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On Some Theoretical and Practical Aspects

of Multigrid Methods

By R. A. Nicolaides*

Abstract.  A description and explanation of a simple multigrid algorithm for solving finite

element systems is given. Numerical results from an implementation are reported for a

number of elliptic equations, including cases with singular coefficients and indefinite

equations.   The method shows the high efficiency, essentially independent of the grid

spacing, predicted by the theory.

I.  Introduction.  The main purpose of this report is to provide some evidence of

the practical utility of multigrid methods.  These methods, due originally to Federenko

[11] have received development both for the finite difference case [5], [6], [7], [8],

[13] and the finite element case [16], [17].  It is with the finite element case that we

shall be concerned here.  The theoretical predictions of the work necessary to solve any

particular problem by multigrid methods are, in general, significant only in the order of

magnitude sense; that is, these predictions are of the form that a given accuracy may be

obtained in a number of operations proportional to N, the number of equations in a

certain linear system of algebraic equations.  The "constant of proportionality" is usual-

ly unknown although the factors determining it (coefficients of the partial differential

operator, approximation properties of finite element trial spaces, etc.) are known.

Nevertheless, it is plainly essential to determine the "constants" as far as possible, and

all the more so since the 0(7V) results alluded to above hold only for sufficiently

large N.

One way of finding these unknown quantities is by means of Fourier analysis.

This is done in [7].  The difficulties of this procedure are well known.  Another ap-

proach is simply to solve a representative class of problems on a computer and to ob-

serve the empirical behavior of the algorithms.  Naturally, this procedure is not exhaus-

tive.  In the case under discussion, however, it has some merit as we shall see later.

A secondary purpose is to offer some advice to potential users of multigrid meth-

ods.  With this in mind, the next section contains some practical explanations of how

the methods may be constructed and interpreted.  This may be helpful as the theoreti-

cal work [16], [17] is, of necessity in view of its generality, a little abstract.  The dis-

cussion is intentionally on a very simple level so that the main ideas are accessible.

The rest of the paper is taken up with a discussion of numerical results obtained from
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a relatively simple multigrid code.  In Section 3 this code is outlined and in Sections

4 and 5 the results for some Poisson equations with various kinds of boundary data

are given.  Section 6 addresses the question of the utility of certain modifications to

the basic algorithm.   Sections 7 and 8 are concerned with equations with nonconstant

coefficients, including discontinuous and singular cases and Section 9 deals very briefly

with the indefinite case.  These latter problems, whose prototype is the reduced wave

equation, are not ordinarily solved iteratively.  The multigrid technique makes iterative

solution possible, however, and offers the usual storage economy associated with iter-

ative methods.

II.  Basic Algorithm.  In this section we discuss the essential ideas of the finite

element multigrid algorithm.  The term basic algorithm refers to a stationary linear

iterative method of the first degree which appears in some form in most multigrid

algorithms.  This algorithm may be conveniently explained in the context of a simple

model problem, namely

(2.1) min     Jn «;+«}-2 JoKr,
ue//¿(íí)

where 77¿(Í2) is the familiar Sobolev space of functions with one generalized derivative

and which vanish on the boundary of the bounded region Í2 lying in the plane.  The

reader interested in a rigorous general treatment of 2mth order boundary value prob-

lems is referred to [16].

We write (2.1) as

(2.2) min     a("> «) ~ 2("- /)•

uSH0(n)

and consider the finite element solution of (2.2).  Let us choose two finite element

trial spaces Sx and S2, with Sx containing A^ nodal parameters and S2 C Sx.  Sx is

the usual trial space where the solution to (2.2) is sought.  S2 is an auxiliary trial

space which will be required by the multigrid algorithm.  S2 is not arbitrary but is

constructed in a way best made clear by an example.  Thus, let Í2 be the square

u = {ix,y)\0<x<l,0<y<l}.

We subdivide £2 by repeated halvings by lines parallel to the x and v axes,  m such

halvings will divide Í2 into 2m x 2m = 22m smaller elements.  We shall take for Sx

the class of continuous functions which are bilinear in each element, and vanish on

9fi.  Then it is clear that Nx = (2m -I)2.  The second trial space 52 is naturally de-

fined in this context as analogous to Sx, but based on (m - 1) halvings of 0.  Thus,

Sx D S2 and if N2 denotes the number of nodal parameters of elements of S2, N2 ~

ViNx.  S2 is much smaller than Sx.

We shall adopt the following notational convention: trial functions contained in

Sx ox S2 will be written with an overbar. The corresponding vector of nodal values is

then indicated by removal of the overbar.  Thus, u is some trial function and u is the
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corresponding vector of nodal values.   Returning to (2.2), the usual procedure is to

substitute a general element u^ of 5, into the variational principle to get

(2-3) a(u^\u^)-2(u^\f)

and then to write the conditions for a stationary point

(2.4) A*1 >«<» >=/<'>,

where A^1^ is the system or stiffness matrix for Sv i/1* is an Nx -dimensional vector

of nodal parameters defining the numerical solution of (2.2) and /O is computed

from / and the trial functions 0,- G Sx, i = 1, 2, . . . , Nx, by the formula

(2-5) ffl)=Snf<t>j>     7 = 1.2_,7V,.

The basic algorithm is for the solution of the algebraic system (2.4).   Its fundamental

idea is to use S2 to construct another finite element solution to a system of the form

(2.4) by exactly the same method used to derive (2.3) and (2.4) from (2.2).  We can-

not do this to (2.3)—(2.4) as they stand.  Such an action would be tantamount simply

to solving (2.2) on S2 instead of on Sx. What we have to do is to modify (2.4) so

that looking for its solution in S2 is sensible.  The mechanism for doing this is

smoothing; in practice this is carried out by means of some relaxation.  A commonly

used technique is the Gauss-Seidel method.  This is discussed further below.  For the

present we shall simply explain what the effect of smoothing is on the system (2.4).

