when known,

and numerical solutions obtained by either a shooting procedure or by Pearson's meth-

od [36], [37].

The shooting procedure has been coded to solve linear boundary value problems

of the form (2.1), (2.2) using Gear's method [14] to construct a fundamental set of

solutions to initial value problems for the equation and Gaussian Elimination to solve

the linear algebraic system that determines the initial conditions.

wL(u)
du.
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Pearson's method uses a variable mesh spacing on [0, 1] and approximates first

and second derivatives at a mesh point x¡ by

(4>1) y fy)-,,  ,. ..  ,-.

(4.2) A)J>-^-V-h,<rry;->\
hfr^.-h^)

where ft- = x-+1 - x- and .y- denotes the numerical approximation to y(x¡).  We use

these approximations in either a second order linear differential equation or a second

order quasilinear differential equation of the form (3.1).  This gives either a linear or

nonlinear tridiagonal algebraic system, respectively, which must be solved for the values

of k- at each mesh point.  For a given mesh spacing we solve the linear algebraic system

directly using the tridiagonal algorithm, while we solve the nonlinear algebraic system

by Newton iteration using the tridiagonal algorithm.   For singularly perturbed differen-

tial equations this process can give eroneous results unless the mesh spacing is suffi-

ciently dense within the boundary layers.  This relates to the difference equation not

being of positive type (cf. Parter [35] or Hemker [15]). Pearson's idea is to solve the

problem in e-steps.  (For differential equations without explicit dependence on a small

parameter, we may take e as the ratio of the maximum absolute value of the small co-

efficients, provided that the nonsmall coefficients are 0(1).  Such an e is generated by

our procedure.)  Thus, we solve a series of problems in which the parameter e is made

successively smaller.  The mesh is first made uniform and, for quasilinear equations, we

use the result of our asymptotic method as an initial guess for the y,.  After the ap-

propriate algebraic system has been solved for y¡, the mesh spacing is adjusted by add-

ing additional points between any pair of adjacent mesh points, say x* and x/+ j, where

\y¡+1 -y¡\> 6{ max-Ik-I -minjy-l}. We performed our calculations with Ô = 10-2

and 10-3 and used Pearson's [36] algorithms for adding mesh points and smoothing the

new mesh.  The algebraic system is resolved until no new points are added.  The entire

process is then repeated for a smaller value of e using the mesh spacing and, for quasi-

linear equations, the previous step's y, values as initial guesses.

Both the shooting procedure and Pearson's method were chosen for our numeri-

cal study primarily because they are easily coded.  They would in general not be com-

petitive with more recently developed procedures such as Scott and Watts' orthogonal-

ization code [38], Keller's finite-difference methods [17], [18], [20], or Lentini and

Pereyra's deferred correction routines [21].  Nevertheless, the following comparisons

clearly demonstrate the principal advantage of our methods, namely that they increase

in accuracy, without additional computational cost, as the equation becomes stiffer.

Thus, for those problems where our methods are applicable, they would eventually

surpass, in both accuracy and speed, any method that requires additional computation-

al effort as stiffness increases.
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Example  la:    c=v 5/2

xe[0,1]

eA(x) max       e„(x)

xc[0,l] xe[0,l]
-P2 T3cT

xc[0,l]
ep3(x)

10

10

10

10

-2

1.71-4)

0

0

0

4.6(-4) 3.31-4)

7.41-4)

9.4(-4)

7.2(-4)

3.2(-6)

5.9(-6)

Norm, avg   t =1.0
exec time

V4.3 tp2=3.0 tp3=23.5

Example lb: e=u

10

10

10

10

1.0(-3)

4.6(-8)

l.K-7)

0

2.2(-7) 1.0(-4)

1.7(-4)

1.8(-4)

1.7(-4)

9.4(-7)

1.6(-6)

1.7(-6)

Norm, avg

exec time
V1.0 ts=10.7 tp2=5.3 tp3=47.1

Example lc: c=p

10

10

10

3.4(-2)

3.7(-5)

4.9(-8)

4.6(-8)

1.2(-7)

1.3(-6)

1.81-5)

5.0(-5)

2.01-5)

3.71-5)

