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Chebyshev Expansions for the Error

and Related Functions

By J. L. Schonfelder

Abstract.   New 30 decimal place Chebyshev expansions, which can be used to obtain

approximations up to that accuracy, for the error function and its complement are pre-

sented. Bilinear and biquadratic mappings of the independent variable have been em-

ployed, in one case to improve convergence and in the other to increase the basic ap-

proximation range.   The practical effects of these mappings are discussed, and the

method used to generate the tabulated expansions is outlined.   The expansions here

presented form the basis of the routines in the SI5 chapter of the NAG library.

Introduction.  Clenshaw [1] presents Chebyshev expansions, accurate to twenty

decimal places, 20D, for the error function, erffx).  These expansions are of the form*

^fix)=\Y.'arTrit),      |jc|<4,  t = 2Q)2-l,

and

x2      N, /4\2
erffx) = 1 - e-—   X «,rr(r),      x > 4,  t = 2(^)2 - 1.

x       r=0 yx/

In the first expansion to obtain 20D accuracy 33 terms are required; in the second, 18

terms.  Luke [2] presents expansions which differ from the above only in trivial de-

tail but which use a break point of three rather than four.  For these expansions, which

are given up to 20D, 25 terms are required for the small x region and 22 for the large

x.   The SI 5 chapter of the NAG library had a requirement for routines to approximate

the functions erf(x), erfcfx), P(x) and ß(x), the error function, its complement and

the cumulative normal distribution function and its complement.** All of these func-

tions can be obtained simply from the basic erf(x) approximations since
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"The symmetry of the function erf(-x) = -erf(;c) means that the function need only be

approximated for positive x.

Note.   The notation 2J_q denotes the summation is performed  with the term in r = 0

divided by 2.

The Chebyshev polynomials Tr(t) are those defined on the range t 6 (-1, +1) i.e. Tr(t) =

Cos[r arccos(r)].

**The notation for functions and their definitions is that used in M. ABRAMOWITZ & I.

STEGUN, Editors, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical

Tables, Nat. Bur. Standards Appl. Math. Series, No. 55, U.S. Government Printing Office, Wash-

ington, D.C., 1965.
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erfc(x) = 1 - erf(xr),

Pix) = tt [1 + erf(+x/V2)] = &erfc(-x/V2),

Qix) = Vi [1 - erf(x/v/2~)] = ^erfc(x/\/2).

However, serious loss of accuracy is involved in some regions of x in all these forms

due to the subtraction.  Therefore, it was decided to produce an approximation for

erfc directly.  Also, the NAG library is implemented on machines with precisions rang-

ing from 7D to 18D with a possible future requirement of up to 28D.***   Hence, it

was decided to produce new expansions for up to 30D.  Following a suggestion by

Miller [3] it was decided to look at alternative mappings of the expansion variable

t(x) to see if any significant improvement in convergence could be obtained.

In the next section the final expansion forms used are presented and tabulated.

The effect of the bilinear and biquadratic mappings employed are discussed.  In the

following section a brief outline of the techniques employed to generate and check

these expansions is provided.

The Expansions.   For the error function itself, which has a zero at the origin, it is

desirable to extract this zero explicitly.  This allows relative accuracy to be maintained

even for very small arguments.  Hence, it was decided to use two approximation ranges

on the pattern of Clenshaw [1].  However, the choice of subdivision at x = 4 results

in an excessively long small x expansion if 30D is required.  The subdivision was, there-

fore, moved to a smaller value ofx; x = 2 was in fact found to be adequate.   It is to

some extent questionable whether a break point as low as two is necessary.  The ex-

pansions of Luke [2] which use three may well be superior for some purposes.  How-

ever, the expansions presented here are fairly well balanced in the most important

8-18D accuracy range and the extra efficiency thus produced for arguments less than

two, which are somewhat more common than larger arguments, could be useful in

practice.  The extra length thereby introduced into the large x expansion was compen-

sated by use of a biquadratic mapping for x —► t to improve convergence.

The expansion for small x has the form

erffx) =xy(/),

where

y(t)=í'QarTr(t),     r = 2(|)2 -1,

and

re(-i,+l)   if* e (0,2).

The coefficients ar correct to 30D are tabulated below.t

***8D is single precision on PDP10 machines and 18D is double precision on Univac. 28D

is the possible double precision on CDC equipment. This work was done before the possibility of

extended precisions on IBM 370 and ICL 2900 machines was considered and hence allowance has

not been made for this 35D working. However, the expansions presented here could be extended

to 35 or 40D if the need arises.

tThe tables have been reproduced from card decks containing the coefficients produced

directly from the generating programs. If any reader wishes to use these coefficients directly the

author is willing to supply copies of these card decks.



