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Finite Element Collocation Methods for
First Order Systems

By P. Lesaint and P. A. Raviart

Abstract. Finite element methods and the associate collocation methods are con-

sidered for solving first-order hyperbolic systems, positive in the sense of Fried-

richs. Applied in the case when the meshes are rectangle, those methods lead for

example to the successfully used box scheme for the heat equation or D.S.N.

scheme for the neutron transport equation. Generalizations of these methods are

described here for nonrectangle meshes and (or) noncylindrical domains; stability

results and error estimates are derived.

1. Introduction. Let Í2 be a bounded domain in the (x, y) plane with boundary

T.  We denote by n = (nx, n ) the outward unit vector normal to I\

We consider the following problem: Given a vector-valued function f = (fx, ... ,

f ) e (L2(D.))P, find a vector-valued function u = (ux, ... , u ): Í2 —► Rp, which is a

solution of the first-order system

(1.1) Lu=A^+B^ + Cu=f   in £2,
9x ay

with the boundary condition

(1.2) (Anx + Bny - M)u = 0    on T.

In (1.1), (1.2), A, B, C and M are p x p matrix-valued functions.  We assume that

(i)  the matrices A, B axe symmetric,

(ii) the functions (x, y) —*■ A(x, y), B(x, y) belong to IV1,00(Í2; L(RP)), i.e., are

Lipschitz-continuous in £2.

(in)  the function (x, y) —► CYx, y) belongs to Z,°°(Í2; L(RP)).

Sufficient conditions for the problem (1.1), (1.2) to have a unique strong solu-

tion have been obtained by Friedrichs [4]. In particular, we shall use the property

(1.3) M + M*>0,

(where M* denotes the adjoint of M).  In fact, in the sequel, we shall consider only

specific examples of problem (1.1), (1.2).

Finite element methods for solving first order systems, symmetric and positive,

have been considered by the first author in [9], [10].  He has introduced continuous

finite element methods in which the space of trial functions coincides with the

space of the test functions and is a finite-dimensional subspace of (/71(Í2))P.

Received March 14, 1978.

AMS (MOS) subject classifications (1970).   Primary 65N30.

© 1979 American Mathematical Society

0025-5718/79/0000-0102/$08.00

891



892 P. LESAINT AND P. A. RAVIART

Similarly, discontinuous finite element methods have been introduced in [9], [12] ;

again the same finite-dimensional space is used for the trial functions and the test

functions, but these functions are now discontinuous at the interelement boundaries.

On the other hand, it has been noticed [9], [11] that classical finite-difference

methods for the neutron transport equation could be interpreted as finite element

methods in which the space of test functions differs from that of trial functions, or

equivalently as finite element collocation methods.  The same is true of a finite-differ-

ence scheme for the heat equation introduced by H. B. Keller [7] in view of boundary

layer computations:   the box scheme.

The purpose of this paper is to provide a fairly general analysis of such methods

which are successfully used in practice.  An outline of the paper is as follows.   Section

2 is devoted to the description of the finite element method and the associated colloca-

tion method.  In Section 3, we analyze a simple case where the matrices A, B, C have

constant coefficients and the domain £2 is a rectangle but the operator L is otherwise

general.   The obtained results are applied in Section 4 to the case of conforming and

nonconforming finite elements, and the neutron transport equation is considered as a

particular example.   Some technical preliminary results are given in Section 5 for the

case where the matrices A, B and C have nonconstant coefficients and these results

are applied in Section 6 to the heat equation in a noncylindrical domain, written as a

first order system.  Stability results and error estimates are derived, hence generalizing

the results of Keller [7].

Throughout this paper, we shall make a constant use of the classical Sobolev

spaces /7m(£2) provided with the norms

1/2

^m,n (   Z      L I9^l2 dx)
\la|<m   •'" /

and the seminorms

l»U.n- ( Z     fnl30lul2*Y/a.
\\a\=m   Jn J

where a = (ax, ... , an) is a multi-index such that a,- > 0, |a| = 2"_,(*,., and where

da=(d/dxx)ai ■■■(d/dxn)a".

2. The Finite Element Schemes.   Let us define a general (nonconforming) finite

element method of approximation of problem (1.1), (1.2).  Let £2 = \JKeT A" be a

decomposition of £2 into closed subsets K with diameters < h such that:

(i) K *0 for all KSTh,
o o

(ii) Kx n K2 = 0 for any pair of elements KX,K2 e Th.

With each element K G Jh, we associate two finite-dimensional spaces XK and YK of

smooth scalar functions defined on K.   Next, we are given a finite-dimensional space

Xn of functions <ph whose restrictions <p„\k to any element K G Th belong to XK.   In

the conforming case, we have the inclusion Xh C /Y1(£2), while in the nonconforming

case this inclusion does not hold but is replaced by some weaker continuity require-

ment (see condition (3.3)).  We set
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(2.1) Yh = {<ph G ¿2(£2); VA G T„, <pMK G YK).

Let Vh be a subspace of the product space Xf¡ which consists of functions vh =

(vnX, ... , vh   ) which satisfy the boundary condition (1.2) in some approximate

sense.  We assume that

(2.2) dim V„ = dim Yph     ( =    Z    dim YPK\ ;

\    K(E1h I

and we consider the following form of the weighted residual method:   Find a function

uh e Vfi suc^ tnat

(2.3) VKeTH,VvGYP,   SKiLuh-f,v)dxdy = 0,

where (•, •) denotes the Euclidean inner product of Rp and H the corresponding

Euclidean norm.

In all the sequel, we assume that the spaces Xn and Yh are constructed by means

of quadrilateral finite elements.  In fact, aü the examples that we have in mind require

the use of such elements.  Therefore, we suppose that, for any A G Th, there exists a

C1 -diffeomorphism FK from the reference square A = [- 1, +1 ] 2 in the (|, 1?) plane

onto A.   We shall make a constant use of the one-to-one correspondences

$ H- (¿> = (p° F^1,      ifhí = (/)0Fí

between the functions $ defined on A and the functions i/> defined on A.

Let X and Y he two finite-dimensional spaces such that

XCHl(K),      YCL2(K);

we set for all K &Tn

(2.4) XK (resp. YK) = {* = (p ° F^1, (p G X (resp. Y)}.

In order to be specific, we assume in the following that

(2-5) Pm^XCQm,       Y = Qm_x

for some integer m > 1, where Pm denotes the set of all polynomials of degree < m

in the two variables %, r\ and Qm is the set of all polynomials of the form

Pit u) - z c>/*y.
0<i,j<m

Now, for computing the integral of (2.3), we use the mapping FK : (%, r\) G A r—>

(x, y) = FK(%, r¡) G A.   Setting û = uh]K, we obtain by a simple calculation

(2.6)

SKiLuh -f, v)dxdy

where /^ denotes the Jacobian determinant of F^- that we may assume > 0.