2.21-7)

5.41-7)

6.91-7)

1.71-6)

Norm, avg   t=1.0
exec time

V5.2 tp2=2.4 tp3=22.1

Table 1

Comparison of exact and numerical solutions for Example 1.  A *

indicates that a solution could not be found using single

precision arithmetic.  A ** indicates that a solution

could not be found using less than 5002 points

In all of the tables describing the results of our numerical experiments we use the

subscript E to denote the exact solution, A to denote our approximate numerical solu-

tion, S to denote the solution obtained by shooting, P2 to denote the solution obtained

by Pearson's method with 5 = 10-2, and P3 to denote the solution obtained by Pear-

son's method with 5 = 10-3.  We compare the results of the numerical methods to the

exact solution whenever the exact solution is known.  We use the symbol e to denote

the absolute difference between the exact solution and a numerical solution; hence,

eA (x) = \yE(x) - yA (x) I.  Whenever the exact solution is not known we compute the

difference between the asymptotic solution and a numerical solution using the symbol

d to denote this difference.  Thus, ds(x) denotes \ys(x) -yA(x)\. Differences recorded
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5/2
Example   2a:     e=u

Interval
I-[xL,xR]

max|y   (x)
xtl     L

max  e    (x)
x El     A

max  e   (x)
xd     b

10
-2

0,10

10~2,0.1

0.1,1.0

1.0

0.37

1.51-5)

2.01-9)

3.81-8)

0

6.51-8)

1.61-7)

2.21-9)

10
-2

0,10

-2
10      ,1

1.0

2.81-5)

4.31-8)

2.31-11)

5.81-8)

6.71-7)

Norm,   avg Exec  time tA=i.o V71.0

Example   2b:       e=n 3/2

10

10
-2

.,-3

10

0,1.0

0,1.0

0,1.0

0,1.0

1.0

1.0

1.0

1.0

2.01-4)

3.11-4)

6.81-4)

2.01-3)

tA=i.o ts=6.8Norm,   avg  Exec   time

Table 2

Comparison of exact and numerical solutions for Example 2

as 0 in the tables imply agreement to at least seven significant digits. We terminated any

calculation using the shooting method when an answer could not be obtained with a

minimum step size larger than 10-13 and single precision arithmetic. We terminated

any calculation using Pearson's method when an answer could not be obtained with

less than 5002 mesh points.  All calculations were performed on a CDC 6600 computer

at the Courant Institute, New York University.

We present the results of numerical experiments on five linear differential equa-

tions and three nonlinear differential equations.

Example 1.  ey" + \iy - y = 0, y(0) = l,y(l) = Vi where e and p. are small

constant parameters.  This example was introduced by O'Malley [32] and is interesting

because different boundary layer behaviors result depending on whether e/ju2 —► 0,

e/p.2 —► 1, or e/p2 —► °° as p. —► 0.  In all cases the limiting solution within (0, 1) is

trivial and the solution is easily determined asymptotically by expanding the exact solu-

tion of the constant coefficient equation.  We made runs for e = p5¡2 (Example la),

e = p? (Example lb), and e = p. (Example lc) for p = 10_1, /' = 1, 2, 3, 4.  Compari-

sons between the exact and numerical solutions are presented in Table 1.  The average

execution time per calculation performed, normalized with respect to the execution

time of the asymptotic solution is also presented in the table.  We observe that the

shooting procedure does quite poorly for this example as it did for all examples with

boundary layers at both ends of the interval.  In all three cases our method yielded
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Interval
I-[xL,xRJ

a =2.0

max  d
x a    -

max  d
x el

P2
max  d

x el
P3

a =1.1

max  dc
x eI     È

max  d

x eI
P2

max  d

x eI
P3

10
-1

0,0.2

0. 2,1.0

1.91-2)

2.21-2)

1.91-2)

2.21-2)

1.91-2)

2.21-2)

9.41-2)

1.61-1)

9.41-2)

1.61-1)

9.41-2)

1.61-1)

10
-2 -2

0,10

10~2,1.0

1.8 (-3)

2.91-3)

1.71-3)

2.9(-3)

1.81-3)

2.91-3)

2.11-2)

7.21-2)

