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Semidiscretization in Time for Parabolic Problems

By Marie-Noëlle Le Roux

Abstract. We study the error to the discretization in time of a parabolic evolution

equation by a single-step method or by a multistep method when the initial condi-

tion is not regular.

Introduction.  The problem we are considering is the parabolic evolution equa-

tion

( u'(t) + Au(t) = 0,      0<t<T,
(*) I

(u(0) = uo.

Here, A is a linear operator, unbounded on Hubert space H, of domain D(A) dense

in H; the initial value u0 is assumed to be only in H.

In the first part, we study the error due to the discretization in time of the

problem (*) by a single-step method.  The scheme is defined by the choice of a ra-

tional approximation r(z) to the exponential e~z for complex variable z.   For the case

of A selfadjoint, these methods are analyzed in [1] and [2].  Also in the special case

of one space dimension, similar results can be found in [9].  For the case of A non-

selfadjoint, the result for the special case r(z) = 1/(1 + z) was obtained by Blair [3]

and by Fujita and Mizutani [6] .  Using the technique in [1], we generalize these re-

sults when the method is strongly y4(0)-stable (0 < 6 < ti/2).  Concerning examples,

a class of rational approximations {r (z)} to e~z which are strongly ^(O)-stable with

p > 3 is documented in [8] and [2].  It is shown in [8] that for p > 3, rp is in fact

strongly ^4(öp)-stable for some 0 < 8p < n/2.  For small p, 6   is close to 7r/2 and in

the special cases p = 3, 4, r   is A -stable.  Examples of rational approximations to e~z

which are strongly A(6)-stable with r(°°) = 0 are provided by the family rv(z) develop-

ed in [2].

In the second part, we investigate error estimates when the discretization in time

is carried out by means of a multistep method.  Zlamal gives an error bound under the

assumption that the operator A is selfadjoint and the method strongly ^4(0)-stable.

Here, error estimates are obtained if the operator A is maximal sectorial and the meth-

od strongly ,4(0)-stable (0 < 0 < rr/2).

I.   Semidiscretization in Time by a Single-Step Method.

1. Introduction.   Let A be a linear operator, unbounded on Hubert space H,
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of domain D(A) dense in H.  A is supposed to be maximal sectorial [7] ; and we con-

sider the problem

(1) Í u'(t) + Au(t) = 0,      0<t<T,

\u(0) = u0,

where u0 belongs to H.   The approximate values un of« at the time level tn = nAt,

(At denotes the time increment) are determined by

(2) un+x =r(AtA)un,      n>0,

where r(z) is a rational function of the complex variable z defining the single-step

method.  The error at the time tn is given by

K "«ft,)1* = '(«~M -r"(AtA))u0\H;

hence, we deduce

(3) \un -u(tn)[H < \\e-t"A-rn(AtA)\\£iHH)\u0\H.

2. Assumptions on the Method.   We assume that the single-step method is of

the order p (p > 1); then there are two constants ox > 0 and C> 0 such that

\e~z -r(z)\<C\z\p+l,   VzGC, \z\<ox.

Lemma 1.1.   Let the single-step method be of the order p, then, for any 6 G

[0,7r/2], there are constants o, ß and c > 0 depending only on r and 0 such that for

z G C, \z\ < o, -0 < Arg z < +0,

(4) \rn(z)-e-"z\<Cn\z\p + 1e-ßnRez.

Proof.   We have the equality

\rn(z)-e~nz\ = \r(z)-e- Z /■/'(z>r("_1-/)2

1=0

Since the method is assumed of the order p, we have

\r(z)-e-z\<C\z\p + l

and,

l<z)Ke-Rez(l +C\z\p+l),   VzGC, IzKo,.

Let z G C such that -0 < Arg z < +6, 6 G [0, tt/2] , then, Re z > \z\ cos 0; hence

IWzll < g-HRez/g-Vllzlcos e + C\z\p+1\

and there is a constant o < ox such that

Clzlp+1 <^lzlcos0,       Izl <a.

Therefore,

lf<2)l < e-l/lRez    for Izl < a, -0 < Arg z < + 6
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and

l/"(z)-e-"zl<Clzlp+1 Z  e-/^«/*«-*"-1-»*".

7 = 0

Hence,

l/^(z)-e-"zKC«lz|P + 1e-"Re2/2.

This concludes the proof.