Next, to get a more computational form of the weighted residual method, we
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replace in (2.3) the integral ¡K by a quadrature formula.   Let ój¡ and g¡, 1 < i < m,

be the Gauss-Legendre weights and abscissae for [- 1, +1] ; we set

£>l7 = ûfùf, g,,- = (I,-, g¡),

<4=•mi,/)"«/ '   4=F*<*//>>   1 < * ¡<m'K G Th ■

Then

m

(2.7) f- <^CS, *?)d£ dl7    » approximated by     Z  ûijfUij)
K i,i= i

or equivalently

<p(x, y) dx <2y    is approximated by     Z   ^fM^fj )•
* í,/= i

Now, using (2.8), the weighted residual method becomes

m

(2.9) VA G Th, V, G r£,   Z "fjiLuh ~f, v)(gf) = 0.
',/'= i '

Let us introduce the basis <p¡,, 1 < i, j < m, of the space YK defined by

^•/^fc/) = 5/k5/i>       ! ^ '• /» k, Km.

By replacing successively in (2.9) v by (0, ... , 0, ify, 0, ... , 0), we find

(2.10) VA G Th, (Luh ~f)(gfj.) = 0,      1 < ,, / < m,

so that uh G Fft collocates to (1.1) at the points g^.  We thus obtain a collocation

method at the Gauss-Legendre points of each quadrilateral A G Th.

Note that (2.10) can be also written in the form

(2,0   {(|-|a)l+(-I-|^+^-/)}(l,^0,
1 < i, j < m.

Remark 1.  The finite element methods introduced here may be viewed as gen-

eralizations to P.D.E's of the one-step Galerkin methods for O.D.E's which are de-

scribed in [5], [6].    D

3.  A Model Problem.  We first consider the following simple situation:

(i)  The set £2 and all the elements A of Tn axe rectangles whose sides are parallel

to the (x, y) axes.  Hence, for all A 6Tft, FK is an affine mapping.

(ii)  The matrices A and B have constant coefficients and the coefficients of the

matrix C axe element wise constant.

In that case, we are able to derive in an easy way stability and convergence

results for the weighted residual method (2.3).   This is done in Sections 3 and 4 where

we assume without mentioning it again that the conditions (i) and (ii) hold.  In Sections

5 and 6 we shall extend the corresponding analysis to the collocation method (2.10)

in a more complicated situation.

Let us define the operator 7rft to be the orthogonal projector from ¿2(£2) onto
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Yn and, for all A G Jn, the operator itK to be the orthogonal projector from L2(K)

onto YK.  We set nK = ft.  Clearly we have

V^ G ¿2(£2),     TThLfilK = TtK(<P\K),

V^G¿2(A),    irKip = Ti(p.

In order to prove a stability result, we want to evaluate

Z    L iLv, irKv) dxdy,      v G Vh.
KeThJK

We then denote by it (respectively fr ) the orthogonal projector with respect to the

variable £ (respectively to the variable 77) from L2(-1, + 1) onto the space of all poly-

nomials of degree < m - 1. We shall often use the following property

(3.1) rr = ft(*n = ír^.

Lemma 1.   We have for all symmetric p x p matrices E with constant coefficients

and for all v G Xp

(3.2)

= 2 /_! i(^V> V^1' fi) * (^V> fîr)6K-1' q)} dri-

Proof.   We notice that, for all r¡, each component of the function £ —►

(Ê(dv/o%X%, 17)) is a polynomial of degree < m - 1.  Hence, using (3.1), we may write

fk \Ê ff' *7 d% dn = i \Ê If' w) d| dT?

= fk \Ê If' V) ̂  *> = J* (^ k(#T)D)' **ß) dS ̂
Next, by the symmetry of the matrix E, we obtain

fk \Ê ôf' *°) d^dv = 2JkoJ (^°> *n°> d? rfT?'

from which (3.2) follows at once.    D

Let us now define the operator rf to be the orthogonal projector from L2(T)

onto the space Yh¡r of the traces over T of all functions of Yh.  Similarly, for all

A G Th, we denote by ttk the orthogonal projector from L2(bK) onto YK,dK, where

9A is the boundary of A.

Concerning the continuity properties of the functions of Xh, we assume that, for

any pair of adjacent elements Kx, K2 of Tn and for any function <p G Xh, we have

(3.3) 74^, = 74^   on the edge A'= Aj PiA2.

Since trf-ip = uj at the m Gauss-Legendre points of each side of 3A, the assumption

(3.3) exactly means that a function y G Xh is necessarily continuous at the m Gauss-

Legendre points of each edge K'ofTn.
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We also assume that the functions of Vh satisfy the boundary condition (1.2)

in the following sense:

(3.4) Vi>„ G Vn,   (Anx + Bny -M)^n =0    on Y.

Let us now state a weak-stability result.

Theorem  1. Assume that the hypotheses (3.3), (3.4) hold.  Assume in addition

that there exists a constant a > 0 such that

(3-5) C + C*> a!.

Then we have for all vh G Vh

(3-6)     2 k¥tJx (LVh' "hV«)dxdy > fv (M7#V <vh*dS + "Hollín-

Proof.   Let A G Th and v G A"£.   Since A is a rectangle whose sides are parallel

to the (x, v) axes, we may write

and by Lemma 1

/«(*£♦»!.*■)*♦

+ \ f| S+_\ ((****. V^- J) -Cft»*8, #£D)(|, - 1)} dÇ.

Hence we get

(3-7)        it (^   S + *  H '  W*ü) * *   =   2 foK ({An*  + ̂ ^ "^ dS'

where « = (n^, n ) is the unit outward normal along 9A.

Next, let vn be in Fft.   Using (3.7) and the hypothesis (3.3), we obtain

¿rfÂA-â+B-é>i,>>v»)<bedy

i

i

E     fdK«-Anx + B"y)4vh - *K) ^
*eT/i

2 Jr
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and by (3.4)

(3-8)       ZjK(^+B^,nhv^dxdy^\ST^vHf4vh)dS.

On the other hand, since the coefficients of the matrix C are elementwise con-

stant, we have

/„ (¿V *hvh) dxdy = fil iCnhvh> *hvh) àx dy

and by (3.5)

(3.9) Sa ̂ CVf" Wh)**® > f KMo.n-

Therefore, the desired inequality (3.6) follows from (3.8) and (3.9).    D

Observe that Theorem 1 does not necessarily imply the existence and uniqueness

of the solution uh G Vh of problem (2.3).  In fact, if / = 0, using (1.3) and (3.6), we

only obtain ithuh = 0.  Therefore, we introduce the following hypothesis

(3.10)        1^ e vn; VA G Th, Vu* G 7P,  ¿(ty, w)dx dy = o} = {0}.

As a consequence of Theorem 1, we get

Theorem 2. Assume that the conditions (3.3), (3.4), (3.5) and (3.10) are

satisfied.   Then problem (2.3) has a unique solution uh G Vh and we have the error

bound

(SviM4iun - u), Ttsh(uh - u))dSJ112 + \\7ih(uh - u)H0>n

\               ^kg tJk (£(« - f*). w„) dx dy
(3.11)       <     inf    \C    sup   --—--

vhevh I    wnGYph llW/JIo.íí

+ (f^Mirliu - vh), 4(u - vh))dsj'2 + KO/ - vn)\\0J,

for some constant C> 0 independent of h.

