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On an Integral Summable to 2<f (s)/s(s-\)

By P. L. Walker

2
Abstract.   Let i//(x) = 2~=1éT" **, and x(") = eu/2(l + 2i//(e2")).   The divergent

integral 2/q x(«) cos tu du is shown to be summable for certain complex values of t

to the function 2£(s)/s(s - 1) = 7r~^2r(Vis)?(i), where s = Vi + it, and ?(i) is the

zeta-function of Riemann.

The values of a resulting approximation to 2%(s)/s(s -1) are computed and

its zeros located.

1.  Introduction.   The formula

mm -1) = *-«2wsM) = - j - J37 + fxm(xs/2 + *(1~i)/2) ^,

where 0(x) = 2~=1e_" "x, occurs in Riemann's paper [4] in which the zeta function

was first studied as a function of a complex variable.

If we restrict attention to the critical strip [s : 0 < Re s < 1}, and replace the

terms -1/s, -1/(1 - s) by the divergent integrals të/JV/2-1 dx, ^/"x^"^2"^

which have the respective values as Hadamard finite parts, we obtain

2%(s)ls(s - l) = (""(H + 0(x))(x^2 + x(1"î)/2) —

(1.1)
= 2 i°°(l + 2\¡j(e2u))e"¡2 cos tu du = 2 Í x(")cos tu du,

J 0 .7 0

where x = e2" and s = ]6. + it.

The well-known identity (1 + 20(x)) = x'V2(l + 20(x-1)) shows that x is an

even function; in addition, it has natural boundaries on the lines Im 77 = i^CT, and

increases exponentially along the real axis.

The first aim of the present paper is to show that the formula (1.1), which

represents 2%(s)/s(s - 1 ) as the (formal) Fourier cosine transform of an increasing

function on [0, °°], is valid for suitable values of t if we include a summabihty kernel

in the integral.

Specifically, we prove

Theorem 1. Let

H = {z : Re z < 0} U {z : Re z > 0, |2(1 + Vl + z2)-1 exp(Vl + z2  - l)\ < 1},

and Hx = i(H - lA) n {- i(H - fc)}.

(Figure 1 shows the boundary of H, with H lying to the left; in Figure 2, Hx is

the region enclosed by the curved arcs, while the dotted Unes show the boundaries of

the critical strip, Im t = ±Vd.)
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Figure 1.   The region H, which lies to the

left of the indicated boundary.

Figure 2.  The region Hx, which contains the critical strip for Re t > 2.

For n = 1, 2, 3, . . . , we define Pn(t) by

Cn I       u2\n
P„(t) = 2} o\l - —) x(u)cos tu du.

Then (P„(t)) is a sequence of entire functions which converges to 2£(s)/s(s - 1),

s = Vi + it, uniformly on each compact subset of H., as n —► °°.

A similar result states that GK(t) = 2/u°e_Xu x(") cos tu du converges to

2%(s)/s(s - 1) as X —* 0 if ±7 G {z : | Arg(z - &)|< xkiA, but this result is less suited

to computation.
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The second aim of the paper is to investigate the zeros of P„(t).  A result of

Pólya and Szegö [3] proves that Pn has infinitely many zeros, all but a finite number

of which Ue on the real axis.  However, the number of nonreal zeros increases with

n; in section 3 we calculate the zeros explicitly when n = 10, using a Fast Fourier

Transform programme.  The calculation was carried out by Dr. G. Tunnicliffe Wilson

and Mr. J. Hampton whose assistance the author is pleased to acknowledge.

2.   Summability of the Integral.   In this section we prove the theorem stated in

the introduction.  We shall need the following lemmas, of which the first is elementary

(see for instance [2, §2.4, Eq. (3)], a much more general result),and the second may

be deduced from known Bessel function formulas, (see for instance [1, 9.6.18 and

9.7.7]), or directly from the method of steepest descents.

Lemma 1. Let f be a complex valued function which is defined and continuous

on [0,1], f(0) = 1, |/(r)| < 1 if 0 < t < 1.  Suppose f has a finite nonzero right-

hand derivative at 0.