2.11-2)

7.21-2)

2.11-2)

7.21-2)

10 0,10

10~3,1.0

2.41-4)

3.41-4)

2.91-5)

3.21-4)

2.31-4)

3.01-4)

7.41-3)

1-61-2)

7.21-3)

1.61-2)

7.41-3)

1.61-2)

10 0,10

10_4,1.0

6.81-3)

1.21-2)

1.71-4)

5.51-5)

2.31-5)

3.21-5)

2.81-3)

8.41-3)

7.21-4)

2.21-3)

9.01-4)

2.11-3)

10 0,10

10_5,1.0

1.01-2)

1.91-2)

1.91-4)

1.31-4)

1.81-6)

5.31-6)

2.11-2)

8.91-2)

9.71-5)

3.41-4)

Norm Avg   t  =1.0
Exec  time

i.4 tp2=3.8 tp3=32.8      ts=9.7 tp2=3.4 tp3=28.3

Table 3

Difference between asymptotic and numerical solutions for

Example 3.  A ** indicates that a solution could not be

found using less than 5002 points

10

10
-2

10
-3

10
-4

10

Xe[0,1]

1.31-1)

8.21-2)

3.41-2)

1.21-2)

4.01-3)

xe[0,1]

l.K-7)

6.01-6)

Norm avg
Exec time tA=i.o ts=io.i

Table 4

Comparison of exact and numerical solutions for Example 4.  A*

indicates that a solution could not be found using single

precision arithmetic

very accurate results for ju < 10-2 for very little computational cost, and for Examples

la and lb, it also gave accurate results for p = 10_1.  Graphs of the asymptotic solu-

tions of Examples la, lb, and lc are presented in Figures 1, 2, and 3, respectively.  The

exact solution of Example lc for p = 10_1 is also shown in Figure 3 where there are

visible differences between the exact and asymptotic results.  We note that Example la
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Interval
I=[xL,xR]

max|y_(x)
xeI      b

max  dc
xeI     "

10 0,0.5

0.5,1.0

0.14

1.0

3.51-1)

2.71-1)

10 0,0.8

0.8,1.0

0.069

1.0

3.91-2)

2.31-2)

10
-6

0,0.9

0.9,1.0

0.068

1.0

8.81-3)

7.31-3)

Norm avg Exec time tA=i.o V17.5

Table 5

Differences between asymptotic and shooting solutions for Example 5

z(x)=0 z(x) = (l+x)
-i

Interval
I=[xL,xR]

ma* yP,(x)

xeI       j

max  d
xeI

P2
max  dr
XEI        E

max  y   ,(x)
xeI        j

max  d
xeI

P2
max  d_

10 0,0.8

0.8,1.0

0.13

1.0

5.91-3)

1.21-2)

5.71-3)

1.21-2)

1.2

1.0

1.91-1)

6.91-2)

1.91-1)

6.91-2)

10 0,0.98

0.98,1.0

0.14

1.0

6.81-4)

1.41-3)

3.81-4)

1.21-3)

1.0

1.0

2.01-2)

8.41-3)

2.01-2)

8.41-3)

10 0,0.998

0.998,1.0

0.14

1.0

2.61-4)

4.01-4)

2.61-5)

9.01-5)

1.0

1.0

2.01-3)

3.01-4)

2.01-3)

4.71-4)

10 0,0.9998

0.9998,1.0

0.14

1.0

2.41-4)

4.31-4)

5.01-6)

1.21-5)

1.0

1.0

2.01-4)

8.41-5)

2.01-4)

8.8(-5)

10
-5

0,0.99998

0.99998,1.0

0.14

1.0

4.61-4)

4.21-4)

5.51-6)

2.51-5)

1.0

1.0

2.01-5)

2.11-4)

tp2=6.4     tp3=57.4        tA-1.0 tp2=7.1     tp3=46.6

Table 6

Differences between asymptotic and Pearson's solutions for

Example 6.  A ** indicates that a solution could not be

obtained using less than 5002 points

has a boundary layer of order 0(e/p) = 0(p?'2) at x = 0 and one of order 0(p) at x =

1 while boundary layers are of order 0(p) and 0(y/e) = 0(y/p) at both endpoints for

Examples lb and lc, respectively.  These differences are observed on the figures.  In

particular, observe that the boundary layer for Example lc and p = 0.1 is of order

0(\/T), so we should not expect our asymptotic results to be accurate.   They obviously

improve with stiffness.