Proof. First, we note that the hypotheses (2.2) and (3.10) imply the existence

and uniqueness of the solution uh G Vh of problem (2.3). Next, let vh he in Vh and

let wh he in Y ft ; we may write

JC6Th

z Sk (~l(-u" ~ v")% w") & dy

=    Z   \Af-Lvh,wh)dxdy=   Z   SKiLiu-vh),wh)dxdy.
' h

By using Theorem 1, we have
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STiM4iuh - vh)> **("* - vh)) dS + a\\TTh(un - vn)\\2tn

2 Z  fr (¿(" ~ vh)> nhiuh - vh)) <& dy
<£Th

^e iJKiLiu - vh)> wh) ** dy
< 2       sup   -—-     \\ith(uh - wA)ll0>n.

\whZY»h K»0.n /

Hence, we get by the Cauchy-Schwarz inequality

(frW<K - vh)> 4K - "*))ds)1/2 + KK - ^)Ho,n

^erhI(¿(" - vh)> wh) & dy
< C   sup   -,

Wf¡eYP ll^llo.«

so that (3.11) follows by the triangle inequality.    D

Remark 2.  Assume that in (3.11) the right-hand side tends to zero as h tends

to zero.  Then Theorem 2 gives

Urni\\vh(uh - u)\\0 n =0,

and this does not imply the convergence of uh to u.  However, since nhun = uh at the

Gauss-Legendre points gf¡, 1 < i, j < m, K G Tn, we obtain the convergence of the

approximate solution un "at these Gauss points".    D

4.   Applications.  We now turn to some examples.

Example 1. A conforming method.   We first choose

(4.1) X=Qm,

(4.2) Xn = {<pn G C°(£2); VA G T„, ^K G XK (= Qm)},

so that we define a conforming finite element method.  The degrees of freedom of a

function iph G Xh are then determined in a standard way.

Let us evaluate the right-hand side of the inequality (3.11).  Clearly, assuming

classical regularity hypotheses and taking as function vh some interpolate of u, we get

for the last two terms

(jr(M4(u - vh), 4(u - vh)) dsj12 = 0(hm + 1),      K(« - u,)||0in = 0(hm + l )■

We now prove that we can choose the function u,, in such way that the same bound

holds for the first term.

Denote by -1 = /0 < /, <•••</„, = 1 the (m + 1 ) Gauss-Lobatto abscissae

for [- 1, + 1].  Given a function $ G C°(K), we define rip as the unique polynomial

of Qm which satisfies

(4.3) W&t) « tftf).      hj = ih>lj)>       0<i,j<m.



FINITE ELEMENT COLLOCATION METHODS 899

Next, given a quadrilateral A and a function \p G C°(A), we define rK\p G XK by

(4.4) /Çp = ?0.

Finally, with any function ¡p e C°(£2), we associate rhip G A^ by

(4-5) W\K = rK(<p¡K).

We then consider a regular family (Tfc) of quadrangulations of £2 in the sense

that there exists a constant a > 0 independent of h such that

hK<opK,      KGTh,

where hK is the diameter of A and p^ is the diameter of the inscribed circle of A.

Lemma 2. Assume that (Th) is a regular family of quadrangulations o/£2. 77ien,

if v G (Hm + 2(£2)y, wc toe /or a// w,, G Yp

(4.6) |/ri(^-VX^)Ä^|<C7i"' + 1||t;|lm + 2,ciIKII0in.*

Proo/   Let \¡i G ßm _, ; we consider the continuous linear functional on
Hm + 2(K)

(p I—►
/i&»-*)

\¡/ dt, dr¡.

Since (p = rip for all $ G gm, this Unear functional vanishes over Qm.  Let us show

that it also vanishes over the space Pm + 1.  If $ = %m + ', $ _ rip is a polynomial of

degree < m + 1 in the variable £ which vanishes at the m + 1 Gauss-Lobatto points

lj, 0 < i < m.   Hence d(!p - r£)/9£ is a polynomial of degree < m which vanishes at

the m Gauss-Legendre points g¡, 1 < / < m. As a consequence, (d((p - ty>)/9£)i// G Q2m _ x

vanishes at the points g¡., 1 < i, j<m, so that /¿(3(ip -r(p)/d%)\j/ d% dr¡ = 0.

On the other hand, if ¡p = r\m + ', the function ip -rip does not depend on % so

that the previous integral vanishes again.   Thus, the linear functional considered above

vanishes over Pm + x.  Using the Bramble-Hilbert lemma (cf. for instance [2, Lemma 6] ),

we get for all (p G Hm + 2(K) and all $ G Qm _ x

(4.7)

Now let A

[J¿(gj(<?-'VJ'M£rfr< <c\v\ m+2,k"V»0,k-

Th, v G Hm + 2(K) and wG^. We have

fK(AÍ¿^-r^)^)dxdy = ̂ 1fK(AÍ¡iv-m,w)dkdr1

and by (4.7)

/jc (* dx^ ~ rK^' 7 Ä d>;<C ~ w
lm + 2,/C 0,K-

•Here and in all the sequel, C will denote a generic positive constant independent of h.
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Since iTh) is a regular family of quadrangulations, we get

®m+2,k <Cj¿ll2hr2\v\m + 2,K<chrX\v\m + 2<K,

iHa =JkII2\ \\0,K<chKl\

fty/M < hK/2,

so that

\iK {Adx~(V~ r*V)' W) dX ̂  < ChZ+l Mm + 2,KM0,K-

Similarly, we obtain

and

\SK(C(v - rKv),w) dx dy\<ch^ + l\v\m + XJ(\\w\\0>K.

Therefore, we get

Sk(L(v - rKv), w) dx dy\ <ch% + 1 \\w\\m + 2>K\\w\\0¡K,

from which the inequality (4.6) follows immediately.    D

We are now able to prove

Theorem 3. Assume that the hypotheses (3.4), (3.5), (3.10), (4.1), (4.2) hold

and that (Th) is a regular family of quadrangulations of £2. Assume in addition that

u G (Hm+2C[ï)f and rhu G Vh.   Then problem (2.3) has a unique solution un G Vh,

and we have the error estimate

,1/2

(4.8) (jr(AftrfK - u), 4(un - u)) dSJ      + \\nh(uh - M)||0>n < Chm + » | "m+2,n-

Proof.   Clearly, the hypotheses (4.1) and (4.2) imply (3.1) and (3.3), respectively.

Since rhu is assumed to belong to Vh, we may apply Theorem 2 with vn replaced by

rhu in (3.11).  Standard approximation results give

(/r(M^("-r^),itf(«-rfcii))dls)     <^ + 1|«U + 1,r<cA- + 1||W||m + 2ii2,

K(" - rhu%,a <H"-'"ft"llo,n <chm + 1Mm + i,n-

Hence, the desired inequality (4.8) follows from Lemma 2.    D

Example 2. A nonconforming method.   We next study a nonconforming finite

element method which appears to be more effective than the previous conforming

one in some practical problems. We shall use here the techniques of [14].