1234 J. L. SCHONFELDER

Table 1

V=ERF(X>/X   X=(0,A>   T=2(X/A>»2   -1   A = 2

*AX.ORD.=      27 KAX.ACC.= 30
Q +1.4831105640848035818894480790578+0-3.010710733865949424707310463118-1
2 +6.89948306898315 66 2466 031807188-2
3 -1.3916271264722187 68 2 5 465256878-2
4 +2.4207995 22433463 6628916782398-3
5 -5.6 5 863968 584808 6446493825778-4
6 +4.8 62098443 2319 04 82828875688-5
7 -5,7492565580356848350542158-6
8 +6.113243578434764697067588-7
9 -5.89910153129584343908468-8

10 +5.2070090920686482404558-9
11 -4.232975879965543268108-10
12 +3.18811350664917497488-11
13 -2.2361550188326842738-12
14 +1.467329847991084928-13
15 -9.0440019853817478-15
16 +5.254813715470928-16
17 -2.88742612228498-17
18 +1.5047851875588-18
19 -7.45728928218-20
20 +3.5225638108-21
21 -1.589446448-22
22 +6.8643658-24
23 -2.842578-25
24 +1.13068-26
25 -4.338-28
26 +1.68-29
27 -1.08-30

Table 2

y=x*exp(x*x)*(1-erf(x))  x=(2,inf) t=(k-x*x)/(k-8+x*x) k=10.5

max.0rd.=    43 max.acc.=        30
0 +1.0779778 5 20723831511683359103488+0
1 -2.6559 8904091486 73 3721465009048-2
2 -1.48707314669 8099 5096 050463338-3
3 -1.38 040145 41414385 96077089208-4
4 -1.128 03 0333 22 87 491498 5 073668-5
5 -1.172869842743725224053739R-6
6 -1.034761503933046155373828-7
7 -1.18991140858924382544478-8
8 -1.0162225449894986404768-9
9 -1.378957161^69656921698-10

10 -9.3696130337373033358-12
11 -1.9188095839595253498-12
12 -3.7S730172019937078-14
13 -3.70537260269833578-14
14 +2.6275654234903718-15
15 -1.1213228764379338-15
16 +1.841360289225388-16
17 -4.91302565748868-17
18 +1.07044551673738-17
19 -2.6718936624058-18
20 +6.493268679768-19
21 -1.653993531838-19
22 +4.26056266048-20
23 -1.12558407658-20
24 +3.0256174488-21
25 -8.290421468-22
26 +2.310495588-22
27 -6.54695118-23
28 +1.88423148-23
29 -5.5043418-24
30 +1.6309508-24
31 -4.898608-25
32 +1.490548-25
33 -4.59228-26
34 +1.43188-26
35 -4.5168-27
36 +1.4408-27
37 -4.648-28
38 +1.518-28
39 -5.08-29
40 +1.78-29
41 -6.08-30
42 +2.08-30
43 -1.08-30
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The expansion for large x has the form

erfOc) = 1 - Ç- y(t),

where

yit) = £   aJrit),      t = (10.5 -x2)/(2.5 +x2),

and

tE (-1,+1)   ifxE(2,°°).

The coefficients ar correct to 30D are tabulated above.

The complementary error function, erfc(x) has no zeros. It takes the value one

at the origin.  It asymptotes to zero for large positive x and to two for large nega-

tive x.

For x > 0, erfc(x) = e~x2y(x) and for x < 0, erfc(x) = 2 - e~x2y(-x).

Hence, the whole region may be covered by approximating y (x) for positive x.   That

is by the expansion

yix) =Y.'°rTriO,      t = (x- 3.75)/(x + 3.75),

where t E (-1,+1) if x E (0, °°).

The coefficients ar correct to 30D are tabulated below.

Table 3

y=exp(x*x)*erfc(x) x=(0,inf) t=(x-k)/(x+k)    k=3.75

«ax,0r0.=    43      «ax.acc.=        30
0 +6.10143 0819232004179264658157568-1
1 -4.3484127271257747182 81828208888-1
2 +1.76351193643605501125 8402981238-1
3 -6.071079 56092494148600512158258-2
ï +1.7712 068995694114 4861471411918-2
5 -I.321119385 567293 8185998649688-3
6 +8.54 216676887098 67 88198320556-4
7 -1.2715 5090609162 74 26288939408-4
8 +1.124 81672436711894688470726-5
9 +3.130638854218209726301528-7

