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Equivalent Forms of Multistep Formulas

By Robert D. Skeel*

Abstract.   For uniform meshes it is shown that any linear fc-step formula can be

formulated so that only k values need to be saved between steps.   By saving

additional m values it is possible to construct local polynomial approximations

of degree k + m — 1, which can be used as predictor formulas.   Different polynomi-

al bases lead to different equivalent forms of multistep formulas.   In particular, local

monomial bases yield Nordsieck formulas.   An explicit one-to-one correspondence

is established between Nordsieck formulas and fc-step formulas of order at least

k, and a strong equivalence result is proved for all but certain pathological cases.

Equivalence is also shown for P(EC)* formulas but not for P(EC)*E formulas.

1.  Introduction.   Multistep methods are the oldest and the most important class

of numerical methods for solving systems of ordinary differential equations.  Imple-

mentations of these methods have become increasingly sophisticated in the last two

decades.  One paper having a considerable impact on the development of these

algorithms is that of Nordsieck [1962], which introduces a class of formulas closely

related to multistep formulas.  It is the purpose of the present paper to explore

thoroughly the relationship between multistep and Nordsieck formulas on a uniform

mesh.  The results apply to a limited extent to variable-order variable-stepsize

algorithms which discourage order and stepsize changes, because such algorithms often

produce sequences of values computed with the same formula and stepsize.

Consider the system y  = fit, y) with exact solution y(t).  Given starting values

yp y'j' /* = 0(1)& ~ 1' a linear fc-step formula on a mesh tn := t0 + nh, n = 1(1 )N,

determines approximations {yn} to the values \y(tn)} by means of piE)yn_k =

hoiE)y'n_k and y'n = f(tn, yn) where

k k
p(%) ■= Z °7**_/.    <**>:= Z «*"'.

/'=0 /=0

and E is the shift operator.  It is assumed that aQ =£ 0 and ak + ßk > 0.  For con-

venience a normalization such as a0 = 1 or 2/3 = 1 is not imposed.   If ßQ =£ 0, the

formula is implicit and requires the solution of a system of nonlinear equations, which

is always possible for smaU enough h if f(t, y) is Lipschitz continuous as a function of

y.  In Section 2 a simple reformulation of the general fc-step formula is given which
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requires that only k values be saved between steps.  In practice, k + m values might be

stored, from which it is possible to construct a predictor formula of order k + m - I

except for pathological cases where p(£) and a(£) have a common factor.

In Section 3 linear multistep formulas are described in terms of a local polynomial

approximation p„(t) which interpolates the k + m values which are retained after

completion of the nth step.  It is from this basis-free description that equivalent forms

of multistep formulas are derived.  One convenient representation of the polynomial

pn(t) is in terms of the scaled derivatives h'p\p(tn)lj\, / = 0(l)fc + m - I. Multistep

formulas represented in this way belong to the class of formulas introduced by Nord-

sieck.  Another is in terms of ordinates p„(tn_A, j = 0(l)kx - I, and derivatives

hp'n(tn_), j = 0(l)fc2 - 1, where kx + k2= k + m, which yields the modified multi-

step formulas of Gear [1971a, p. 150]. Backward differences of ordinates or derivatives

are also possible.

General linear Nordsieck formulas compute approximations a„ =:

[yn, hy'n, . . . , hqynq^/q\]T to the vector of scaled derivatives

[y(tnAhy'(tn),...,hqy^\tn)lq\]T

by the recurrence

\   -=P\-1   + l8n'

where Sn is chosen so that y'n = f(tn, yn); that is, 8n is implicitly defined by

*iX-i + hK =*/('„, eJ/\_, +/0¿¡„).
Here P is the Pascal triangle matrix defined by

V=(0>   o<í</<9,

ej is the jth unit vector, and 1 =: [lQ, lx,...,/_]T is a vector of parameters which

characterize the formula.   It is assumed that lx ¥= 0.  Note that zero-origin indexing

is being used.  Nordsieck [1962] derives particular choices for 1 which optimize

stability and accuracy for q = 2, 3, 4, 5, 6, and he implements the formula for q = 5

as a variable-step computer program for the IlUac I.  By direct calculation he shows

that there is a connection between this formula and the sixth-order Adams-Moulton

formula; specifically, it is shown that the zeroth and first component of an, afl_1,

• • • > a„-5 satisfy the difference equation of the Adams-Moulton formula.