We also assume that the method is strongly /l(0)-stable, i.e. if 0 is not zero, Vz

G Se> \r(z)\ < 1 and \r(°°)\ < 1, where Se is the sector {z G C/z = °° or 0 or -0 <

Argz <0};if 0 = 0,Vx>0, lr(x)l < 1 and lr(°°)l < 1.

3. Error Estimates in the Case of a Selfadjoint Positive Operator.

Theorem 1.1. Let A be a selfadjoint positive operator and let the single-step

method be strongly A(0)-stable and of the order p. Then, there is a constant C de-

pending only on the method such that,

Atp
(5) "«„-«('„)!* <C—l«o'i/   fom>l.

n

Proof.   Since the operator A is selfadjoint, we have

\\e-tnA _ rH{àtA)\i{HtH) =    sup     le"'«2 - r"(Atz)\ < sup  le-"* - rn(x)\.

zes  (A) x>0

Let x G R+ such that x < o (o has the value defined in the Lemma 1.1); we get

C Atp
le""* - r"(x)\ < Cnxp+1e-ßnx < — = C —.

np fn

Let x G R+ such that x > o; then

\e~nx -r"(x)\ < e-"° + sup  lr(x)l".

x>o

Since the method is strongly .4(0)-stable,

sup  \r(x)\ = r < 1;

hence,

Then we get

C At"
\e-"x - r"(x)l < e-"a + r" < — = C-.

np f„

AtP
\e-'**-r«(£tA)\t{ÍIíII)<C —

and the result follows from (3).
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4.  Error Estimates When A is Not a Selfadjoint Operator.   In this case, we shall

need the following lemma:

Lemma 1.2.   Let A be a maximal positive operator for which there is some con-

stant 60  (0 < 0O < rr/2) such that

\/uGD(A),   (Au,u)ES6o.

Let ip be a continuous function on the sector Se (0O < 0 < 7r/2) which is holomorphic

in the interior of Se and satisfies for some constant R > 0 and two functions fx and

f2 from R+ to R+ the following estimates:

(6) VzGSe,lzKA\    \^(z)\<fx(\z\),

(7) VzG5e, \z\>R,    lrtz)-rt~)K/2(lzl).

Further, assume that the functions fx, f2 satisfy

SoWd7<+°°   and   ir^ir)y< + °°-

Then there is a constant C such that

(g) l*«)l£aun <^ jSo M 7 + il W 7 + (R + *)*")' {

+   ll/5(°°)l.

Proof.   We set

h(z) = tfz) - 7^7 ^°°)-

We have

tfA) = h(A) + tf°°)A(I + A)'1    and    11.4(7 + A)'1 l£,HiH) < 1.

Hence,

W^A)\\liHH) < Wh(A)\\nHH) + lrt-)|.

Besides, we have

h(A) = ±-ifrh(z)(zI-A)-1dz,

where T is the continuous, positively oriented curve defined by Arg z = ±0. Let Fx

= {z G T, Izl < A} and T2 = {z G r, \z\>R}. For z GT, the following estimate

holds [5]

II (z7 - AT1 II ç,(H m < t-—- —.

Now, from (6), we get
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\h(z)\ V(z) - y+-¡ *i°°) </j(lzl)+ lzll^(°°)l,   Vzer,;

hence

|27ti ■'r,

from (7), we get

\h(z)\ =

hence,

h fvx h^~Arl d*   <7TT (r AW 7 + Ä|^)');

<&) - *<°°) + rxr ^°°) </2(^i) + rr1^00)1' v*GrV
1   ~ Z \2 |

2m ¿3 /I(z)(z7-^r^z<^- (/;/a(r)f+ ¿ l*-)l).

The estimate (8) now follows immediately.

Theorem 1.2.  Let A be a maximal positive operator satisfying for some con-

stant 0O (0 < 0O < 7i/2),

\/u&D(A),   (Au,u)eS6o.

Further, assume that the single-step method is of the order p and strongly A(0)-stable

(0O < 0 < tt/2).   77ie« there is a constant C depending only on the single-step method

0 and 0O such that

(9) Atp

Proof.   We apply Lemma 1.2 with <¿<z) = e "z - r"(z).  Then, from (4), we get

VzG5fl, IzKct,     \<p(z)\ <Cn\z\p+1e-ßn]zlcose

and

nrPe-ßnrcoS0dr < Ç.   /       xpe-x dx < c- -_
Jo np Jo fn

Besides, we have

VzG5e, lzl>ff,    l^(z)-^(-)l<e-"l2lcos0 + lr"(z)-r"(«»)l

and

n-1

r"(z) - r"(°°) = (r(z) - r(°°)) Z r/(*>',,~1~/(00).