Let £j be the set of Gauss-Legendre points of 9Â of the form (g¡, ±1), (±l,gj),

1 < i, j < m.  We denote these points by b¡, 1 < /' < 4m, and we number them
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9.
counterclockwise.  Let 22 be a ßm_2"un's°lvent subset** of A, m > 2. We set

2= Ê, U t2.

Lemma 3.  77jc space of functions ip G Qm which vanish on Ê is one-dimensional.

Proof.   Let ip G Qm vanish on Ê.  By using the symmetry properties of the set

tlt we get

«»Äi,i)-(-irÄ-i.i)-Ä-i.-D-(-ir*(i.-i).

Let us next introduce the function i// defined by

m

ik«, T?) - *«, t?)-x n « - i,)(tï - ip,
f,/=l

where X is determined so that i//(l, 1) = 0.  Then, we have $(1, 1) = <//(- 1,1) =

4>(- 1, — 1) = i//(l, - 1) = 0, and \jj vanishes at m + 2 points of each side of dK.

Therefore, i// vanishes on 9A.

For m = 1, we get i// = 0 so that $(£, r¡) = c&ji.  For m > 2, we obtain

&l, i?) = X(£2 - l)(r?2 - l)x(£, n),      x e Qm_2.

Since £ vanishes on ¿)2, the function x takes given values on £2 and is uniquely deter-

mined.  Hence, we have

[n it-itfa-ii)+ (s2 - ocn2 - ox«, t?)1

and the function ip is unique up to a multiplicative constant.    D

We denote by (p0 the polynomial of Qm which vanishes on Ê and satisfies the

condition £0(1, 1) = 1. We have

igt?,m = 1, î2 = 0,

*oG. »») = j2?v _ ^ + ^ m = % ̂  = {0}

Now, let Q^ be the space of polynomials spanned by |'rj', 0 < /, / < m, i + j <

2m.   Note that Qm = Q'm ® {%mr\m}.  Then we choose

(4-9) X=Q'm>

(4 10)    ** = ifh'VK eTh'fh\Ke xk and *h is continuous

at the m Gauss-Legendre points of each edge A' of Jh).

Let us determine the degrees of freedom of a function y G A^.  Denote by fm

the space of the traces over 3A of all functions of Qm.  It follows from the first part

of the proof of Lemma 3 that the space of functions ip G Tm which vanish on Ê is

one-dimensional.  Therefore, there exists a set {a,}^ of nonsimultaneously zero

**Let us recall that a set £ = {a,-^=j is P-unisolvent if for any set of scalars a¡, 1 < i" <S N, there

exists a unique function p = P such that p(aA = «., 1 < i < JV.
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scalars such that

4m

1=1

Then, if on the one hand we have a,   =£ 0 and if on the other hand the set 2., is so

chosen that ipQ ̂  X, we set

22 =  {bih<i<4m;i*iQ>     2' = ^i  U %2-

Hence, using Lemma 3, we find that a function ip G X is uniquely determined by its

values at the points of 2'.

One can easily check that, for m = 1,2, we have a¡ = (-1)' so that we can

select the index z'0 arbitrarily and take

(¿i, m=l,

(¿i U {0},      m = 2.

Next, setting XK = FK(Î,), X'K = FK(Î,'), we obtain that the degrees of freedom

of a function <p G XK may be chosen as its values at the points of zZ'K.  Moreover,

using (4.10), a function \ph G Xh is easily constructed by means of its values at the

points of 2„ = Ujter,,2*-

Finally, we want to prove the analogue of Lemma 2.  Given a function iç G

C°(K), we define rip to be unique polynomial of Q'm which coincides with rip on 2.

We then introduce the functions r'K<p and r'h y as in (4.4), (4.5).

Lemma 4. Assume that (Th) is a regular family of quadrangulations of £2. Then,

ifve (Hm + 2(Q.)Y, we have for all wn G Y%

(4.11) Z     i(L(v-r'nv),wh)dxdy
KtETh   JK

<C7I'" + 1llu|L + ,n||wm + 2,n||tv/i||o,n-

Proof.   Let i// G Qm _, ; we want to show that the continuous linear functional

on Hm+2(K)

(4.12) $ ^ Jk\q¡^ ~ ?l7* d* dT>

vanishes over the space Pm + 1-  First of all, since ip = rip = rip for all ip G Q'm, the

linear functional (4.12) vanishes over Q'm.  On the other hand, if ip = £m + 1 (respec-

tively, ip= T)m + l), the function rip depends only on % (respectively, on 17), and we

have rip = rip. Hence, using the first part of the proof of Lemma 2, we get

SK\^.it -r(À^ d% dri = 0,      (p = ?n + l,rfn + l.

Since Pm + X C Q'm ® {|m + 1} 0 {i?m + 1} for m > 2, it remains only to con-

sider the case m = 1, ip = %r\.  Clearly, we have

Sk^d^dV= fkvd^dv = o,
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and an explicit calculation shows that rip = 0 in that case.  Hence, our assertion is

proved for all m > 1 and the desired estimate (4.11) follows just as in the proof of

Lemma 2.    D

Theorem 4. Assume that the hypotheses (3.4), (3.5), (3.10), (4.9), (4.10) hold

and that (Th) is a regular family of quadrangulations of £2.  Assume in addition that

u G (Hm +2(£2))p and r'hu G Vh.   Then problem (2.3) has a unique solution uh G Vn,

and we have the estimate (4.8).

Proof.   The hypotheses (4.9) and (4.10) imply (3.1) and (3.3), respectively so

that Theorem 2 applies.  Using Lemma 4, the proof parallels that of Theorem 3.    D

As a model application of Theorems 3 and 4, we consider the simple hyperbolic

equation

(4.13) ßdx + V~dy+au =f   in ^

with the boundary condition

(4.14) u = 0    onr_= {(x,y)er-(pnx + vny)(x, y) <0}.

Equation (4.13) arises in neutron transport theory, p and v are parameters such

that p2 + v2 < 1 and the function u = u(x, y, p, v) represents a flux of neutrons at

the point (x, v) in the angular direction (p, v); the quantity o denotes the nuclear

cross section which satisfies o(x, y) > a > 0 and / =» f(x, y, p, v) stands for the scat-

tering, the fission and the source terms.

Note that the boundary condition (4.14) is of the form (1.2) with M =

\pnx + my\.

Assume for convenience that p, v ^ 0.  We define

(4.15) Vh = {vh G Xh ; vh = 0 on T_}    in the case of Example 1

and

(4.16) Vh = {vh G Xn; vh = 0 at the Gauss-Legendre points located on T_},

in the case of Example 2.  One can check that in each case

dim Vh = dim Yh = m2 card(T,,).

In order to check the hypothesis (3.10), we state

Lemma 5.  We have

(4 17)      {££ Qm, nip = 0 on K, ip(-l,v) = ¿G,-i) - 0,

and

(4.18)        {¡¡>^Q'm\9(p = Qon K, nn0(±\, v) = 9(fâ, ± 1) = 0} = {0}.

Proof.   Let ip be in Qm.  Assume that trip = 0, ir(ip(i, ± 1) = ^¿(tj, ± 1) = 0.  We

have
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#£,> gj) = #± 1, gj) = $(£,, ± 1) = 0, 1  < i, j < m.