A function i/1' in Sx will be regarded as "smooth" if it may be sensibly repre-

sented as an element of S2.  All elements in Sx which are also in S2 axe, therefore,

smooth.  More generally, any element of Sx which does not have significant fluctua-

tions on a length scale of the order of twice the mesh length of the Sx grid may be

regarded as smooth.   Let i/1) be an approximation to t/1) of (2.4) such that the re-

sidual f(l ) - A^1 V1 ) = r is smooth.   Let e denote the error i/1 ^ - i/1 ) so that the

error and residual are related through the equation

(2.6) A(1)e = r.

Since ris smooth, so is e.  If we could solve (2.6) for e, the exact solution of (2.4)

would be at hand.  We cannot easily do this in general.  However, we have in the case

of (2.6) the vital additional information that ëis capable of being reasonably represent-

ed as an element of 52, a much smaller space than Sx.  Since (2.6) is the discrete fi-

nite element system for some functional of the form (2.1) with a certain free term r,

the natural suggestion is to form this functional

(2.7) a(e,l)-2(1,7)

and attempt to minimize it on S2, in the hope that the solution ë'2', a member of

S2, will be a close approximation to 1.  Denoting the system matrix on S2 by A(2),

the condition for a stationary point of (2.7) is that

(2.8) A-(2)e(2) = ,(2}j
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where r^ is an ^-dimensional vector constructed from r in a way we shall consider

further below.

On the assumption that we are able to solve (2.8) without difficulty, we may

extend i<2) by the 'identity' mapping into Sx (since ?(2> G S2 C Sx) and denote it

by e^\    e*1) is then our approximation to e and i/1* + e*1* hopefully is near to

u*-1'.  This then is the essential idea behind the multigrid method:   prepare the given

problem in such a way that it can be represented and solved on a smaller subspace or,

equivalently, on a coarser grid.

We have still to consider three things: smoothing, the question of the construction

of the residual r^ of (2.8) and the question of how the subproblem (2.8) is to be

solved.  Consider first the question of smoothing.  We shall illustrate this briefly in

connection with the Gauss-Seidel method.  Applying this method to our system (2.4),

where we assume a double indexing system for the nodes (x,-, y A = (ih^\ /ft*1*),

ml> = (Nx + 1)_1 and a sweeping order left to right, bottom to top, it is not difficult to

verify that a given initial error e transforms into e' according to the rule

+ 8    />^+1 + e,+ i <1'~1 + e,+ ' •/ + £'+l 'i+1

What we should notice about this and similar formulas is that the new residual at a

point is a (positive) weighted average of its current neighboring values.  This important

property is at root a consequence of the fact that solution operators of elliptic prob-

lems are smoothing operators.  The operator on the right in (2.9) is in some sense a

local inverse to the elliptic operator —A which we are considering as our example.   The

property of being a smoothing operator simply means that small scale variations in the

operand are eliminated (smoothed) by the operator.  To help make this discussion

more concrete we may note that for our model problem, three sweeps of the Gauss-

Seidel method (2.9) applied to any initial function in Sx are sufficient to smooth it to

the point where it may be well represented by an element of S2.  It can be shown that

the amount of smoothing per sweep of (2.9) is independent of hS1"*—notice that (2.9)

itself is independent of A*1*.   Furthermore, these properties are still true generally

speaking, for positive definite 2mth order elliptic finite element systems [16].  This

property of the smoothing behavior being independent of the grid size is the key to

the remarkable convergence properties of the multigrid method.  We shall have more

to say about smoothing later.

Let us now turn to the question of the computation of the reduced residual,

r^ of (2.8), which is the right-hand side for the subproblem defined on S2.  This

computation is effected by means of a local averaging operation on the components of

r, the residual in (2.6).  The precise weights to be used in this averaging process depend

only on the class of piecewise polynomials used in constructing the spaces Sx and iS2.

For the model problem /2* is constructed in the following way:   let (x¡, yj) be a node

in the coarse (i.e., S2) grid.  Then the component r^is defined as
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(2.10) rU = rU + ^rl+i.J + rl-i,J + rl,J+i + ri,J-0

+ 1//4irI+ l,J+l  + rI+ 1,7-1 + rl-l ,J+ 1   + rI-l ,J-l )■

The weights in (2.10) add up to 4 because of the way finite element trial functions

are scaled.  The S2 system matrix is automatically scaled in a way which corresponds

with (2.10).  In this sense, the method is self scaling and there is no necessity (unlike

the finite difference case) for decisions by the user.

It is clear from (2.10) that r^ may be obtained from r by means of a matrix

multiplication

r(2) = E^r,

where E^ is an N2 x Nx matrix whose entries may be found from (2.10).  In the

case of more general trial functions this matrix may be easily found as the transpose

of the matrix which maps each vector i/2^ containing nodal values of an element

u^2' G S2 onto the vector u^1' containing nodal values of i/2) regarded as an element

of Sx [16].  We may observe that because of its definition the averaging operation is

nothing more than the dual of the interpolation operation from S2 into Sx.

Finally, we have to discuss the question of solving the reduced residual equa-

tion (2.8).  Before doing this, let us point out that the general ideas so far used have

a long history.  In fact, as we pointed out in [15] they actually go back to South-

well [19], who used the general term "block relaxation" to describe them.  Many

authors have contributed to this latter circle of ideas.  However, the work was always

thought of as being simply a device for accelerating a relatively slowly converging

iterative method.  In line with this idea the reduced equation (2.8) was always con-

structed to be of a very small size to facilitate its solution, either by a direct method

or by some other convenient technique.  Federenko's outstanding idea was to observe

that (2.8) is exactly another (elliptic) system of the type whose solution is being

sought in the first place, and hence that it can be solved by exactly the same method

used to derive it from the original problem.   That is to say, in our context we intro-

duce a third subspace S3 and reduce (2.8) to a solution on it.  The S3 problem will

have only about 1/16 as many unknowns as the original. The cost of making this

further reduction is only a few relaxation sweeps on the S2 grid.  If the S3 problem