Example 2.  ey" + py' + y = 0, y(0) = 1, y'(0) = 0.  For e and p positive and

tending to zero there are limiting solutions to the initial value problem but not to

problems prescribing j> at each end.  Two cases were considered:   e = p5'2 (Example
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10

10

10
-3

10

10
-5

Example  7

max  d

10,1)
P2

6.71-2)

1.81-4)

2.51-5)

2.61-5)

2.91-5)

max d

[0,11
P3

6.71-2)

1.81-4)

1.11-5)

Example   8

max  d

10,11
P2

4.81-1)

5.51-5)

2.41-5)

3.41-5)

3.91-5)

max d

[0,1]
P3

4.81-1)

5.51-5)

5.21-6)

4.01-6)

Norm Avg
Exec time

example  7:   t =1.0
example   8:   t^=1.0

t     =9.6
t     =5   9

t     =64.6
tp3=28.7

Table 7

Differences between asymptotic and numerical solutions for

Examples 7 and 8.  A ** indicates that a solution could

not be obtained using less than 5002 points

2a) which has a monotonically decaying initial layer and e = u3'2 (Example 2b) which

has a damped oscillatory initial layer (see Figure 4).  Runs were made for u = 10_<

with /' = 2, 3 in Example 2a and / = 1, 2, 3, 4 in Example 2b and comparisons between

exact, shooting, and asymptotic solutions are presented in Table 2.  We note that our

numerical results are superior to those obtained by Gear's method.

Example 3.  ey" + (a - x2)y' - xy = 0, y(0) = 1, y(\) = Vi. The results of runs

for a = 2.0 and 1.1 with e = 10~', i = 1, . . . , 5, are presented in Table 3.  The ef-

fects of round off errors begin to dominate the solution obtained by shooting for e <

10-4 and for e < 10_s accurate solutions obtained by Pearson's method require con-

siderable computational effort.  If 0 < a < 1, then the differential equation would

have a turning point at x = s/a and our methods would cease to be applicable.   Hence,

the differential equation with a = 1.1 is a tougher problem than the equation with a =

2.0.  This explains why our results are not very accurate for e > 10-3 with a = 1.1;

however, as e becomes smaller our results become increasingly more accurate.  Graphs

of the asymptotic solution are presented for a = 2.0 and 1.1 in Figures 5 and 6, re-

spectively.  When significant differences are apparent, the solution by Pearson's method

is also shown.

Example 4. eyiv - (1 + e)y" + y = 0, y(0) = y'(0) = y'(l) = 0,y(l)= 1. This

equation was introduced by Conte [6] and can, of course, be solved exactly. The solu-

tion of the reduced problem

-(1 +e)z" +z = 0,   z(0) = 0,   z(l)=l

converges uniformly to y on [0, 1] while the derivative y has boundary layers of

thickness 0(\/e) at each endpoint.  Runs were made for e = 10-', /' = 1, . . . , 5, and

the results of the asymptotic and shooting solutions are compared with the exact solu-

tion in Table 4.  Graphs of the asymptotic and exact solutions are presented in Figure

7. We note, in particular, the difficulty encountered by the shooting solution for small

values of e.
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ASYM. SOLN. MU = 0.1
-B- fiSYM. SOLN. MU = 0.01
-e- RSYM. SOLN. MU = 0.001

Figure 1

Asymptotic solution of Example la:   ey" + py' - y = 0,^(0) = 1,

y(l) = K,e = ps'2

flSYM. SOLN. MU = 0.1
-H- ASYM. SOLN. MU = 0.01

-©- flSYM. SOLN. MU = 0.001

Figure 2

Asymptotic solution of Example lb:   ey" + py' — y = 0,y(Q>) = 1.

y(\) = tt,e = p2
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-B-
-©-

EXACT SOLN.
ASYM. SOLN.
ASYM. SOLN.
ASYM. SOLN.
ASYM. SOLN.