77?e7?

n\\(f(t))"dt ->-[& (0)] - »    as n — ~.

Lemma 2. Let Re z > 0.   Then as n —> °°,

i"-n(l " 4V'* = "J-i{(1 " t2^eZt}"dt ~(1+ ¿r*(2mlz)*E-,

where E = 2(1 + y/l + z2)~1exp(Vl + z2 - I), and the ~ indicates that the ratio

of the two sides approaches unity as n —> °°.

Proof of Theorem 1.  We have

cos tu du.Pn(f) = 2_fYl - -^Tx(")cos tu du = 2¡"Q il - ~\"eul2(l + 20(e2«))

The rapid decrease of 0(e2") at infinity together with the fact that (1 - u2/n2)"

increases to unity as 77 —► °°, shows that

2J"(l -*Ç\ eu/22Me2u)costudu -+ 2J~eu/22\p(e2u)costudu

for all complex t, as 77 —* °°, by dominated convergence.  Hence it is sufficient to

show that if t E Hx, then

»i:('-â>—* -/".(■-$>
'2(eitu + e-'tu)du

JV\     777 J "\     nLj

approaches

1 1
as 77

Ví+it     lÁ-it       s     l -s

Consider first
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- ^ ) esudu

= nf {(1 - u2yu}"du = I,   say.

If Re s < 0, s ¥= 0, this tends to - 1/s as n —*■ °° taking/(77) = (1 - u2)éu in

Lemma 1.

If Re s > 0, we write / as

n/ljiO -u2)esu}"du-nf°_i{(l -u2yu}"du.

The first term tends to zero as n —► °° by Lemma 2, provided |¿T| < 1 where E =

2(1 + \/l + i2)_1exp(Vl + s2 - 1).  The second term may be written as

_ "/o {(1 ~ u2)e~su}" du which tends to - l¡s by Lemma 1, since now Re s > 0.  We

have shown that if s E H, I —> - 1 ¡s as 77 —► °°, and the result is easily seen to hold

uniformly on compact subsets of H.   Similarly, if 1 - s E H,

€{-£)>-»*■

1

1 -i '
as 77 —► °°.

But the conditions s, 1 - s E H axe equivalent to t E Hx, and the result is proved.

3.   Location of Zeros.   In the formula

Pn<f) = 2/0 (l - ¿¡)   X(")C0S tU dU'

the integrand has a discontinuity in the «th derivative at the point u = n. Consequently,
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Figure 3(a). The zeros of Pxo.

The zeros of Re Px0 axe indicated by continuous lines, and

those of Im Px 0 are indicated by broken lines.  The

imaginary part is also zero on both axes.
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Figure 3(b).  Continuation of 3(a) to the right.
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Figure 3(c).  Continuation of 3(b) to the right.
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Figure 3(d).  Continuation of 3(c) to the right.
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77 integrations by parts show that for large |r|, the behavior of P„(t) is close to that

of cos nt (n even) or sin nt (n odd).   In particular, Pn has infinitely many zeros, all

but a finite number of which lie on the real axis-see Pólya and Szegö [3, Vol. I,

solution to Q199, §111].

Inside the region Hx of Theorem 1, Pn converges uniformly to íT_í'2r(}ís)f(s)

so that the nontrivial zeros of the zeta-function are left behind in the critical strip

while the other zeros (of which, for large K, there are approximately 2K-n¡n inside a

circle of radius K) he in a roughly arch-shaped configuration above and below the

real axis.

The computation oX Px0(t) was carried out over a range of t, 0 < Re t (0.1) <

50, and 0<Imf(0.1)<2, using a radix 2 Fast Fourier Transform programme of

order 2048, applied to the integrand sampled over the range [-10, 10].  Double

precision arithmetic was used since for t near 50, Px0(t) is of the order of 10_17.

The position of the zeros of the real part of Px0(t) is shown by the continuous curves

in Figure 3, and the zeros of the imaginary part by the broken curves.  The figure

shows 12 zeros on the real axis with 0 < Re t < 49, and 69 conjugate complex pairs.
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