is still too large for convenient solution it may be further reduced at essentially

negligible cost to a problem on an S4, now containing about 1/64 of the original

number of unknowns.  This reduction process may be carried on until a manageable

problem is obtained on some subspace S .  Following solution on the S   subspace,

the solution is interpolated onto S    x, the new solution on S    x (possibly) smoothed

to annihilate interpolation errors, then interpolated to S    2 and so on.  An aspect of

the entire algorithm of considerable theoretical and practical importance is that it

enables us to compute numerical solutions of elliptic equations with a given accuracy

in essentially the minimum possible number of arithmetical operations, in the order

of magnitude sense.  No less important is the fact that the basic ideas are relevant not

only to scalar elliptic equations, but also to systems of such equations and evolution
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equations.  These applications have not yet been fully exploited.  A large range of

additional possibilities, some of them of potentially very great value are suggested for

the finite difference case in [7].  There is no reason why these applications should be

limited to finite differences however, and hopefully these valuable ideas will be also

of service in the finite element setting.

As indicated in the introduction, we shall report below on some relatively simple

multigrid computations.  The computations are exclusively concerned with the basic

algorithm discussed above.   Regretfully, we shall not be able to consider in this report

the implementation of the more powerful multigrid techniques wherein the problem

to be solved is posed as that of finding an approximate solution of specified accuracy

to a given differential equation.  Rather, we limit the discussion to the problem of

solving preassigned systems of equations which approximate particular differential

equations.

III. Outline of Computations. The idea behind the computations carried out

was first of all to examine the practical convergence characteristics of the basic multi-

grid method, especially its stability with respect to changes in implementation strategy

and, secondly, to determine what variety of problems a moderately general program

could effectively solve before special smoothing and other techniques become neces-

sary.  For these purposes finite element multigrid codes were written for solving sec-

ond order equations of the form

(3-D ¿ (aix, y) g)  4- ± (*(x, y) |)  + c(x, y)u = f

in the rectangle £2 = {(x, y)\0 <x < xQ, 0 <y <^0} with various kinds of boundary

data specified.  The codes use either piecewise linear functions on triangular elements

or bilinear functions on rectangular elements.  In both cases the triangulations were

the simplest ones, namely for the bilinear case the region £2 was dissected into n2

identical rectangles and for the linear case, each rectangle was divided into two tri-

angles by a diagonal with positive slope.  No attempt was made to use any irregular

spacing of the dissecting horizontal and vertical lines, as the effect of this can, at least

for smoothly varying dissections, be simulated by variable coefficients a and b in the

equation (3.1).  The numerical integrations in the finite element codes were performed

using the four point Gauss rule, (exact for cubics) in the bilinear case and the mid-

points of the edges of the triangles as nodes in the linear case.

The calculations fall naturally into three groups.  The first group consists of a

fairly extensive number of tests on the Poisson equation, (3.1) with a = b — ■*■ 1,

c = 0. Here, in addition to Dirichlet data we have considered problems with normal

derivative data given on three sides of the rectangle; in addition we tested the effect

of modifying the residual reduction method in the hope of avoiding an apparently

expensive computation of a residual on the finest grid at each complete cycle of the

multigrid algorithm.  These calculations are reported in the next three sections.  The

second group of calculations, much fewer in number were designed to test what loss

of efficiency, if any, would be incurred when the coefficients a and b were
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well-behaved functions of x and y.  We shall present some sample results which show

that no essential loss occurs.  The third group consists of some examples of solution

of problems with some degree of singularity present in the coefficients.  Sometimes

this can cause serious trouble to a code without special relaxation methods incorpo-

rated but as we shall see this is by no means always the case.

Unless otherwise stated, each system of grids was generated by repeated dissec-

tion of the region, starting from the grid with one interior grid point. This latter

was taken to be the coarsest grid.  Such a choice generally avoids the need for a

special solution technique on the coarsest grid, although our codes do in fact have a

banded elimination solver.  This is frequently useful.   For example it can easily hap-

pen that the coarsest grid coefficient matrix, while positive definite and of very small

size is almost singular.  The relaxation method can converge too slowly to be feasible

in such cases.  Furthermore, as it turns out, some form of direct solution on the

coarsest grid is essential for solving indefinite problems, for example these with a = b

= 1 and c » 1.

The general structure of the codes follows that of the code in [7], except that

allowances are made for the fact that we have to deal with variable coefficients and

different interpolation and residual reduction techniques.  The total storage require-

ments are minimal.   For example, the bilinear code uses 11A' storage locations for

each grid where N' is the number of grid points on the grid in question.  9N' loca-

tions are for the coefficients; A' are for the solution on this grid, and N' are for the

right-hand side.  The total storage for all the grids is essentially 4/3 oN, where oN is

the storage for the finest grid which contains N grid points.  We allowed one vector

of length N for working space.  Thus the total storage requirements including coeffi-

cient storage are not larger than 16/V locations.

Another point is that a fixed smoothing strategy is used in our codes.  The

meaning of this is as follows:   on any grid except the coarsest and finest there are

two possible occasions on which one may want to carry out smoothing (i.e. relaxation)

operations.  These are (a) when we want to smooth prior to forming a smaller prob-

lem on a coarser grid; this we call fine to coarse smoothing, and (b) when we want

to smooth a solution which has been constructed by interpolating from a coarser

grid; this is coarse to fine smoothing.  Only one kind of smoothing algorithm is in

the codes, namely smoothing by successive point relaxation, including Gauss-Seidel as

the most important spacial case.   For this smoothing method, we shall call an ordered

pair of nonnegative integers (p, q) a smoothing strategy.  The first integer represents

the number of fine to coarse relaxation sweeps and the second the number of coarse

to fine sweeps.  The same pair is assigned to every grid.

In order to give a clear statement of the algorithm implemented let us introduce

the following notations:   the finest grid will be denoted by Gm and the successively

coarser grids by Gm_x, Gm_2, . . . ,GX.  Let Tk denote an operator which transfers

vectors from Gk onto G-, where if k < j the transfer operation is interpolation and

if k > j the operation is the reduction operation encountered several times previously.