Further understanding of Nordsieck formulas resulted from the work of Descloux

[1963].  An actual equivalence is shown between Nordsieck's (q + l)-value formula

and the (q + l)st order Adams-Moulton formula, in the sense that a linear transfor-

mation was constructed relating the Nordsieck vector to the vector values

[yn> hy'n' ■ • • i ny'n-q + i^T■  An equivalence was also shown for the qth-oxdex Adams-

Moulton formula and a (q + l)-value Nordsieck formula with a slightly different 1 vector.

This second family of formulas is used in the nonstiff option of DIFSUB (Gear [1971b] )

and its descendants.   Furthermore, Descloux showed that in both cases the predicted

value yn 0 := eT/'a„_1 satisfies the difference equation of the fcth-order Adams-
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Bashforth formula.  General fc-step formulas were also considered and equivalent

Nordsieck formulas were constructed having the more general form

(1.1) a^a^+Kv

where the dimensionality of the arrays might be as high as 2fc and where A is not

necessarily the Pascal triangle matrix.   In the appendix of Descloux's report is a

theorem stating that the values yn and fn computed by formulas even more general

than (1.1) satisfy the difference equation of an associated linear multistep formula.

The proof is not given by Descloux because it "is rather painful and long."  However,

in a later paper of Osborne [1966] a similar result is stated and a short and elegant

proof is given.

In Section 4 a one-to-one correspondence is established between (i) the class of

all (q + l)-value Unear Nordsieck formulas and (ii) the class of all linear multistep

formulas of formal order at least q and stepnumber at most q. This correspondence

is given in closed form by

ÇM - » p(%) = det(£/ - P)eT(£/ -P)-H

and

ÇM-1 a(%) = det(%I - P)el(%I - P)-H.

Osborne [1966] gives an expression for £m-1p(£)/(j; ~~ 1) similar to that given above

and proves a correspondence between Nordsieck and multistep formulas of order at

least q + 1 (although it is not clear that l0 is correctly chosen in the proof).  Pre-

sumably at that time only formulas of optimal order were considered to be of practical

value.  More recently Wallace and Gupta [1973] obtained expressions for £m_1p(j;)

and £m-1o-(j;) which are equivalent to those given above.

In Section 5 it is shown that the zeroth and first components of a„, an _ j, . . . ,

an_k satisfy the difference equation of the corresponding multistep formulas.  Also,

if p(£) and a(%) have no common factor, then the Nordsieck formula is shown to be

equivalent in the sense of Gear [1971a, p. 143] to the corresponding multistep formula,

which means that an is a linear transformation of certain linear combinations of the

values yn_j, y'n_¡, j = 0(1 )fc - 1.  It is proved that there is no equivalence to a multi-

step formula if p(|) and o(|) have a common factor.

In Section 6 predictor-corrector Nordsieck formulas are considered.  An equiva-

lence to predictor-corrector multistep formulas is shown to be the case for P(EC)*

formulas but not for P(EC)*E formulas.

In Section 7 recent appUcations of equivalence results are discussed.

2.   Minimum Storage for Multistep Formulas.   The computation of each solution

value yn and its derivative y'n by a general linear multistep formula would seem to

require saving 2fc previously computed values: y„_x, yn-2> ■ • ■ >yn-k anày'„_i,

y'n-2' ■ • ■ 'y'n-k-  ^or ^s reason i* nas been considered desirable to have formulas

with most of either the a or ß coefficients set to zero (see, for example, the "minimum
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storage methods" of DUl and Gear [1971]).  However, there is an easy way to get by

with just fc values without reevaluating the function /.  Define

i := Z (r<xk_i+lyn-i+hßk-j+iy'n-i)
1 = 0

for / = 0(1 )fc - 1.  In terms of the partial sums sj,, the Unear multistep formula

becomes

solve a0yn = A/y('„. y„) + sn'l  for yn '

set^; =f(t„,y„),

4_1  =-aiyn +hßiy'n +sn-í,

(2.1)

sn =-<*k_lyn +hßk_xy'n +s°n_x,

sn =-«*y« + /**Vv

Thus, only the fc partial sums sjj_,, sn_x, . . . ,skz\ need to be saved in order to

advance the computation.  Of course, this is not the only set of values that could be

saved; any nonsingular linear transformation of them could be used instead.