MU = 0.1
MU =  0.1
MU = 0.01
MU = 0.001
MU = 0.0001

1 .00

Figure 3

Exact and asymptotic solutions of Example lc:   ey" + py - y = 0,

y(0)= \,y(l) = K,e = p

-S- ASYM. SOLN. MU = 0-1
-©- ASYM. SOLN. MU = 0-01

Figure 4

Asymptotic solution of Example 2b:  ey" + py' + y = 0, y(0) = 1,

/(0) = 0, e = p3'2
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- PRSNS. SOLN. EPS -  0.1
-B- ASYM. SOLN. EPS = 0.1
-S- ASYM. SOLN. EPS = 0.01
-A- ASYM. SOLN. EPS = 0.001

Figure 5

Asymptotic and Pearson's method solution of Example 3 :  ey" +

(a-x2)y'-xy = 0,y(Q) = l,y(l) = H, a = 2

^s

- PRSNS. SOLN. EPS = 0.01
-B- ASYM. SOLN. EPS = 0.01
-©- ASYM. SOLN. EPS = 0.001
-A— ASYM. SOLN. EPS = 0.0001

Figure 6

Asymptotic and Pearson's method solution of Example 3 :   ey" +

(a - x2)y' - xy = 0, y(0) = l,y(l) = %a= 1.1
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-B-
-©-

EXACT SOLN.
ASYM. SOLN.
EXACT SOLN.
ASYM. SOLN.
ASYM. SOLN.
ASYM. SOLN.

EPS
EPS
EPS
EPS
EPS
EPS

O.Ol
0.01
0.001
0.001
0.0001
0.00001

1.00

Figure 7

Exact and asymptotic solutions of Example 4:  eyw - (1 + e)y" + y = 0,

XO)=/(0)=/(l) = 0,Xl)=l

>-•».

-B-

-e-

SHTING. SOLN. EPS -   L-OE-02
ASYM. SOLN. EPS = 1 .OE-02
SHTING. SOLN. EPS = 1 .OE-OM
ASYM. SOLN. EPS - 1.OE-04
SHTING. SOLN. EPS = 1.OE-06
ASYM. SOLN. EPS = 1 .OE-06

1.00

Figure 8

A*6i,"">Asymptotic and shooting solutions of Example 5:   e(e     y )  +y = O,

y'(0) =y"'(0)=y"(l) = 0,y(l)=\
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PRSNS. SOLN. EPS = 0.1
ASYM. SOLN. EPS = 0.1

e- ASYM. SOLN. EPS = 0.01
A- ASYM. SOLN. EPS = 0.001

Figure 9

Asymptotic and Pearson's method solutions of Example 6:   ey' -

y -y2 = 0, /(O) 4- y(0) = 0, y(l) = 1.  The solution of the

reduced problem sought is z(x) = 0

-e-

PRSNS. SOLN,
ASYM. SOLN.
PRSNS. SOLN.

EPS -  0.1
EPS = 0.1
EPS -  0.01

ASYM. SOLN. EPS = 0.01
ASYM. SOLN. EPS -  0-001

Figure 10

Asymptotic and Pearson's method solutions of Example 6:   ey" -

y - y2 = O, /(O) + y(Ö) = 0, J>(1) = 1.  The solution of the

reduced problem sought is z(x) = (1 + x)~l
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- PRSNS. SOLN. EPS ; 0.1
-B- ASYM. SOLN. EPS ; 0.1
-©- ASYM. SOLN.  EPS = 0-01
-A- ASYM. SOLN. EPS = 0.001

Figure 11

Asymptotic and Pearson's method solutions of Example 7:

ey"-y+y3 =0,y(0)=y(l)=l

PRSNS. SOLN
ASYM. SOLN.
ASYM. SOLN.
ASYM. SOLN.