10 -2.709880685377620220090866-7
11 +3.07376227014076884409598-8
12 +2.5156203848176229373146-9
13 -1.0289299213203191275908-9
14 +2.99440521199499393638-11
15 +2.60517896872669362908-11
16 -2.6348399241719693868-12
17 -¿.434045098906364436-13
18 +1.124574018016634476-13
19 +1.72815333899860988-14
20 -4.2641016949423756-15
21 -5.453719778801918-16
22 +1.586976077616718-16
23 +2.08998378443346-17
24 -5.9005268694096-18
25 -5.418933875548-19
26 +2.149773564708-19
27 +4.66609850086-20
28 -7.2430118628-21
29 -2.3879668248-21
30 +1.911775358-22
31 +1.204825688-22
32 -6.723778-25
33 -5.7479978-24
3* -4.284936-25
35 +2.448566-25
36 +4.37936-26
37 -8.1518-27
38 -3.0896-27
39 +9.36-29
40 +1.746-28
41 +1.68-29
42 -8.08-30
43 -2.08-30
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Discussion.  Taking the bilinear transformation used for erfc first, the entire

semi-infinite range x E (0, °°) may be uniquely mapped onto the required finite range

t E (-1, +1) for the Chebyshev expansion by the bilinear transformation

t = ix-k)/ix + k),      k>0.

The resulting Chebyshev expansions in terms of the variable / provide, by truncation,

approximations which preserve most of the properties of the Chebyshev polynomial

expansions [4].  In particular, they provide approximations which are near mini-max

and which allow precision changes to be made simply by changes in truncation point.

However, the resulting approximations are in fact rational approximations in terms of

the variable x.   A polynomial approximation in the variable x over the entire range is

obviously impractical, if not impossible.  However, the use of the rational variable t

allows us to produce, in essence, a polynomial approximation with all its advantages

but to gain at least some of the increased flexibility or rational approximations.  In

this case the flexibility has been used to extend the range of approximation. We have

gained this flexibility to some extent by introducing a further parameter, k.

The value of k used in the above expansion was chosen essentially by trial and

error.  For any given precision there is a value of k which gives optimum convergence.

This value is different for different precisions and so the value actually used is a com-

promise which gives near optimal convergence over the main precision range of interest,

viz. 8D to 18D.  Fortunately, the convergence is comparatively insensitive to k so the

value that gives optimal convergence for about 12—14D is not far from optimal for 8D

or 18D.  Certainly, for  30D one could have obtained a shorter expansion but only at

the expense of requiring more terms in the 8—10D  truncations.  As these expansions

were intended for use in transportable software, a further constraint on the values of

k was that it had to be a value that was exactly representable on any machine.  This

means that k must be representable by less than six decimal digits and it must be the

sum of a limited number of adjacent powers of two.   For instance, the value 3.75

actually used is equivalent to 21 + 2° + 2-1 + 2-2 and, hence, should be represented

exactly on any floating point system currently in use.

Figure 1 shows graphically the order of the polynomial approximation required

in the expansions for ex   erfc(x) to provide truncation errors less than 0.5 x 10_<i

for d = 8, 10, 12, 14, 16, 18 for various values of k.   This graph shows that for each

precision there is a fairly large region in which k may vary without the number of

terms in the expansion changing from the optimum. This optimum valley moves

slowly to the right as the precision increases.  The value 3.75 was chosen as a reason-

able compromise value, being clearly within the optimum valley for all precisions from

8-18D.  In fact, 3.75 remains within the optimal valley for precisions up to 25D and

is only just outside it at 30D.

For the large x range of the error function itself, the function y(x) we are actually

approximating is dependent on x2 not x; and hence, a biquadratic is more appropriate.

In this case we have a mapping

t = ik-x2)/ik-8 +x2),      k>4,
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which uniquely maps the region x € (2, <*>) into the required region tE(-\, +1).  It

should be noted in this case that this mapping is, in fact, a simple generalization of the

more usual mapping as employed by Clenshaw [1].  If k = 8, then the mapping col-

lapses into the simple form

in which case the expansion is equivalent to an expansion in terms of the modified

range Chebyshev polynomials T*(r) with the expansion variable 4/x2 € (0, 1).

Figure 1

Parameter k in x to / mapping

Figure 2

a.
o.

o
c
jj
0
a.

Parameter k in x to t mapping
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Figure 1 shows the order of polynomial required, to provide each of the preci-

sions indicated, plotted against the mapping parameter k for the expansion of y(x) =

ex2erfcix), t = (x: - *)/(* + k) and x E (0, °°).

N. B.   In both Figures 1 and 2 the Unes joining the measured points have no

real significance.  They are included as a guide to the eye.

Figure 2 shows the order of polynomial required, to provide each of the preci-

sions indicated, plotted against the mapping parameter k, for the expansion of y(x) =

[1 -erf(x)]xe*2,  t = (k - x2)/(k - 8 + x2) and x G (2, °°).