In practice, the impUcit equation (2.1) is approximately solved by some iterative

process.  An initial guess yn 0 is obtained with a predictor formula

k* k*

c$yHt0 + Z afyn_j = A Z ßfy'n-j'
/=i /=i

and subsequent iterates yn    are given by an iteration of the form

yn,ß+i -=yn,p- K'-W-J"'^,, - Wr.,M-sn-.]>

p = 0(l)M(«)-l,

where fn     := f(tn, yn   ), 1 is the identity matrix and Jn ß is a matrix depending on

the type of corrector iteration.   For functional iteration Jn     := 0, for the Newton

iteration Jnß := fy(tn, ynß), and for the chord iteration Jnß := fy(tn, yn0).  The

number of iterations M(«) might vary from step to step.  After determining yn :=

yn Min\ a final function evaluation may or may not be performed.   For a P(EC)*

formula^ ■= fn¡M(n)_x is accepted and for a P(EC)*E formula j/, := fn = f„>M(n).

For our purposes the essential difference between the two types of predictor-corrector

schemes is that the values yn and y'n satisfy the corrector formula for the P(EC)*

scheme and they satisfy the differential equation for the P(EC)*E scheme.   In fact, one

could view the P(EC)* formula as computing values yn, y'n that satisfy a slightly

different differential equation, which implies that equivalence results for linear for-

mulas apply equaUy well to P(EC)* formulas.

How many values must be saved between steps for these predictor-corrector

formulas?   The answer would seem to be the row rank of the following matrix:
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where K := max{fc, fc*}. The row rank of this matrix is at least K and could be as

high as fc + fc*. For reasons of storage economy the predictor should be chosen so

that the rank of the matrix is low. The most economical choice would be to use a

predictor of the form

yn,0="ÏOSn-l  +îlsn-l  +---+yk-lsn-\'

where the coefficients 7, are chosen to make the formula of order fc - 1 or greater.

A predictor of order fc - 1 may not be accurate enough for a corrector of order

fc or greater.   For this reason it may be preferable to store more than fc values between

steps.   For a predictor of order at least q where q > fc - 1, one would expect to need

an additional m = q - (fc - 1) values.  This can be done by including information from

preceding meshpoints.  Since each step of the computation introduces exactly one new

item of information, namely y'n, the following set of fc + m values is suggested:

s'n_m,      / = 0(l)fc-l,      hy'n_p      j = 0(l)m-l.

From these values one can apply the corrector formula to generate yn_m+¡, SkZm+¡,

■ ■ ■ , sn-m+j> ' = l(l)m- Moreover, if the corrector formula is of order q or more,

then the polynomial of degree q or less which interpolates the original set of fc + m

values also interpolates the values generated from them. An alternative set of values

from which the others can be recovered (by reversing the forward step procedure) is

the following:

Í-m,   j = 0(l)k-m-l*,     yn_f,   j = 0*(l)m-l,      hy'n_p   / = 0(l)m-l,

where 0* = 0, 1 * = 1 if m < fc and 0* = 1, 1 * = 0 if m = fc + 1.  This set has the

important advantage of requiring values from only fc + 0* meshpoints instead of

k + m meshpoints, although it is a little more awkward to specify.  The case m =

k + 1 can only apply to the trapezoid formula, the Milne formula, and other (un-

stable) fc-step formulas of maximal order 2fc.  For this case the set of valuesyn_¡, j =

l(l)k, and Ay'    -, / = 0(l)fc, is used to define a polynomial of degree at most 2fc.
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This polynomial also interpolates yn because yn is determined from the other values by a

corrector formula which is exact for polynomials of degree at most 2k.

As an example, a fcth order predictor for the (fc + l)st-order Adams-Moulton

formula would be constructed from the values

h Z ßk-j+iy'n-i-o i = °(l)k- 2>^>and hy'n
i=0

or equivalently Unear combinations of these values: yn, and hy'n_-,j = 0(l)fc - 1.  The

predictor so constructed is the fcth-order Adams-Bashforth formula.

It is not obvious, however, that such a predictor can always be constructed.