Each cycle, or iteration of the algorithm has two parts, a forward (fine to coarse) part



940 R. A. NICOLAIDES

and a return (coarse to fine) part.  Denoting these two by (A) and (B), the algorithm

may be described thus:

(A) Do steps 1 and 2 fox j = m, m - I, ... ,2.

1. Relax on G- (p sweeps); let w^ and r^ denote the approximation and

residual obtained.

2. Transfer 7|_1r0) as data for Gj_x.

3. Solve the resulting Gx system for w^\

(B) Do steps 4 and 5 fox k = 1,2, . . . , m - I.

4. Formw(*+1> = h>(*+1> + 7£+1w(fc).

5. Relax on Gk+X (q sweeps) with w^k+l^ as initial approximation and

denote the result by w^k+1\

w*m) obtained by this process is the new approximation to the solution of the algebra-

ic system. In our codes, the starting approximations for all the intermediate relaxation

solutions are taken to be zero.

All the data reported below were obtained from a time-shared CDC 6400, using

an FTN FORTRAN compiler operated at the lowest level of optimization with single

precision arithmetic.  The timings were obtained by using the SECOND subroutine.

IV. Results for the Poisson Case I. The first topic for investigation is the question

of the behavior of the method as a function of the smoothing strategy. Tables 1 and 2

contain some information along these lines, respectively, for the cases of linear and bilin-

ear elements. Both of these tables are for a grid with 25 = 32 intervals of subdivision on

each side, so that there are 961 unknowns in each case.  The entries in the body of

the table are the number of work units expended in order to reduce the I2 norm of

the initial error by a factor 10_1.  A work unit here is defined as the time necessary

for a relaxation sweep on the finest grid.   This time was determined in all cases using

the relaxation routine in our code and averaging over a large number of runs.  Homo-

geneous data both for the right-hand side and the Dirichlet boundary condition was

used.  Except where stated the relaxation parameter w was taken as 1.0.  The tables

show the results for a random initial error vector each of whose components is a uni-

formly distributed random number in the interval [-1, 1 ].   Let us explain here a

characteristic difficulty of conducting these tests:   although it is true that the algorithm

is a linear stationary iterative method, as we shall see below it is not operated asymp-

totically.  That is, usually a problem is solved after only a small number (say 5 for

moderately sized problems) of iterations of the multigrid method.  This means that

the actual distribution of the initial error relative to the eigenvectors of the iteration

matrix can play a significant role in the cost of a computation.  It is, therefore, advis-

able to test the algorithm on a variety of initial approximations of differing characters.

However, even this cannot guarantee that the worst possible case has been tested.   On

the other hand it is not necessarily true that the worst case will always occur in a prac-

tical situation.  Although we shall not report extensively on the computations with ini-

tial errors other than the random one mentioned above, other initial errors have in fact

been tried.  We believe that our reported figures are a reliable indication of what can

be achieved in less academic situations.  The feature of nonasymptotic operation of the
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method requires us also to examine the variation in cost according to the number of

iterations carried out.  This is the reason for the three figures given for each (p, q)

strategy.  Reading left to right the costs are, respectively, for 1, 3, and 5 iterations of

the algorithm.

6.6 7.6
8.3

6.1 7.1
7.6

5.7 6.5
7.0

5.3 6.1
6.5

4.9 5.5
6.0

4.6 5.4
5.6

5.1 6.0
6.4

4.5 5.5
6.0

4.3 5.3
5.6

4.2 5.0
5.4

3.9 4.6
4.9

3.7 4.4
4.7

4.7 5.7
6.2

4.4 5.5
5.8

4.3 5.2
5.5

4.0 5.0
5.3

3.7 4.6
5.0

3.7 4.6
4.8

4.5 5.5
6.0

4.7 5.7
6.0

4.3 5.3
5.5

4.0 5.0
5.4

3.9 4.Í
5.2

4.0 4.9
5.2

4.6 5.9
6.3

4.6 5.7
6.1

4.5 5.5
6.0

4.3 5.4
5.7

4.3 5.1
5.5

4.0 4.9
5.2

LINEAR

ELEMENTS

32 x 32 GRID

UNIFORM

RANDOM

INITIAL ERROR

1   3
5

ITERATIONS

WORK UNITS BASED
ON 107 x  10"3
sec/SOR SWEEP

Table 1.  Strategies

5.2 5.3
5.5

5.0 5.1
5.3

4.4 4.6
4.7

4.3 4.4
4.5

3.6 3.4
4.2

3.6 3.7
3.9

4.0 4.0
3.9

3.7 3.7
3.6

3.6 3.5
3.5

3.3 3.4
3.3

3.1 3.1
3.1

3.0 3.0
3.2

3.9 4.4
4.4

3.5 4.0
4.0

3.5 4.0
4.0

3.4 3.7
3.7

3.0 3.6
3.5

3.1 3.4
3.4

3.7 4.2
4.2

3.9 4.2
4.1

3.7 4.0
4.0

3.4 3.8
3.9

4.0 3.7
3.7

3.3 3.7
3.6

3.9 4.4
4.4

4.0 4.4
4.4

3.9 4.3
4.3

3.8 4.2
5.6

3.6 4.0
4.0

3.5 4.0
4.0

BILINEAR

ELEMENTS

32 x 32 GRID

UNIFORM

RANDOM

INITIAL ERROR

1  3
5

ITERATIONS
WORK UNITS

BASED ON

135 x 10"3 sec
per SOR ITERATION

Table 2.  Strategies

The tables show in both cases a high degree of robustness in the algorithm, in-

dicating, respectively, costs ranging between say 4—8 work units and 3—5^ work

units per 10_1 reduction in the error (i.e., per digit) over the range of strategies (p, q),

0 < p, q < 5.  (We shall frequently approximate the tabulated figures in this way.  As

a justification we may note that the starting errors are "random" and not, strictly

speaking, reproducible and also that slight deviations in run times can occur on time-

shared computers.) The ranges are even smaller if the unreasonable strategies of the

form (p, q), q » p axe eliminated.  A clear feature in both cases is the increase in

cost with the number of iterations.  This phenomenon is commonly observed with

iterative methods and apparently the multigrid method-at least when operated in the
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stationary mode we are using here—suffers from this defect.  We have computed the

costs for larger numbers of iterations and found that the figures for 5 iterations whilst

not maximal are nevertheless essentially reliable.  In practice, 5 iterations would give

us several correct digits so that the question of doing large numbers of iterations is un-

likely to be of practical interest.