EPS z  0.1
EPS = 0.1
EPS = 0.01
EPS = 0.001

Figure 12

Asymptotic and Pearson's method solutions of Example

ey" +y-y3 = 0,y(0)=y(l) = 0
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Example 5.  e(eK*6y")" +y = 0,y'(0) = y'"(0) = y"(\) = Q,y(\) = 1. This

equation is a modification of one described by Timoshenko [39].  Physically, 1 - y is

proportional to the deflection of an elastically weak (or long), uniformly loaded, simply

supported, variable thickness beam on an elastic foundation.  The thickness of the beam

is t0e*ll3x2.  Runs were made for e = 10-'; /' = 2, 4,6, and comparisons between

asymptotic and shooting solutions are presented in Table 5 and Figure 8.  The solution

y has a weak boundary layer of thickness 0(eVi) at x = 1.  The slow decay of the

boundary layer accounts for our rather poor agreement for e > 10-4.

Example 6.  e2y" -y -y2 = 0,y(0) + y(0) = 0,y(l) = 1.  Since the nonuni-

form convergence occurs at x = 1 the reduced problem

z + z2 = 0,   z'(0) + z(0) = 0

has two solutions z(x) = 0 and z(x) = (1 + x)*"1.  Corresponding multiple solutions of

the full problem result (cf. O'Malley [30] ).   Results obtained by the asymptotic method

and by Pearson's method are compared for both solutions in Table 6 for e = 10-',

/' = 1, . . . , 5.  Graphs of some of these results are presented in Figures 9 and 10 for

the solutions corresponding to z(x) = 0 and z(x) = (1 + jc)_1, respectively.

Example 1. ey" - y + y3 = 0, y(0) = y(l) = 1.  The limiting solution z(x) = 0

satisfies all of our hypotheses for these boundary conditions and requires a boundary

layer at both endpoints.  It is interesting to note that these boundary conditions also

allow the solution y(x) = 1 even though the limiting solutions z(x) = ± 1 do not satisfy

our restrictions.  (In our defense, however, we note that the "nearby" problem given by

the same differential equation with y(0) = .y(l) = 0.99 would not have a solution tend-

ing to 1.)  Runs were made for e = 10-', i = 1, . . ., 5, and comparisons between

solutions obtained by the asymptotic method and by Pearson's method for the limiting

solution z(x) = 0 are presented in the first three columns of Table 7 and in Figure 11.

Example 8.  ey" + y - y3 =0, y(0) = y(l) = 0.  The limiting solutions z(x) =

± 1 follow under our hypotheses for these boundary conditions. While the trivial solu-

tion y(x) = 0 does not satisfy our hypotheses, it is also valid for these boundary condi-

tions.  In addition, O'Malley [31] shows that there are denumerably many solutions of

this problem switching back and forth between ± 1.  The results of calculations cor-

responding to the limiting solution z(x) = 1 obtained by the asymptotic method and

Pearson's method are presented in the last two columns of Table 7 and in Figure 12.

Although exact solutions of these last problems could be obtained using elliptic inte-

grals, we have not done so.

5.  Conclusions.   The results of the previous section indicate that our procedure

can be used to obtain accurate numerical solutions of very stiff ordinary differential

equations with very little computational effort.  The accuracy of our methods depends

on the magnitude of the small coefficients in the equation as well as the amount by

which the coefficients vary and the thickness of the boundary layers.   For example,

the results of Section 4 clearly indicate that our methods are accurate even when the

magnitude of the small parameters, say e, is moderate in size provided that the bound-

ary layers are of thickness 0(e) or 0(Ve).  However, in Example 5, where the bound-
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ary layer is of thickness 0(eVi) our results become accurate only for e < 10-6.   Since

our results are asymptotic as the stiffness increases, they should not be used for slightly

stiff, and should be used cautiously for moderately stiff equations.

We envision that asymptotic methods like ours could form part of a computa-

tional library of methods for solving ordinary differential equations.  Such a library

would contain a general purpose method, like, for example, Keller's adaptive grid pro-

cedures [17], [18], [20] which would be used for the majority of problems, while an

asymptotic method would be used for very stiff problems.  In addition, our results

could provide an initial approximation to an adaptive grid procedure for slightly stiff

or moderately stiff problems (cf. Yarmish [45], [46]).

We anticipate that combined asymptotic and numerical methods could be devel-

oped for more complicated equations, e.g., turning point problems and higher order

nonlinear systems. We hope that this investigation might prove useful in developing

further results.
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