7=0

Since the method is strongly ,4(0)-stable, we may set
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sup        IKz)l=e-5
zGSe;lzl>a

for some ô > 0; and since r is a rational function, there is a constant C such that

IKz)-K°°)l<—   for lzl>a.
Izl

Hence, for Izl > a

l«p(z)-IPO») I <e_"lzlcose +— e~

\z\

and

Afr+m /    -nrcosd -nS \ ,   \ , ^

J £-+ C^—)dr<c( — + e-"s)<C'  —
J°     \       ' r2   I \np ) tp

Besides, ly<°°)l = l/*(°°)l and lr"(°°)l < C/np, since \r(°°)\ < 1; then using (8), (9)

follows.

II.  Semidiscretization in Time by a Multistep Method.

1. Introduction.   We again consider the equation (1).  Let p and a be two real

polynomials of degree less than or equal to q,

pío = Z a¿' and °(f) = Z W    (a<7 > °>-
i= 0 i= 0

The approximate values un of u at the time level tn = nAt are determined by

00) z K- + aípV4K+i = o,
1=0

assuming the starting values u0, ux, . . . , u    x to be given (by another method).

2. Assumptions on the Method,   (a)  We assume that the multistep method is

of order p ; then we have

(ii) Z i'«t = i Z »'""%    i = o,i,...,p.
i= 0 /= 0

(b)  We also assume that the (p, o) method is strongly ^(0)-stable.  We set

^■z) = p(^)+zo(0,

Sg = {z G C/z = °° or z = 0 or -0 < Arg z < + 0}.

The method is strongly ̂ (0)-stable (0 < 6 < 7i/2) if and only if the modulus of all

roots of the polynomials ¿3( •, z) are less than one for any z in the interior of Se.  If

0=0, the method is strongly ,4(0)-stable if and only if for any x > 0 the modulus of

all roots of the polynomials Ô3(-, x) and o axe less than one; the roots of the polyno-

mial p with modulus equal to one, C¡, are simple and the growth parameters A,- satisfy

Re Xf > 0; these growth parameters Xf are given by

a,- = o-(f,)/r,p'(f,)-
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We now define

Ô,.(z) = -2-f-      (0 < i < q),
% + V

y,(z) = 0    fox KO,

7o(^)=l,

Z  yi-kizy>q-kiz) = 0    for/>0,/GZ,
fc=0

9

I
1=0

E,(z) = Z Si(z)e-{'+i)z,      l>0.

Then, we have

Hence [5]

V 5,.(AM)(«(r„ + /) - un + i) = En(AtA)u0.
1 = 0

Uitn + q)-"n + q=Z     Z    1 n-ki^A)K-ki^A)[us ~ «(/,)]
i=0 k=0

+ Z j^iAtA^AtA^.
1=0

Lemma 2.1.   Let the method (p, o) be of the order p and A(6)-stable; then for

any z G C with Re z > 0, we have

(12) \E¡(z)\<C\z\p + le-lRez,      l>0.

Proof.   We set

v(t) = e~tz,      t>0,Re z>0.

We have

Efc) = i*q + ßo^r1   Z aiv« + 0 - Z ¥'0 + 0
(l = 0 1=0

Since the method is of the order p, we get

. (    I rl+i(l +i-tf   .   ...
El(z) = (aq+ßqz)-i\z «J, .        "(p+1)(0<.)dt

¿=1    '•" P'-

1=0 (P-1)

Now, i/p + 1)(i) = (-zy+1e fz and, since the method is strongly A(6)-stahle, we have

aqßq > 0.  Hence,
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IWz)K-Lff ^P + Y -^i^ip^)\z\p + le-lRez.

Lemma 2.2.   Let the method (p, o) be strongly A(6)-stable (0 < 0 < 7r/2). 7e/

z G C such that -ex<Axgz<6x  (0 < 6X < 0) if 0 > 0 and z G R, z > 0, if 6 =

0.  Then, there are constants R, p, C, such that

jl7,(z)KCe^'   for\z\>R,

1 lT,(z)KC^"zl   for Izl <R.

Proof.   The first inequality follows from the following result [5].  If the method

(p, o) is strongly A(6)-stable, there are constants c G ] 0, 1 [, R > 0 and c„ > 0 such

that

VzG5e,lzl>A,    \y,(z)\ <c„cl.