Another interesting point is that the best strategies in both cases are along the

bottom row of the tables, where q = 0.  This means that the greatest efficiency is

obtained when no smoothing is carried out following the transfers from coarse to fine

grids when the starting error is random.  However, it is essential that we point out that

other calculations we have carried out but not reported here have shown that when

the starting error is very smooth, for example a constant, the greatest efficiency is ob-

tained when «7 = 1.  However, the loss in using q = 0 in this case is minor and, in fact,

is comparable with the loss that is incurred if we use q = I in the case of the random

starting error—the second row up in Tables 1 and 2.  Notice that a best overall strategy

indicated by the tables is the (2, 0) strategy in both cases.  One further point to notice

is that, although the bilinear elements require only about 3 work units per digit against

about 5 for the linear elements, the latter require less time for a fine grid relaxation

sweep because of the fact that in general only 7 operations are required at each point

instead of 9 in the bilinear case.

GRID

SIZE
BEST

STRATEGYto-
COST/

1 R
ITNS/

10  REDN
ERROR
TYPE

LINEAR
ELEMENTS

8x8

16 x  16

32  x  32

64 x  64

(4,0)
(2,3)

4.2
4.7

0.7
1.1

(3,0)
0,1)

4.5
4.2

0.9
1.5

(2,0)
(2,2)

4.4
3.9

1.3
1.0

(3,0)
(2,3)

4.6
3.9

1.0
0.9

R

S

R = RANDOM
S = SMOOTH
STARTING ERRORS

FIGURES   BASED

ON   3   ITNS

SOR   SWEEP  TIMES
■3

5 x  10 24 x   10

107 x  10-3,  425  x  10 3 secj

Table 3.   Best strategies

GRID

SIZE

BEST

STRATEGY
COST/

p.0-1 R

iras/
10       REDN

ERROR

TYPE
BILINEAR
ELEMENTS

8X8

16 x   16

32  x  32

64 x  64

(2,0)
0.1)

3.0
3.2

0.7
1.0

(2,0)

(1,1)

2.9
2.9

0.8
1.0

(2,0)
(1.1)

2.9
2.8

0.8
1.0

(2.0)
0.1)

3.1
2.8

0.8
0.9

STARTING  ERRORS

R = RANDOM
S  =  SMOOTH
FIGURES  BASED

ON 3  ITNS
SOR  SWEEP TIMES

■3
6 x  10

135 x  10"

-3
31 x  io

'.  540 x io"

Table 4.   Best strategies
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Consider next Tables 3 and 4.  These tables are intended to indicate the best strategies

found on the sequence of grids shown, so that some idea of the dependence upon the

grid size may be seen.  These tables contain data for the case of a smooth (actually

constant) as well as a random initial error.  We have also included additional informa-

tion, such as that shown in the fourth columns of the tables in order to convey some

idea of the time required to solve a given problem.  Thus, for example in the bilinear

case 0.8-1.0 multigrid cycles will generate about one correct digit in the numerical

solution, and (3-4) work units will be required to do the calculations.  The most im-

portant fact to be learned from Tables 3 and 4, however, concern the dependence on

the grid size.  It is clear that for all practical purposes the method has convergence

properties independent of the grid spacing.  It appears that whatever the mesh spacing,

in the bilinear case we can obtain each new digit at a cost of about 3 work units, and

in the linear case at a cost of about 4-5 work units.  Roughly speaking, this means

a cost of about 30—35 N multiplications to obtain each new digit in either case, where

N is the number of unknowns.  Furthermore, comparing the linear case with the opti-

mum SOR times, the multigrid method is 4 times faster for the 32 x 32 interval grid

for a given accuracy and 8 times faster for the 64 x 64 interval grid.  On a 128 x 128

interval grid the multigrid method would be 16 times faster than SOR.  The slight dis-

crepancies between Tables 3 and 4 and Tables 1 and 2 are caused mainly by the fact

that different random starting errors were used in the various cases.  Let us also note

that the cost figures for the case of fewer multigrid iterations are marginally lower on

average and those for more iterations marginally higher on average than those reported

in the tables.  No attempt has been made to optimize our figures.  The codes were all

run with the lowest level of compiler optimization and, as we said before, with the

relaxation parameter co = 1.  It would be possible to obtain further speed up factors

of about 10%-20% by adjustment of the various parameters.   However, our main con-

cern here is with the average behavior of the method over a wide class of problems,

and not with optimizing it for any specific application.  We regard the generality of

the algorithm as one of its most significant attributes.

A somewhat disturbing feature of Table 3 is the lack of regularity in the best

strategy in the various cases.  To show that this is not too serious a problem we pre-

sent Table 5 which contains the results of using in all cases the strategy (3, 0) on ran-

GRID
SIZE

BEST
STRATEGY

COST/

HO-1 R
iras/

10  REDN
ERROR
TYPE

LINEAR
ELEMENTS

8x8

16 x 16

32  x 32

64 x  64

(3,0)
(2.2)

5.1
4.9

(3,0)
(2,2)

4.5
4.2

(3,0)
(2.2)

4.6
3.9

(3,0)
(2.2)

4.6
4.0

1.0
1.1

1.0
1.0

1.0
1.0

R

S

STARTING ERRORS

R =  RANDOM

S =  SMOOTH

FIGURES  BASED

ON 3 ITNS

SOR  SWEEP TIMES

5 x  10~3,  24 x  10-3

107 x  io-3,  425 x 10"3 sec

Table 5.   Suboptimal strategies
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dorn errors and (2, 2) on smooth errors.  The solution costs are seen to be entirely

comparable with those of using the optimal strategies.  Notice that Tables 3, 4, and

5 show consistently lower costs for solving problems with a smooth starting error.  It

follows that such starting errors should be arranged for wherever possible.  However,

this cannot always be arranged, particularly when a sequence of elliptic problems is

to be solved in the course of solution of a time dependent problem, an eigenvalue

problem or similar situations.