Clearly, the question is of practical interest only for implicit formulas (p, o) of order

at least q.  It is claimed that the construction of a suitable predictor is possible if and

only if a unique polynomial p(t) of degree q or less is uniquely determined from the

values Vnp(tn_m),j = 0(l)fc - 1, and p'(tn_¡),j = 0(l)m - 1, where the operators

L'h axe defined by

Lh*V) = Z (- «k-j+fit -ih) + hßk-i+iz'(t - *))•
1 = 0

Clearly, the possiblity of constructing p(t) implies the existence of a suitable predictor.

On the other hand, iXp(tn + x) can be determined by a predictor, then from the

corrector formula we can get p'(tn + x).  This can be repeated to generate p(tn + 2),

p(tn + 3), ■ ■ ■ until there are enough values to construct p(t) by interpolation of

ordinate values.  Necessary and sufficient conditions for the possible construction of

p(t) is given by the theorem that follows. First a precise definition of order is needed.

Definition.   A linear multistep formula (p, o) is of order at least q if

^±ii = log(l+z) + ^-)

and is of formal order at least q if

p(l +z) = log(l + z)a(l +z) + 0(zq + l)

(cf. Gear [1971a, p. 119]).

Theorem 2.1. Let (p, a) be a linear k-step formula of order at least q.   Values

L'hP(t„_m), j = 0(l)fc - 1, and p'(tn_A, j = 0(l)m - 1, uniquely determine a poly-

nomial p(t) of degree at most q if and only if p(£) and o(|) have no common factors.

Proof.   If polynomials are identified with the column vector of their scaled

derivatives, then the unique existence of pit) is equivalent to the linear independence

of the rows of the matrix T := colfX7, \[, . . . , X£_,, eT, ejp-1, . . . ,ejfP1_m)

where

x7 := Z {-ak-/+,eoT +ßk-i+fiJ}p-'-m,
¡ = 0

and P is the (q + 1) x (q + 1) Pascal triangle matrix.  The row vectors \J, j =
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0(l)fc - 1, have a simple generating function, for

(-p(?)eT + a(?)eT)(/-^-1r1/-m

fc °° fc-i

= z s*-/(-«fî+<W)Z &-i-m = Z *%T>
;=0 i=0 Z=0

where we have used the fact that X^-P*-' = 0T.  Let p(£) = Tt(í)p(%) and o(%) =

ir(%)o(%), where 7r(g) is the g.c.d. of p(£) and o(%).  Then (p, a) is of order q or greater,

and so (_p(i;)eT + cr(|)eT)(/ - £P_1)    i>_m is a generating function for the yj,

which are defined in the obvious way.  The relation

(- p(?)eT + oQ)eJ)iI-^P-1)-1p-m = <£)(- p(?)eT + r7(|)e*)(/- ^yip-m

implies that the first fc rows of T are linear combinations of the row vectors y J, j =

0(l)fc - 1. If pi%) and a(£) have a common factor so that fc < fc, then pit) is

obviously not uniquely determined.  Assume that p(£) and a(£) have no common

factors.  Suppose that the rows of T are Unearly dependent.  Then, 7V = 0 for some

v i= 0.  Hence,

(- p(?)eT + 0(£)eT)(/- ¡¡r1)-1^^ = »

or equivalently

(2.2) P(*)To(!) = o-ßKCf),

where t,.(|) = det((/ - %P~l)Pm)e](I - Ç/>-1)-1p-"1v, which by Cramer's rule is

simply the determinant of (/ - %P~1 )Pm with the ith column replaced by v. Thus,

t¡(%) is a nonzero polynomial of degree q or less.   Furthermore,

ri(%) = -(i-%)q+iri^Q-ViF)-iPl-my

= (l-|)«+iyri-/eT/>/-"»+iv
/=o

= (~ l)<?|<?_mei['i>v + lower-order terms,

and so rxi%) is of degree at most fc- 1.  Hence, from (2.2) at least one of the fc roots

of pi%) must be a root of o-(£).  This is a contradiction; and therefore, the rows of /

are linearly independent.    D

Corollary.   The values L'npitn_m), j = 0(l)fc - m - 1*, pitn_¡), j =

0*(l)m - 1, and p'(tn _A, / = 0(l)w - 1, uniquely determine pit) if and only if pi%)

and a(£) have no common factor.

Remark 1.   It is not enough to have formal order of at least q.  Consider p(£) =

(%- l)2 and a(£) = 0; the values ~p(t„) and 2p(tn) - p(tn_x) uniquely determine a

polynomial of degree one or less.