The second inequality follows from the following result [5].   If the method (p, o) is

strongly ,4(0)-stabie (0 < 0 < 7r/2), for any a > 0, there are two constants p and C >

0 such that, for any x G R, , x < a and for any À G Te, (r0 = {z G C/z = °° or Arg z

= ±0), \y,(x + \)\<Ce-ßIx.

Case (i); 0 > 0.  Let z G C such that Iz I < R, Arg z = a, 0 < a < 6X ; then we

have

sin(0 - a) sin a   ..
z= |z|—Ï-'-+ Izl-e'e,

sin 0 sin 0

sin(0 - a)
Izl—J-^<A\

sin 0

and

Hence,

It(z)I < (7e-M''lzlsin(0-a)/sin0

that is,

sin(0 -0.)
l7,(z)l<Ce-*"lzl    with    p = p --.

sin 0

Case (ii); 0=0.   Let x < R; then there are two constants p and C such that

17,0c)! < Ce-ß'lx and (13) follows.

3. Error Estimates in the Case of a Selfadjoint Positive Operator.

Theorem 2.1.   Let A be a selfadjoint positive operator and let the (p, o) method

be strongly A(0)-stable and of the order p.  Further, assume that the starting values are

obtained by a single-step weakly A(0)-stable method of the order p - 1 ; then there is

a constant C depending only on the (p, o) method and on the single-step method such

that

Atp
04) \un-u(tn)\H<C—\u0\H.

t\.
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Proof   Since the operator A is selfadjoint and positive, we have

Z   In-lix^li*)Z 7„_z(AM)£-/(At4)
1=0

< sup
2(H,H)       x>0 1=0

Let x G R+, such that x < R (R is defined in Lemma 2.2).

From Lemmas 2.1 and 2.2, we get

and

Set v = infiju, 1); then

17„_/(x) I < Ce~("-')x,      0 < / < n,

\E,(x)\<Cxp+ie-'x,      l>0.

\Z   ln-lix)Elix)
\l=0

<Cne-""xxp+1 <-.

Now, let x > R and we have the estimates

^„-jOOKCe-^"-'),      0</<«,

\E,(x)\<Cxp + 1e-'x,       KKn,

\E0(x)\<C.

Hence,

Z   tn-lix^lix)
1=0

< C\e-»n + Z e-M("-'>e-/xxp + 1 [.

Set v = inffju, A); then

Z  Tn-lWto
/=0

< C{e-"n + ne-"ne-^-vhp+x} < —

Hence,

Z !n_l(AtA)El(AtA)
1=0

C
< —.

«//,//)     np

Since we have assumed that the starting values are obtained by a weakly .4(0)-stable

single-step method of order p - 1,

us = ^(AtA^Q,      0 < s < q - I,

where r is a rational function satisfying Vx > 0, \r(x)\ < 1 and for which there are

constants o > 0 and c > 0 such that

l(Kx)-e-*l<Clxli'     Vx<a.

Since the operator A is selfadjoint and positive, we have

Hyn_k(AtA)os_k(AtA)(us-u(ts))\\ < sup ^„-^^(xX^x) - e-*x)\\u0\H.
x>0
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Let x G R+, x < inf(a, R); then

l7„_fc(x)l < Ce-^"-fc>x < QT»nxé"*x,      I8^k(x)l < C,

and

Hence,

\rs(x)-e~sx\< IK*)- e~*l Z ̂ (*>-(î-i-/)x
7=0

<Cxp.

C' Atp
^n-kixßs-kixXr'ix) - e"»)l < Ce-»nxxp < - = C —.

Let x > inf(a, A); then

so that

Hence,

l7„_fc(x)l < Ce-"("-fc> < Ce^'e^",

^„-fcWS^.ixX^x) - e--)l < Ce-»" <^=C'~.
np i*

Z    Z  yn-ki^Vs-ki^iHs-vits))
s=0 k=0

Af ,
<C- \ujO'H-

4. Error Estimates When A is Not a Selfadjoint Operator.

Theorem 2.2.   7er A be a maximal positive operator for which there is some

constant 0O (0 < 0O < 7r/2) such that

Vu&D(A),   (Au,u)eSdQ.

Let the (p, a) method be strongly A(d)-stable (0O < 0 < 7r/2) and of the order p.