Hence, using Lemma 3, ip is necessarily of the form

m

p^n (i-£,)(T,-i,).

Assume in addition that 0(1, 1) = 0, we get X = 0 so that (4.17) holds.  Likewise, if

we assume that ip G Q'm, we also get X = 0 which implies (4.18).    D

Theorem 5. Assume that either the hypotheses (4.1), (4.2), (4.15) hold or the

hypotheses (4.9), (4.10), (4.16) hold.  Assume in addition that (Tn) is a regular family

of quadrangulations of £2 and that the solution u o/(4.13), (4.14) belongs to /7m+2(£2).

Then each of the corresponding problems (2.3) has a unique solution uh G Vh, and we

have the error estimate

(4.19) H K + »VX("a -")"o,r + KK -")llo,n <ct,m + 1Mm+2,n-

Proof.   Let us check the hypothesis (3.10).  Assume that a function v G XK

satisfies

(4.20) Vw G YK,     f (Lv, w)dx dy = 0.
J K

Then using (3.5), (3.7) and (3.9) (Theorem 1), we get

**<,* + fdK^nx + ™y)i4v)2 ds = o.

Assume that v = 0 on 3_A = {(x, y) G bK, (pnx + vny)(x, y) < 0}.  We have

ir^i; = 0    on A,       nf^v = 0    on 9A,       v = 0    on 9_A.

Then by applying (4.17), we get v = 0 on A. Now by sweeping through the mesh,

starting from the part T_ of the boundary we find that (3.10) holds in the case of

Example 1.

Likewise, for the second example, if we assume that (4.20) holds and that

7t£u = 0 on 9_A, we get i; = 0 on A as a consequence of (4.18).  Using the same

argument as for Example 1, we find that (3.10) holds in the case of Example 2.

The desired result (4.19) is then a direct consequence of Theorems 3 and 4.    D

The conforming and nonconforming finite element methods of approximation of

Eq. (4.13) appear to be higher order extensions of the SNG method and DSN method

of Carlson (cf. [8]), respectively.  The convergence result (4.19) generalizes the analysis

of Madsen [13].  Although the two above finite element methods have the same rate

of convergence, numerical experiments show that the nonconforming method is more

effective in practice than the conforming one, particularly when using low order meth-

ods with a moderate number of elements.

5. Some Technical Preliminaries. We next consider the general situation where

the quadrilaterals of Th axe not necessarily rectangles, and the differential operator L

has variable coefficients.  We want to extend the analysis of Section 3 to the collocation
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method (2.10).  In order to prove weak-stability results of the form (3.6), we now

need to estimate the following expression

m

Z   Z <4(¿«v wÄ)(4),   vhevh,
KEiTh   '-i=1

which occurs when evaluating I,Kej fK(Lvn, vhvn)dx dy by means of the quadrature

formula (2.8).   Unfortunately, such stability results are much more complicated to

establish in that case and we first derive some technical preliminaries.

Since

rrt

Z cofj(Lv,v)(gK)
i,j=l

(5.1)
\r   n    (fa 2    toB\35,/ä)',, dx A 90 ,  ,  ^ A „ .

we have to evaluate expressions of the form

U=i

where

f  û„(&|,ô)^).     v&Xp,

(5-2) the p xp matrix Ê is symmetric;

(5.3) the function (£, r?) -> Ê(Ç, n) belongs to IV1 '°°(Â; L(RP)).

We begin with the following result which is a mere restatement of Lemma 1.

Lemma 6.   We have for all symmetric p x p matrix Ê0 with constant coef-

ficients and for all 0 G Xp

m /-   90    \ 1   m

(5.4) JJ   ^f{E0 gj, 0j íií;) = - Z ¿j{iE0Z, 0X1, *,) - (Êo0, v)(-1, |;.)}.

iVoo/   Since mUgy) = 0(j*,. ), 1 < í, / < m, and the quadrature formula (2.7)

is exact for all polynomials ip G Q2m _ x, we have by using Lemma 1 :

z ¿ijifo ff.ö) «,/) = Sk {Ê° If- ™)d% dr]

i r
= 2 J ¿ ft^o V' V^1 >T?) ~ (¿o V' *tj°X-1. *?)) *?•

The result follows by noticing that 7^0(11, gj) = 0(±1, gj), 1 </ < m.    D

When the matrix E has variable coefficients, we set

<55) l#'-%S*{tfH + i*4
where, in (5.5), H denotes the matrix spectral norm.
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Lemma 7. Assume that the hypotheses (5.2) and (5.3) hold.    Then, for all

e > 0, there exists a constant C(e) > 0 such that for all 0 G Xp

m /- 90    \ 1   m

. E û// [E a¡. °j (t,/) > 2 ? û/{(^0'0)(1 ' */>~~ ^û)("! ' P

) /i     \ m

(5.6)     < " ^i.-   (2 + 7 ? "/{|0(1 ' f/)|2 + |0(" ! ' ^)|2}

m

+ C(e) Z ¿>ij\uiÊij)V
i,i=l

Proof.   Let Ê0 he a symmetric p xp matrix with constant coefficients.   Using

Lemma 6, we get

1 *ij if ff, 0) d,) =  f i ùtf {(e0 fvv) + ((Ê- Ê0) |, o)}(¿,)

1   m

= i Z à/Wo^ 6X1. *,) - (^o°> °X- 1, S,)}
l=i

m / -     -     90    \
+  X u^-ío)^'0)^/)-'

i,j=l \ *     '

and therefore,

Z G>t, (ê §f, 0) (i,7) - i £ û,{(£o, o)(i, §,) - (Êo, dx-hê}))

(5.7)    <   + ^  Z û,{((£-0 - E% ÔX1, #,) - ((Eo - E)v, 0)(-1, gj))

m / -      -     90    \
+ z &Av-E0)ñ>mii>

i,j=l \ '

Now we choose the matrix Ë0 so that

sup^ \E&tTi)-E0\<\E\l »,
(6,tj)ex(5.8)

(take for instance EQ = E(0)).  Then we have

(5.9)

Z ¿>j{((Ê0 - E)0, 0X1, ly) - ((E0 - E)v, ox- r, gj)}
i=i

<\E\t„Z àj{W,Èj)\2 + \0(-hêj)\2}.
/=1
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Next, we notice that the mapping

tfl)2 +*(-l)2+£w^(i,.):
1=1

1/2

is a norm over the space pm of all polynomials of degree < m in one variable %. Hence

we get for some constant c, > 0 and for all i/j G pm

Z ùt\%<s¿f <ci U1)2 + ti-D2 + Z àt*iSt)2l

Applying this inequality to each component of the function % —► 0(£, gj), multiplying

by ûi and summing from / = 1 to / = m, we find

Z "a aF <*'/>

<cxiz^mhgj)\2 + \v(-i,gj)\2} + z <vœ«)ia[.