Remark 2.  Theorem 2.1 appears to be related to a result of Dahlquist [1975]

concerning the equivalence between a linear fc-step formula and the corresponding one-
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leg fc-step formula, under the assumption that p(£) and a(jj) have no common factor.

Apart from the need for a predictor, there is another compUcation that affects

the amount of storage needed.  In practice, it has been found desirable to vary the step-

size, and thus a variable step form of the multistep formula must be used.   For any

given fixed step formula there are numerous variable step formulas, some of which

require less storage than others.   This topic wiU be studied in a future paper.

3.   Construction of Linear Nordsieck Formulas.   In this section linear multistep

formulas are described in terms of local polynomial approximations, and an equivalent

Nordsieck formula is constructed by representing the polynomials in terms of their

coordinates with respect to local monomial bases.

Consider a linear fc-step formula of order at least q, where q > k, such that p(£)

and a(£) have no common factor.  (The case q = k - 1 is treated at the end of this

section.)  Then as a consequence of the corollary to Theorem 2.1a unique polynomial

of degree at most q is determined by the q + 1 conditions

LÍhPn-l^n-l-m) = Í-1-m'       / = 1(0*-»» - 1»,

?„_!('„_!_/) =y„-l-f,      7 = 0*(l)m-l,

Pn_l(tn_l_j)=y'n_x_j,     j' = 0(l)m-l.

The polynomial pn _ x (t) can be regarded as an approximation to the solution y(t)

near t = tn_x, and it can be used to obtain a predicted value yn 0 = pn_x(tn) as an

initial approximation to yn.  In terms of the values yn_x, ■ ■ ■ ,yn_k, and y'n_x,

■ ■ ■ ,y'„-k> the relation yn 0 = p„_x(tn) becomes an explicit linear fc-step formula.

Advancing the numerical solution one step yields values which determine the

polynomial pn(t).  However, there is a more direct way of expressing p„(t) in terms

of pn_x(t).  First, we examine how yn and y'n are determined.  From the multistep

formula we have

and because Lk annihilates pn_x(t), we have

Vn,0 =hßoy'n,0 +Lkh~1P„-i(t„-l),

where y'n 0 = p'n_x(tn).   It foUows from the defining conditions that

Lkh~lPn-i(tn-i) = skn-\-  Hence, aQ(yn -yn 0) = hß0(y'n -y'n 0).   Also,y'n =

f({n> yn)-  Together these last two equations define yn and y'n.  A more convenient

way of expressing this is to introduce an increment S„ which satisfies

hy'n,o + %K = Wn> yn,o + ßoK)

and set

yn = y„,0 + ßo8n'    "y'n = hy'n,o + ao5«-

Second, we construct dn(t) := pn(t) - pn_x(t).  For / = 0(1 )fc - m - 1*,
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WnÜn-m) = ^hPn^n-m) ' i~ «k-jPn-l^n-m) + ^k_¡p'n_x(tn_m)

+ Vn-lPn_x(tn_x_m)}

= Í-m - {- *k-jyn-m + ^ßk-jy'n-m + ¿n-l-ml

= 0;

for/ = 0*(l)m- 1,

and for / = 0(1 )m - 1,

\ßoK  if/ = o,
Wn-j) =

(0 otherwise;

K^n-j)
lû!0ô„       Íf/=0,

(0 otherwise.

Hence,

Mnr)A

where A(x) is the unique polynomial of degree at most q which satisfies

|j30,      / = 0*(1)0,

¡0,       / = l(l)m - 1,

L\A(- m) = 0,      / = 0(1 )fc - m - 1 *,

A(-/") =
(0,

(ao.      7' = °.
A (-/) =

/0,        /=l(l)w-l.

Briefly, we have shown that the numerical solution is advanced one step by setting

(3.1) P»O = Pii-i(0 + aM8«'

where 5n is chosen so that pn(t) satisfies the differential equation and A(x) is

characteristic of the multistep formula.

The polynomial formulation of the fcth and (fc + l)st order Adams-Moulton

formulas was discovered by Descloux [1963].  Schemes based on general choices of

A(x) are discussed by Skeel [1973] and by Wallace and Gupta [1973], who give an

interesting interpretation of polynomial schemes in terms of polynomial predictive filters.