Further, assume that the starting values are obtained by a weakly A(d)-stable, single-

step method of order p - 1 ; then there is a constant C depending only on the (p, a)

method, on the single-step method, on 0 and 0O such that

(15) K ""M//<C
A^

\uO'H-

Proof.   We apply Lemma 1.2 to estimate

Z 7„_,(A¿4)£/(AM)
/=o

S'H,H)-

From Lemmas 2.1 and 2.2, for any z G Sd   and Izl < R (6X G ] 0O, d[), we have

Z 7„_,(z)A;(z) < C Z e-"("-'>lzllzP+Ie-"zlcosei.
1=0 7=0
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Set v = inf(ju, cos 0j); then

Z   In-lWiV)
1=0

<C«e-""lzllzlp+1

and

S~one-»»>T>dr = Uf0 *-»»<? dp)

Besides, for / > 1, A,(<») = 0 and from (13) and (14), for z G Sex, \z\>R

Z   -In-lWliz)
1=1

<C¿   e-M(n-/)|z|P+le-/lzlcosej_

1=1

Now, set v = infijx, R cos 6X); then

e-p(n-l)e-viz\cosdi < e-Pne-/(lzlcos91-i')

and

and

Z 7„-<(z)E,(z)
i=i

<Oíe-""el'-|zlcoseMzlí'+1

Joo

0
ne vnev-rCoseXTPdr<

For / = 0, E0(°°) may be not equal to zero,

lim       E0(z)
lzl-~^GSe P,

Po

We have

7„(z)A0(z) - 7„(°°) f"q
< l7„(z)-7n(°°)HA0(z)l + \E0(z)-E0(°°)\\yn(o°)\.

Now, for Izl >R, we have [5]

h„(z)-yn(°°)\<c
-un

l+(Log(l + lzl))2

and \E0(z)\ <C.  Also,

E0(z)-E0(o°) =

hence, for z£S(l and \z\> R,

cußa - aaßn       q

%+ßqZ        kx   '

\E0(z) - A0(°°) I < — + Ce~ 'z 'cos e i,
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Then, since l7„(°°)l < Ce-*1", we get

Po
yniz)Eoiz) - yni°°)

and

J-+0OR       ^"

< Ce'»"

1

1

1 +(Log(l + Izl))2

1 e-rcos8x

f - + g-lzlcosfl!1

+ — +■

,K1 + Log(l + r))2     r2

Then, from Lemma 1.2, we get

dr^Ce-»".

Z yn_l(AtA)El(AtA)
1=0

1
£<//.")< c\—p+ e"M"+ '^(-^oi00)' ;

hence,

Z yn_l(AtA)El(AtA)
1=0

C
< —

f(H,H)       „P

Now, we assume that the starting values are obtained by a weakly ^4(0)-stable single-

step method, of the order p - 1 ; then

us = rs(AtA)u0,      0 < s <c7 - 1,

where r is a rational function satisfying Vz G 5e, I Kz) I < 1 and for which there are

some constants o and C such that

IKz)-e-zKClzlp    VzGSe, IzKrj.

We again apply Lemma 1.2 to estimate

IIln_k(AtA)bs_k(AtA)(f(AtA) - e-*AM)llt(HH),      0 <k <s, 0 <s <q - 1.

Set ox = inf(o, R).  Then for z G S6  ,\z I < ox and n > k,

iW*)*w(*&*(2) -e_iZ)1 < <^~M" lzl'* ip

and

-+00

Jo

Besides, we have

IWs^zX/'i*) - e~») - 7„_fc(°°)V*(°0K(00)l

< |7„-fc(z)-7„_fc(°°)ll5i_fc(zK(z)l + I7SH^)II6*^(2) " W00)11'^)!

+ l7„_k(°°)IIÔi_fc(°°)llr-i(z)- r*(~)|.

Now, for Izl > Oj we have
-M"

1 +(Log(l + Izl))2
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and since r and 8s_k axe rational functions,

£.,   H..
Izl Izl

IW*) - 0j_fc(~) I < — IKZ) - K~) I < —     f0X  \Z\>0X.

Also,

\yn(°°)\ < Ce'»"    and    lö^fz)! < C   for Izl > ox.

Hence,

h„-kiz)o^kiz)irsiz) - e~sz) - ■ln.k(^t.k^y^)\

< Ce-»" I---+ — ) ,
\1 +(Log(l + Izl))2      Izl/

and from Lemma 1.2, it follows that

IIyn_k(AtA)8s_k(AtA)(r\AtA) - e~sAtA)\\

< c j ¿ + \yn-ki°°y>s-ki°°yi~y < C~-
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