Therefore, there exists a constant c, > 0 such that

z w-^l-w
i,/=i   v

<C2|£|,.
m \l/2        /  m \l/2"

£ ¿,.{10(1, £;.)|2 + |0(-1, gpi2}       +    Z ût/Mët,)?
7 = 1 / \í./=l

\l/2

x ( z ^i,mj)\2
\i,i=i

Using the inequality c2ab < ea2 + C2Ä2/4e, we obtain

(5.10)

Z   oôi(£-.rJ0)||,oW
i,/'=l        \ €     '

< Iffl, „ je Z 0,(15(1,l,)l2 + l«K-l,|y)l2} + C(e) Z   ûi/MMv)n ,
(     /=1 i./=l )

with C(e) = C2+ C\/4e.

The inequality (5.6) follows from (5.7), (5.9) and (5.10).    D

In fact, under an additional assumption, one can improve the previous estimate.

Lemma 8. Assume that the hypotheses (5.2) and (5.3) hold. Assume in

addition that there exists a symmetric p x p matrix EQ with constant coefficients which

satisfy the conditions (5.8) and
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(5.11)      Ê0-Ê(l,gj)>(U,    E(-l,gj)-E0>ßI,    Kj<m,   ß > 0.

Then, there exists a constant C> 0 such that

Z ¿ÂE%,mtj)>^Z <%«£o>o)(i,gj)-iE0>°X-1,gj))
i,j=l       \   °?    / ¿/=1

m

-c|Ê|1>0B £  SylO^.)!2.

»00/   We start again from (5.7).   Using the assumption (5.11), we have

(5.13)

Z ¿¿¡Wo - E)°> D)o> *,-) - ((4 - £)e> °x-1, i/)}

>j3i:u/{is(i,i/)i2 + iß(-i,p2}.
/=i

Combining (5.7), (5.10) and (5.13), we obtain

Z G>a (E fe, 0)(M > i £ ¿V«0», °Xi>gj) - iE0> ox-1,1/)}

+ G3-e|£|, „)£ w/{|0(l,|/)|2+ lOC-l.ipi2}
1=1

m

C(e)\Ê\x„ Z atfm¡)\2>
i,j=l

and (5.12) follows by choosing e = ß   1[Ê\X „.    D

In the sequel, we shall use Lemma 8 with EQ = E(0).

6.   A Collocation Method for Parabolic Equations.   Let us now study the

stability and convergence properties of the collocation method (2.10).   For the sake

of simplicity, we shall restrict ourselves to first order systems associated with parabolic

problems.   However, the analysis can be essentially carried out for other first order

systems with only technical modifications.

Let us assume that the domain £2 is of the form

(6.1) £2 = {(x, y) G R2 ;gx(x) <y <g2(x), 0 < x < R}.

We then consider the parabolic equation with variable coefficients

9"i       9 / 9"A
(6-2) ___^(J,)_)+c(x>>,)Mi=/i    inn

with the boundary conditions

(6.3) ux(0,y) = u°x(y),      ii(0)<y<g2(0),
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(6.4) ux(x, gx(x)) = ux(x, g2(x)) = 0,      0 < x < R.

In (6.2), the functions a, c and fx axe assumed to be continuous in £2 with ax ~> a(x, y)

> a0 > 0.

Let us reformulate the equation (6.2) in terms of a first order system.  We set

(6.5)
bux

<2 = «(*. y) -jp »

Then (6.2) is equivalent to Eq. (1.1) with

/ 0
(6.6) A =

0    0
B

1     0

/ =

c

fx

>c   0\

0   I

By changing ux inux exp(Xx), we may always assume c(x, y)> c0> 0 with c0 arbi-

trarily large.

We next define the collocation method.  Let 0 = x0 <xx <x¡ < • • • <x¡ = R

be a subdivision of the interval [0, R] ; we assume that each strip

Bi+i/2 = íix,y)eñ;xt<x<xt+1},     0</</-l,

is partitioned into / quadrilaterals A as in Figure 1. We also assume for convenience

that the lateral boundaries of £2 are polygonal lines so that every quadrilateral A G Jh

has straight sides.

We set

(6.7)

(6.8)

Figure 1

X=QnV

Xn = {^ G C°(£2); VA G Th, *n K G XK),

and we denote by X° the space of the traces over x = 0 of all functions of Xh.

Notice that the functions of Af° are continuous and piecewise polynomials of degree

< m.

Now, given a function «° = (u° ,, w° 2) G (X°)2, we want to find a function

uh = ("/!,!> uh 2) e %h which satisfies
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(6.9) iLun - f)(gfj) = 0,       Ki,j<m,KeTh,

and the boundary conditions

(6.10) uh(0,y) = uoh(y),      gx(0) <y <g2(0),

!uh x = 0 at the m Gauss-Legendre points of each edge

of the lateral boundaries y = g¡(x), i = 1,2.

One can easily check that the problem (6.9)—(6.11) is equivalent to a linear system of

2m2IJ equations in 2m2IJ unknowns.

In order to study the stability properties of the collocation method (6.9)—(6.11),

we first consider a quadrilateral A of Th whose vertices are denoted by S¡ = (s¡, tj),

1 < i < 4 (see Figure 2).  Let FR: (%, tj) —► (x, y) = FK(%, 17) be the transformation

which maps A onto A.  We set

(6.12) yK =
o2y     1

9|9t? = 4(ii " ?2 + h - U)-

y k

->-x

Figure 2

Lemma 9. Assume yK > 0.   Then there exist two constants cx and c2 > 0

independent of A such that for all v G XK

m

Z   cofj(Lv, v)(g«j)
í,/=i

>

(6.13)

m I J fr \

+  Z   ^ij\foJK-C2lK)^l  +a-»22)igij)-
1.1=1 \ l       I
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Proof   We start from the expression (5.1), and we notice that 9x/9tj = 0.  Apply-

ing Lemma 7 with E = byÂ/or] and \Ê\X œ = yK, we obtain for all e > 0

V-    «   íídy 2    dx oV8 oVs \

5|i"/{((|-(i+2^)ß?)d,l/)

((|+(l+2e)7j,)o2)(-l,|/)}

(6.14)

i,j= 1

On the other hand, we have

Since

-(l»>-I«))=-(I(-»-|<°))=^^>0'
we may apply Lemma 8 with Ê = dy/d%, Ê0 = - dy(0)/d%, \Ê\X „ = yK and % replaced

by 17; we get for some constant d > 0

(6.15)

■àiK Z &ip\iêij)-
í./= 1

Next, since 9x/9£ = s2 - sx and the matrix B has constant coefficients, we

obtain by applying Lemma 6

<■,/= 1

(6.16)

Ä   „   /9x~90    \

,"|l4l°'1,í)(l',1)"Íí^<,Í,"4
Finally, since c(x, .y) > c0 > 0, a   '(x, 7) > flj    > 0, we find

m m ( ->      1        A

(617)        Z û/,<^c5, °xi,7) > Z "./ co^°r + - V2 (£,/)•
l,/=l <./= 1 \ ! /

By combining the inequalities (6.14)—(6.17), we get the desired estimate (6.13) with

cx = 1 + 2e, c2 = c(e) + d.    D
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Now, in order to get a weak stability result, we assume that there exists a con-

stant Ô > 0 such that for all A G Th

(6.18) 0<yK <o(sx ~s2)(t2-t3).