Figure 2 shows a plot of the order of the polynomial approximation required to

give a truncation error of less than 0.5 x 10~d for d = 8, 10, 12, 14, 16, 18 for vari-

ous values of k.   Note the behavior is similar to the previous case except that the

width of the optimal valley is now precision dependent ; by and large it is smaller for

higher precision.  Also the degree of improvement possible over the normal expan-

sions, k = 8 is greater for greater precisions, a desirable feature.  The compromise

value of k chosen in this case was 10.5.  Unlike the situation with erfc, this value of

k is not optimal for precisions like 25D or 30D.  A value of k = 12 or more would

be needed to give optimal convergence at these precisions, and this would mean the

lower precisions would be well away from optimal.  However, k = 10.5 still provides

a considerable improvement, eight terms, over the normal k = 8 expansions at 30D.

The convergence of the Chebyshev expansion, as with all such mathematical ex-

pansions is governed by the closeness of the singularities of the function being ex-

panded to the expansion region.  The major effect of mappings such as these is to al-

low us to move the singularities further away from the expansion region.  The mapping

may also weaken the effect of the singularities by modifying the strength of the singu-

larity as well as moving it.   This fact explains the reason why a similar mapping is not

of any significant use for the small x range in approximating erf(xr).  The generaliza-

tion of the mapping actually used is

2(x2 - k)
t=-—,      0<it<4.

(2 - k)x2 + 2k

If k = 2, this collapses to the normal mapping as used.  In the case k = 2 the expan-

sion region is symmetrically located with respect to the singularities.  Therefore, any

different value of k destroys this symmetry and, hence, brings the singularities closer

to the expansion region, hence making the convergence worse rather than better.

Generation of Expansions.  The three expansions tabulated in the previous sec-

tion were generated making use of the fact that the three functions involved satisfy

linear differential equations with polynomial coefficients.  For small x, erf(x) we have

(4 + 4r)y + (14 + 8r)y + 4y = 0,      y(-l) = 2/y/ñ   and   y(-l) = - 4/3\/ff.

For large x, erf(x) we have

[ Ä+fH+tH ''+ jTj >>]> ♦ to - ») + (" - «xi*
= 2k/Vtt" + (16 - 2k)tlyfn    and   y(-l) = 1 /sfñ.
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For erfc(x) we have

[l-3t+ 3t2-t3]y + [-4k2-4k2t]y = -4k/y/Ti+4kt/\/ñ   and   y(+l) = 0.

These equations can be used to find the set of coefficients ar such that y = zZ^=0'arTrit)

satisfies the equations plus boundary conditions to within a required tolerance using

methods described in Fox and Parker [5].  The precise details of the programs involved

will be published elsewhere [6].  The general principle is as follows.  The coefficients

ar can be shown to satisfy an infinite set of linear equations

Aa_ = b,

where the first few rows of the matrix A and the right-hand side b are determined by

the boundary conditions.  The subsequent rows are then determined by the differen-

tial equations, given that the coefficient ar tends to zero rapidly for large r.   The infi-

nite set may be handled approximately by assuming ar = 0 for all r> N.   The finite set

can be conveniently solved by using the Crout LU decomposition and forward and

backward substitution [7].  In fact, as the decomposition is independent of order, the

process can be done iteratively.  At any order N the next row and column of A can

be generated and the decomposition extended from order N - 1 to N, making use of

the A- 1 decomposition already done.  The forward substitution can also be similarly

extended.  The first step of the backward substitution, which is trivial, gives a reason-

able estimate of the value of the coefficient aN added to the set.  The process can then

be terminated if two successive coefficients are less than the required tolerance.  Apart

from the first few rows, the matrix A, is mainly diagonally dominant and, hence, the

Crout reduction technique is highly stable.  The programs performing this calculation

have all been written in Algol 68 using the multiple length arithmetic facility, mlaritha

[8].  This allows arithmetic to be done to any required precision.  The above expan-

sions were generated with a basic working precision of at least 36D.  The Crout reduc-

tion process was terminated when two successive coefficients were less than 10-33.

The resulting coefficients were then rounded to 30D and stored in a card image file

and punched as an actual card deck,^ the correctness of the coefficients as verified by

summing the series at selected points, points for which the value of the series was

known exactly or could be calculated by some other means.  The adequacy of the

working tolerances was also checked by running the same programs with the toler-

ances increased to a working precision of 48D and stopping criteria at 10-42, and no

effect was found on the 30D coefficients.

Conclusion.  The main motivation for the production of these expansions was

their use as the basis for transportable function approximation routines in the NAG

library.  However, the expansions themselves may well find application directly in other

aspects of numerical computing, and it is for that reason that they are presented here.

The Computer Centre

The University of Birmingham

Birmingham B15 2TT, England

'TSee footnote'.
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