To summarize our conclusions so far we may state that 30-35 N multiplications

per digit is a reasonable cost to allow for the solution of Poisson's equation in a square

using the algorithm described.  As an empirical observation, it is also suggested that

smoothing strategies of the form (px, 0) and (p2, p2) for small integers px and p2 axe

likely to be of greatest practical interest.

V.  Results for Poisson's Case II.   In this section we shall consider the same

equation as in Section 4, but with the boundary conditions

u = 0,   x = 0,    0<y < 1,

bu/bn = 0,    elsewhere on 9£2,

where bu/bn denotes differentiation in the direction of the outward pointing normal

to 9£2.  Equation (5.1) was treated in the usual way as a natural boundary condition.

The results of some calculations are summarized in Tables 6 and 7.

(5.1)

LINEAR ELEMENTS, 32 x 32 GRID, 3 ITERATIONS

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.7

RANDOM 6.6 5.9 5.6 5.9 6.4 7.1 8.3 10.3

SMOOTH 12.1 9.8 8.3 6.6 5.1 4.0 4.4 4.8

Table 6.  Costs as function of co

BILINEAR ELEMENTS, 32 x 32 GRID, 3 ITERATIONS

ERR" 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7

RANDOM 4.5 4.1 4.0 4.4 5.1 5.4 6.2

SMOOTH 8.3 6.8 5.8 5.1 4.1 4.2 4.7 5.6

Table  7.  Costs as function of to

These tables are self-explanatory.   The smooth starting error referred to is a constant

vector.  The figures for the work units are those for the best strategy found in every

case.  As the tables show, eo = 1 is a satisfactory relaxation parameter for either ele-

ment type with a random starting error.  In this case, the best strategy for both types

of elements was stable for large variations in to about to = 1, and was found to be the

(2, 0) strategy.  The computation costs are a little higher than for the Dirichlet prob-



MULTIGRID METHODS 945

lern.  A heuristic explanation of this fact is that the discrete system of equations now

contains a number of first order difference equations associated with the Neumann

condition, in addition to the second order equations associated with the interior points.

These first order equations necessarily exert a destabilizing effect on the algorithm,

and so increase the solution costs.  It is worth pointing out here that an analogous loss

of convergence speed occurs with SOR and other relaxation methods when applied to

problems involving Neumann data.

A more striking fact is the behavior in each case associated with the smooth

error.  Here, it turned out to be essential to overrelax in order to make the solution

costs comparable with those of the Dirichlet case.  A full explanation of this phenom-

enon would probably involve the fact that an error vector e, equal to 1 in every com-

ponent, has a residual which vanishes everywhere except near the left boundary of £2,

so that the residual equation in a sense contains relatively poor information. We shall

not go into this any further here.  Let us instead note that using the higher values of

to, say to = 1.5, enables the computation costs to once again be made comparable

with those for the Dirichlet case.  As with the random starting error, the best strategy

for both kinds of elements was very stable with respect to large changes in to about

its best value, and was in both cases the (1, 1) strategy.  Also, the costs for a given to

were found to behave similarly to those for the Dirichlet case under variations in the

smoothing strategy.   These computational costs are all essentially grid independent.

VI.   Modified Residual Reduction.  A major contribution to the solution cost

in using the multigrid method comes from the evaluation of the residual prior to its

reduction onto a coarser grid.  It is, therefore, natural to try to avoid this calculation.

Clearly, the best we can hope to do is to reduce the cost from that of a fine grid cal-

culation to that of an adjacent coarse grid calculation.  The most obvious method is

simply to calculate the residual at the coarse grid points only and to use the values so

obtained as the data for the reduced problem.  Apparently, to do anything else in the

finite difference case is wasteful [7, Eq. A.12a].   In the terminology of [7] this re-

duction method is called injection of the residuals.

The question that arises is whether or not the injection method can yield com-

parable accuracy for the smaller amount of work that it requires.  On the basis of a

considerable number of calculations, our conclusions about using injection in the fi-

nite element ease are as follows:   firstly, in no case were we ever able to obtain any

essential reduction in the computation cost, although in the Dirichlet cases it is usually

possible to obtain similar cost figures for the algorithms using injection on the one

hand and the weighted average reduction of previous sections on the other.  In the

case of the mixed problem of Section 4 the injection method is substantially more ex-

pensive to compute with.   Secondly, there is a loss of robustness with the injection

method.  For example, use of some plausible smoothing strategies can actually cause

divergence to occur.  We have yet to see divergence occur when solving a positive

definite problem using the full algorithm.  Tables 8 and 9 contain some results illustra-

ting these points.   For the mixed problem, results are not so bad when the starting

error is smooth (not shown in the tables) but are still 50% or so more than with the
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full algorithm.  Notice also in the mixed problem that there is a loss of stability, in

the sense that small changes in to can lead to relatively large changes in the costs.

142

9.0

9.4

7.3

6.1

7.0

7.5

6.4

6.7

5.8

5.8

5.4

5.6

5.4

5.5

4.7

4.7

4.6

5.2

5.1

4.9

4.6

4.4

5.0

5.0

5.0

4.8

4.4

4.5

4.8

LINEAR ELEMS.