The first inequality of (6.18) implies a very strong restriction on the domain £2 and

on the geometry of the mesh.  The function gx (respectively, g2) must be increasing

(respectively, decreasing) on the interval [0, R], and we must have \SXS4\ > \S2S3\ for

all A G Th.  On the other hand, the second inequality of (6.18) means that each quad-

rilateral A G Th is an 0(h2) perturbation of a parallelogram.

Next, we set

(6.19) £2,= {(x,/)G£2;0<x<x/},   2;= {(x,y)G £2;x =x¡],   0</<J,

(6.20) Vri/2=*,+ i_*,>   hi=ttihi+i/2 +hi-ii2) = 1A(xi+i~xi-i)>     !</</- 1,

and we introduce the space Wn of functions vh G X\ which vanish at the m Gauss-

Legendre points of each edge of the lateral boundaries y = g,(x), i = 1,2.

Theorem 6. Assume that (Th) is a regular family of quadrangulations of £2 and

that the condition (6.18) holds.   Then there exist two constants C and a > 0 indepen-

dent of h such that for all v G Wn and all I = I,... ,1,

m

2    Z     Z   ^Lv,v)i^)
Kcn¡ ¡,j=i

(6.21) >(l-^l_1/2)lKü1ll2>L/-(l +c/,1/2)||7r£u1||2j£o

-2c'z hk\\trshvx\\2^   +a\\nhv\\20¡n
¡t=i * '

Proof.   Let A be a quadrilateral of Tn with vertices S{, 1 < i < 4.  We start from

the inequality (6.13).   Using (6.18), we get

Z^j(^-cxyK)v2x(l,gj)>(\-c3(sx-s2))Z^j(di1v2)(l,gi)

/tx (irKvx)2(sx,y)dy,
f4

with c3 = cx8.  Similarly, we have

Z  ^■(^ + c17k)oÎ(-1^/)>(1 +C&X -^2))/íV^i)2(^>')*'-

On the other hand, using the notations of Figure 2, we obtain

Z ¿,(| o2 + 2 §f o^d,-, o = fllii^i)2 + 2(4^x4^))», dS
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and

£ Û, (| Ö2 + 2 | OjO^tl,, - 1) = fSs\4»x)2 + 2(4^iX4"2))"v dS-

Next, since (Th) is a regular family of quadrangulations of £2 and by (6.18),

there exists a constant c4 > 0 such that

yK<c4JK.

The constant c0 being assumed arbitrarily large, we have for some constant a > 0

m I J      \
Z   ûij \icoJK -c27*)02 +a~"22 )%j)

i,/=l \ 1       /

>fZ V*Kco - c2^4)02 + J^W > f IMHo>

Thus, summing (6.13) all over the quadrilaterals A of £2, and using the above

estimates, we get, since ti^Uj vanishes on the lateral boundaries y = g¡ix), i = 1,2,

m

Z     Z   ufj(Lv,v)(gfj)
KCÍl¡    l',/'=l

>\ Z  {(l-^fe-,/2)ll^illo,rfe-(1+c3^-i/2)ll^illo,^_1}
L fe=l

+ f iM'o,«,'
from which the desired inequality (6.21) follows with c = c3.    O

Let us now state the following analogue of Gronwall's lemma whose elementary

proof is left to the reader.

Lemma 10.  Let (<p¡)¡>0 be a sequence of nonnegative numbers such that for all

l> 1

i-1 i-1

(6.22)      0 -CAi-i/îM<0 +CÄi/2H +2c Z hk*k  + Z   ^fc+i/2
k=l k=0

with c > 0, h,_x,2 < 1/c and t//fc+1/2 G R.   77ien we «ave rne estimate

*i< I II r^Ti- K
\/=0   !       Cnj+l/2 /

(6-23) ,_i /   ,_i    i +c/i,+ 1/2

+ z r^—  n !-c;   k+i/2-
fc = 0   1       Cnk + l/2 \/=fc + l   '       C"/+l/2/

If hl_x,2 <h° < 1/c for all / > 1, the inequality (6.23) implies that, for some

constant X = X(«°) > 0, we have
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(6.24) V7 < V0 exp(Xx,) + Z   ^+i/2exP(M^fc -*/))•
fc = 0

Let us prove the following result:

Theorem 7. Assume the hypotheses of Theorem 6.  Then, if uh is a solution

of problem (6.9)—(6.11), we have the error bound for all I = I, ... , L,

K("/i,i -"i)Ho.L| + ¡KK " u)h,n¡

(6.25)
inf

u/i,l="°,lonS0

Id Z
\Kcn,

sup

w<=y\

ZZ=i^fiiL(u-vh),w\gfj)
Wttg-wKn»0,K

2\l/2

+ \\nsn(ux -vh>1)\\0>S{ + K(«-uÄ)||0)il/

Proof.   Let vh be in Wh; using (6.9), we have

m

Z    Z   o>«j(L(un-vn),un-vh)(gfj)
Kcn¡ 1,7=1

m

=    Z     Z   ufj(L(u-vn),un-vn)tgfj)
ÍCÍ1,   1,7=1

< ( Z 4)/a«»ft(ii*-ü*)iio.ol<5 £. 4+î ■»*(«*-"Xn,.
Vcñ,      / ' ÍCÍ2,

with

e^ =   sup
Xr/=iCO,7(¿("-"J'wX4)

wey;
IlTT^Wa: "'"o,a:

Hence, by Theorem 6, we obtain for all / = 1, ... , /,

(l-^/-l/2)ll4K,l-^l)llo,£z+fH("7,-^)Ho,f2/

<0 +^1/2)l|7rXil-lj/iil)||2

1-1

z
k=l

+ 2c Z hkl\<i«h.i-"h,i)\l2o,z   + â     S   4-
/ccn

Next, we use (6.24) with

<P, = II^K.i - ah,i)tio,zt>

2

*k+H2=a        Z        4-| K("Ä-w*)"o.flt + 1/,-
KCBk+x/2 ¿ * + l/2
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We get, if vnX = wj [ on 20, and for h¡_x,2 < h° small enough,

ll**(«*,i - %i)K,z, + K("a - MW, < C(   Z_ e2)17
«en,    /

for some constant C = C(\ R) and the inequality (6.25) follows by the triangle in-

equality.    D

In order to get a more precise error bound, we need to prove some analogue of

Lemma 2.  Let the interpolation operator rh he defined as in (4.5). We have

Lemma 11. Assume the hypotheses of Theorem 6.  Then we get for all v G

(Hm +2(£2))2 and all I = I, ... , I,

(6.26)
ÍCÍÍ

sup
Z"-=i"î/(^-^)»wx4) 2\l/2

<Ch m + l i
llm+2,n;-

Proof  We only sketch the proof (for details, we refer to [9]).  Consider the

continuous linear functional on Hm + 2(K)

i —* gt (0 - riptgij).

As in the proof of Lemma 2, it vanishes over the spaces Qm and Pm+l •  Now, one

can check that the seminorm

«+2^      L.9£9rL|m,£' i,i
d'ip

9?'
+

o.a:

d'ip

9tj' 0,K

is a norm on the quotient space Hm + 2iK)HQm © Pm+i) which is equivalent to the

quotient norm.  Therefore, we obtain

—(ip - r^)(g¡j) +
b2ip

9|9r? m,K
Mm+2jt

A similar estimate holds for the term d(ip - rip^g^/or}.

Next, let A be a quadrilateral of Th and <p he in Hm + 2(K).  Since (Th) is a

regular family of triangulations of £2 and the condition (6.18) holds, we get by using

the techniques of [3]

Mm+2,k<c( mf yK(ï,vy)    h%+2
\U,r,)eK )

Mm+2,K'

b2ip

9£9t?

-1/2

* <CWnLk Jk{1 V) (^M„i + 1,K  + W+2Mm+2,K)

-1/2

<C\nÍnLJK^V)¡       H™     M-. + 2JC.

so that
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-1/2

ü®-?mj)\<C[    inf^JK(i,v)       h% + 2\M\m+2>K

Hence, we obtain for all v G (Hm + 2(K))2 and aU w G Y\

JH|i-gj)i„-^.
< z  \\2t^-ti)à'-'-mi"i) [S.*»™«*

1/2 1/2

<chZ + 1\\v\\m+2<K\\nKw\\0tK.

Likewise, we have

m
dy A  +dXfí\   9

Z û// (I- ma + MB)i¿,i» -™)> "lien) < <#k '
i.m + 1 i

and

Z   ^j(JKC(v - fv), *)(§,,) < ChZ+1\\v\\m + ltK\\itKW\\0tK.
i,j=l

Thus, using (5.1), we get

2: <4iL(v-rKv),w)(gX)
i,j= 1

<Ch% + 1M\m + 2iK\\itKw\\0Jr

and the inequality (6.26) follows easily.    D

We are now able to prove the final result.

Theorem 8.  Let (Tn) be a regular family of quadrangulations of £2 which

satisfy the condition (6.18).   77ze« problem (6.9) has a unique solution uh G X%.

Moreover, assuming that a G W"+2'°°(£2) and ux G //m + 3(£2), we get the error

estimate

(6.27)  II^K,i-»i)llo,£, + IK("/i-«)llo,«/<C/im+1|l«1llm+3>n,    1=1,...,I.

Proof.   Let us first prove the existence and uniqueness of the approximate solu-

tion uh.  Hence assume that fx = 0, w° = 0; we have to check that uh = 0.  Applying

Theorem 6 with / = 1 and v = uh, we get

7rft"/i,i=0   on2!,     TThuh=0   on£2j.

Therefore, un x vanishes at the m2 Gauss-Legendre points of each quadrilateral A C £2,.

Now, using the boundary condition (6.11), we obtain that un x vanishes also at the

m Gauss-Legendre points of each lateral side of A C £2t.   Since un x = 0 on 20, we

get immediately un x = 0 in £2j.

Let us next show that un2 = 0 in £2t.   Using (6.9) with fx = 0, we have for all

AC £2j,
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<>Uh,2

by
tf>^{ixhl+cu".i)($):=0'      ! <*><»»■

Since

9"»,:
uh,2Ígfj) = -¡¿-igfj) = 0,      l<i,i<m,by

we find again that uh 2 vanishes at the m Gauss-Legendre points of each lateral side of

A C £2j.   Since un 2 = 0 on 20, we also get uh2 =0 in £2j.

Thus, we have proved that uh = 0 in £2t.  Using a recurrence argument, we obtain

uh = 0 in £2.

Finally, let us assume that a belongs to Wm + 2'°°(£2) and ux belongs to //m+3(£2).

Then we have u2 G 7/m + 2(£2).  By applying Theorem 7 and Lemma 11 and by using

the estimates

\\Trh(u-rhu)\\<Chm + 1\.

K("i-'-/,"i)llo,x;<C7'm + 1ll«1llm + 2,iî/,

we obtain the desired error bound (6.27).    D

Remark 4. The previous results can be easily extended to the nonconforming

elements introduced in Section 4.

Remark 5.  The above results clearly generalize those of Keller [7] ; we have

derived higher order analogues of the box-scheme.  Let us also notice that the conver-

gence of the box-scheme can be analyzed in a completely different way by using the

techniques of Baker [1].

Laboratoire de Calcul

Faculté des Sciences et des Techniques

Route de Gray

2S030 Besançon, Cedex, France

Analyse Nume'rique

Université P. & M. Curie

4 Place Jussieu

7S230 Paris, Cedex 05, France

1. G. BAKER, "A finite element method for first order hyperbolic equations," Math. Comp.,

v. 29, 197S, pp. 995-1006.

2. P. G. CIARLET & P. A. RAVIART, "General Lagrange and Hermite interpolation in Rn

with applications to finite element methods," Arch. Rational Mech. Anal., v. 46, 1972, pp. 177-

199.

3. P. G. CIARLET & P. A. RAVIART, "Interpolation theory over curved elements with

applications to finite element methods," Comput. Methods Appl. Mech. Engrg., v. 1, 1972, pp.

217-249.

4. K. O. FRIEDRICHS, "Symmetric positive differential equations," Comm. Pure Appl.

Math., v. 11, 1958, pp. 333-418.

5. B. L. HULME, "Discrete Galerkin and related one-step methods for ordinary differential

equations," Math. Comp., v. 26, 1972, pp. 881-891.

6. B. L. HULME, "One step piecewise polynomial Galerkin methods for initial value prob-

lems," Ma th. Comp., v. 26, 1972, p. 118.



918 P. LESAINT AND P. A. RAVIART

7. H. B. KELLER, "A new difference scheme for parabolic problems," Numerical Solution

of Partial Differential Equations-U (B. Hubbard, Ed.), Academic Press, New York, 1971, 327-350.

8. K. D. LATHROP & B. G. CARLSON, "Transport theory.   The method of discrete ordin-

ates," Computing Methods in Reactor Physics (Greenspan, Kelerb, Okrent, Eds.), Gordon and

Breach, New York, 1968, pp. 165-266.

9. P. LESAINT, Sur la Résolution des Systèmes Hyperboliques du Premier Ordre par des

Méthodes d'Éléments Finis, Doctoral thesis, Paris, 1975.

10. P. LESAINT, "Finite element methods for symmetric hyperbolic equations," Numer.

Math., v. 21, 1973, pp. 244-255.

11. P. LESAINT, "Finite element methods for the transport equation," R.A.I.R.O. Sér.

Math. R2, 1974, pp. 67-94.

12. P. LESAINT & P. A. RAVIART, "On a finite element method for solving the neutron

transport equation," Mathematical Aspects of Finite Elements in Partial Differential Equations

(C. de Boor, Ed.), Academic Press, New York, 1974, pp. 89-123.

13. N. K. MADSEN, "Convergent centered difference schemes for the discrete ordinate

neutron transport equations," SIAM J. Numer. Anal., v. 12, 1975, pp. 164—176.

14. P. A. RAVIART & J. M. THOMAS, "Primal hybrid finite element methods for second

order elliptic equations," Math. Comp., v. 31, 1977, pp. 391—413.