DIRICHLET CASE

32 x 32 GRID

3 ITNS. RANDOM

INITIAL ERROR

* MEANS

DIVERGED

Table 8.  Strategies with injection (to = 1.0)

32  x 32 GRID,   3 ITNS,   R.   INITIAL ERROR, MIXED BDRY DATA

ELEM

LINEAR

BILINEAR

0.6

15.9

0.7

10.5

10.4

0.8

7.9

8.2

0.9

9.8

7.7

1.0

12.5

7.8

1.1

17.6

8.3

1.2

11.5

Table 9.  Costs as function of to, with injection

For these reasons, we do not recommend the use of injection as a general purpose

approach.   On the other hand, it may well be that in the context of optimizing an

algorithm for a specific problem, the storage saved (possibly as much as 1 grid length

vector for the finest grid) would outweigh the disadvantages.

VII.  Variable Coefficients.   In this short section we shall show some solution

costs for equations with smooth coefficients.  All the examples shown below were

computed using a random initial error, a (2, 0) smoothing strategy and three multigrid

iterations.

COEFFICIENTS

a = b =  [l + 5j(x4 - y4)] 2

a = b - [l + sin ij7r(x + y)]

a = b = [2 + tanh    4(x + y -  l)]2

a = b=[l+4|x- h\Y

a = b = e      sin(Vx + y )

a = 1    b = e      sln(Vx + y  )

COST/10-1  REDN.

3.3

3.3

3.3

3.3

3.0

3.4

grut

64 x 64

64 x 64

64 x 64

64 x 64

32 x 32

32 x 32

Table 10.   Smooth coefficients
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The first four of these examples are taken from [10].  No extensive comment

on Table 10 is needed.  It is clear that solving this type of problem is essentially equiv-

alent in terms of cost to solving Poisson's equation.   As with the latter case, the

costs do not depend on the grid size to any great extent.

VIII.   Discontinuous and Singular Coefficients.  Here we present some calcula-

tions carried out for equations with various kinds of singular coefficients.  All the

data shown are for bilinear elements with a random initial error, the (2, 0) smoothing

strategy and three multigrid iterations.

Example 1.  Here we take

a = b = Isin kx sin ky\,     c = 0,     /= 0,

with homogeneous Dirichlet data on 9£2; k is a parameter.  The results given in Table

11 are for the 32 x 32 and the 64 x 64 interval grids.  Costs are the usual work

units needed for a 10_1 reduction in the initial error.  Note that use of f = 0 and

homogeneous boundary data avoids the potential over-determination of this problem.

GRID

32 x  32

64 x 64

4.7

4.5

5.2

4.8

5.4

5.8

16

5.9

6.3

32

5.0

6.1

Table 11.  Costs

The vanishing of the coefficient a inside the region £2 when k > n means that the

quadratic form associated with this problem is not uniformly positive definite.  For

this reason the theory in [16] is not valid here.  Nevertheless, the results show that

the method is not very grid dependent; and that the computation costs are something

less than double what they are for the Poisson case.

A point worth observing is that for the larger values of k the coarser grids are

not such as to permit approximation of the differential operator in the usual senses.

They do, however, appear to be able to provide approximation properties appropriate

to the multigrid method.  This is because the discrete operators associated with the

coarser grids contain averaged information about the differential operator which is

made use of by the multigrid algorithm.  To see whether increasing the fineness of

the coarsest grid made any real difference to the solution costs we calculated some

additional examples.  Table 10 shows some calculations on the 32 x 32 interval grid

where the coarsest grid was taken as the 4x4 interval grid.  The coarsest grid prob-

lem was solved using the band solver in the code.  There appears to be a slight system-

atic improvement compared with Table 11 although in other examples not shown this

improvement is not always maintained.

32 x  32 4.7 5.1 5.0

16

5.4

32

4.8

Table 12.  Costs
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Example 2 [10].  To show that singular coefficients do not always lead to

greatly increased computation costs we mention the following example in which a =

b, c = f = 0 and

I 1.0,    0<x<0.5,

) 9.0,   0.5 <x< 1.0,

are solved under the same conditions as Example 1.  Here we found on the 64 x 64

interval grid the cost figure 3.4 units.   Similar costs are observed on other grids.

Example 3.  This is another example with discontinuous coefficients, although

with a positive definite energy functional.  Again we take a = b, c = 0 and / = 0

with Dirichlet data.  To define the coefficient a, the region is divided into 2k x 2k

equal squares by lines parallel to the x and y axes, a is then defined checkerboard

fashion as equal to e (a parameter) and 1 in alternate small squares.  Thus, for k = 1

there are four squares and reading left to right, top to bottom, a is alternately e, 1,

1, e.  We have computed these examples for k = 1,2, and 3, the latter case containing

64 changes in the coefficient a.  More complex problems of this type are of consider-

able practical interest [1].  The examples reported below are all for the 32 x 32 sub-

interval grid using bilinear elements, a random starting error, and three multigrid itera-

tions as previously.  In these examples, the coarsest grid was chosen to coincide with

the subdivision defining the coefficient a.   The coarsest grid problems were solved

directly by the banded elimination solver.  The results are reported in Table 13 for the

cases k = 1,2, and 3.

10

3.6

4.7

10

4.2

5.9

10

4.1

6.1

4.0 4.9 5.1 5.1

10

4.1

6.0

10

4.1

6.2

5.1

Table 13.  Costs

The anomalous behavior in the second row is not fully explained but may be caused

by a particularly difficult initial error.  The costs seem to be relatively independent of

e, although rising with k.   They are on average considerably less than twice the costs

for the Poisson case.

Example 4. The final example in this section is for the operator

(8.1)
Lu £Uxx + uyy>

where e is a positive constant.  This case, which embodies certain characteristics of the

transonic flow small disturbance equation, is known to have a slow multigrid conver-

gence rate when e « 1.  A remedy is also known [14], [9], namely, to use line re-

laxation along lines x = constant.  Equations with a form of which (8.1) is a simple

model arise in many applications, particularly in nonlinear problems where the term(s)

multiplied by the small factor e may not be a priori known.
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The idea of our test here was to determine what coefficient ratio 1 : e can be

handled without too much loss of efficiency by point relaxation.  This is important

to us inasmuch as it delimits the area of usefulness of our general purpose approach-

that is, we hope to learn what can be done before special relaxation techniques be-

come necessary.

The calculations in Table 14 were obtained on the 32 x 32 interval grid in the

same circumstances as the previous examples of this section.

32 x  32

1.0

3.2

.75

3.4 4.0

.25

5.3 8.2

Table 14.  Costs

These data were obtained using a random initial error; they indicate that coefficient

ratios of the order 5 : 1 can be dealt with reasonably well.

A more stringent test suggested by the Fourier analysis of the smoothing prop-

erties of the point relaxation method [7] is to use a special starting error, namely the

following:   we use a vector constant on the lines x = constant and with the periodic

variation in the x direction 0, + 1, 0, -1.  The data for this example on two different

grids are shown in Table 15 below:

GRID

32  x  32

64 x 64

2.5

.75

2.9 4.0

2.6      3.0      4.3      7.9    17.7

.25

7.1 16.3

Table 15.  Costs

For the smaller values of e, these costs are considerably worse than those of Table 14.

However, they can be reduced by a change in the smoothing strategy to (3, 0) and

some slight overrelaxation to = 1.2 as shown in Table 16 for the 64 x 64 grid.

1.0 .75 .25 .1

32 x 32 3.0 3.0 3.2 4.2 10.9

Table 16.  Costs

It appears that with this modification (not the optimal one by any means) the figure

5 : 1 for the coefficient ratio is still realistic. In those applications where the coeffi-

cient ratio is considerably larger than 5 : 1 special relaxation methods become neces-

sary. With the use of these methods the cost figures once again become comparable

to those of the Poisson case.
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LX.   Indefinite Case,  in [17] we prove multigrid convergence results for the in-

definite case paralleling the results of the definite case in [16].  Generally speaking,

indefinite problems, of which the Helmholtz equation

(9.1) uxx + uyy +C2U=f       (c2 » 1)

is a prime example, are harder to solve iteratively than definite problems such as the

ones considered in previous sections.  The basic reason for this is that the standard

iterative methods, such as successive relaxation, the Jacobi method, and methods using

orthogonal polynomials for acceleration purposes (including the conjugate gradient

techniques) do not converge when the difference operator has both positive and nega-

tive eigenvalues.  It is possible to derive a positive definite operator by squaring the

indefinite one, but the deficiencies of this approach are well known.  It is, therefore,

of some interest to note [17] that the multigrid method not only converges, but con-

verges optimally (in the order of magnitude sense) when applied to a large class of in-

definite problems which includes (9.1) as a special case.

On the other hand, we must point out here that very substantial difficulties

arise when, e.g. we try to solve (9.1) with very large c2.    Quite apart from the difficul-

ties of representing the solution in this case, the multigrid method encounters its own

difficulties which we may sum up as follows:   for convergence the coarsest grid must

not be too coarse.  This does not conflict with the theoretical results as these are of an

asymptotic nature, valid in the limit as the mesh size tends to zero.  However, in

some settings it seems that we can have a situation where we cannot use a conveniently

coarse grid.  A conclusive resolution of this difficulty is not yet known to the author.

For the case of relatively small c2 however, which embraces many (if not most)

cases of practical interest, our tests so far indicate that the usual rapid convergence is

achievable.  We envisage here a situation where c2 is such that a small number (e.g. 6)

of eigenvalues of (9.1) are positive, while the rest are negative.  We shall report on

some computations along these lines, together with implementation guidelines in [12].

As an example of what can be achieved, we wish to mention one simple computation,

taken from [12].  This is a model of a problem in duct acoustics and, in fact, is simi-

lar to the three-sided Neumann data problem considered in Section 5.  We take the

equation

(9 2) Au + 4.0m = /

on the 32 x 32 interval grid, and specify the same data as in Section 5, (5.1).  The

operator in (9.2) with this data has one positive eigenvalue, X,, where

Xj = 4.0 - 7T2/4.

The other eigenvalues are negative.  Starting with a fairly smooth error, the (2, 0)

smoothing strategy, to = 1.0 and solving exactly on the 4 x 4 interval grid, we find

the cost figure 4.1 work units per 10-1 reduction in the initial error, for bilinear ele-

ments.  Thus, there are grounds for expecting that at least moderately indefinite prob-

lems can be efficiently solved.
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X.  Concluding Remarks.  Although we have considered only the simplest class

of problems in the previous sections it is reasonable to suppose that the basic multi-

grid algorithm will perform similarly well in more general settings.  In the author's

opinion, the basic algorithm is a highly efficient and versatile tool for solving positive

definite and moderately indefinite problems.  The situation is not so unequivocal in

the indefinite case for the reasons previously indicated.  Here we feel that for the ex-

ceptionally difficult problems, additional studies, both theoretical and practical, will

be required.

One major problem we have not mentioned so far is that of defining the nested

sequence of grids on an arbitrary region.  Our experience with this is that in any parti-

cular case this is relatively easy to do.  However, we encountered difficulty in construct-

ing a general code to handle an arbitrary region in a way that did not require a large

amount of extra input data—something to be avoided at all costs—from the user.  One

possible approach is to transform the physical region onto a union of simpler ones

where nested grids are easily defined. Unfortunately, efficient methods for numerically

carrying out such transformations have not so far been extensively studied.

Another topic of great potential value is that of adaptive computation.  In the

multigrid context, where adaptation is especially natural, this application has been in-

vestigated in [7], [8].  Adaptive finite element computation has been pioneered in

[2], [3], [4] although not using multigrid ideas in the sense we are considering them

here.  There is great scope for applying the multigrid methods in this context.

To conclude, we hope that our results have shed some light on implementation

questions arising from the multigrid method. Further computations are given in [18]

and program listings are obtainable from the present author.
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