They derive new formulas for stiff problems by choosing A(x) to be a monic poly-

nomial which best approximates zero for x < 0.  Different types of approximations

yield different formulas.   Still more formulas are presented in Gupta and Wallace

[1975] and Gupta [1976].  The 1975 paper uses the term modifier polynomial for

A(x).  (In the 1973 paper this term is applied to A(x/h).)
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A very simple identification of these polynomial schemes with Nordsieck

formulas becomes apparent if the polynomials are represented by vectors of scaled

derivatives.    Let a„ =  [pn(t„), hp'n(tn), . . . , lflp^\tn)lq\]T and 1 =

[A(0), A'(0), . . . , Aici)(0)lql]T. Then from (3.1) we have

^')(í„) = ^l,(í„) + A-/A(/)(0)<5„,

from which it easily follows that

*n=P*n-l  +1S«

with 5n chosen so that A-1eTa„ = f(tn, eja,,).

For the fcth-order backward differentiation formula

fc

7=0

the modifier polynomial A(x) must satisfy

A(- j) = 0,      / = l(l)fc - 1,      A(0) = 1,     A'(0) = a0,

whence

A(-fc)=    A'(0)-Z\.A(-/)   L

Therefore,

0.

lx + k\        fc    i k+ 1

7 + 1

where the (square) brackets denote Stirling numbers of the first kind (see, for example

Knuth [1968, p. 66]).  The fact that A(x) vanishes for x = -1, -2, . . . , - fc means

that the valuesyn_x, yn_2, ■ ■ ■ >y„-k are "remembered" after advancing from

r„_! totn.

For the (fc 4- l)st-order Adams-Moulton formula

fc

yn-yn-i =h Zß/n-i
/=0

the modifier polynomial of the (fc + 2)-value form must satisfy

A'(-/) = 0,      / = 2(l)fc-l,

A(0) = ß0,      A'(0) = 1,      A(- 1) = A'(- 1>=0,

whence

A'(- fc) =    A(0) - A(- 1) - g ßfii- j)\

= 0.
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x + ks
Therefore A'(jc) = Ck  ), and so

In terms of Stirling numbers

c y + t\.    "¿' i k + 1

These are the formulas used by the nonstiff options of the codes DIFSUB of Gear

[1971], GEAR Rev. 3 of Hindmarsh [1974], and EPISODE of Byrne and Hindmarsh

[1975] when the stepsize does not vary.

The (fc + l)st-order Adams-Moulton formula could also be written as a (fc + l)-value

Nordsieck formula.  The modifier polynomial for such a formula can be determined

by applying the theorem that follows.

Theorem  3.1. Let A(x) be the modifier polynomial of the (q + l)-value form

of a linear k-step formula of order at least q, where q > k + 1 and p(%) and a(£) have no

common factors.   Then A(x) := A(x) - A(x - 1) is rAe modifier polynomial for the

q-value form of the multistep formula.

Proof.   For m < fc
m-l

Lk-mA(- m) = LkA(- «)-£{- a.A(- 0 + ßtA'(- i)}

1=0

= 0,

and for m = k + 1

A(0) = ̂  A'(0) + ~ Z {- a,A(- 0 + ft-A'C- 01
"o uo ¡=i

= fV
Hence

L[ A(- m) = 0,      / = 0(l)fc - m,

A(0) = ß0,      A'(0) = a0,      A(- j) = A'(- j) = 0,      j=l(l)m-l,

from which the theorem foUows.    D

Therefore, the (fc + l)-value form of the (fc 4- l)st-order Adams-Moulton formula

has

™-/".('»+>-r-;,(\+>
=iM\+V/:|(\1-('+r')i*
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These are the original formulas of Nordsieck.

Let us consider now the case m = 0.  The values 8n, yn, and y'n are determined

as before.  However, for /' = 0(1 )fc - 1

4dB(f«) = - ak-j(yn -yn,o) + hh-fy'n -y'n.o)

= (-afe-A) +ßk-jao)dn-

Therefore, the solution is advanced one step as given by (3.1) with A(x) determined by

L[A(0) = - ak_fi0 + ßk_,*0,      j = 0(l)fc - 1.

However, p„(t) does not necessarily interpolate yn and y'n nor does it generaUy satisfy

the differential equation at t = t .  Therefore, in the scaled derivative form this scheme

is a generalized Nordsieck formula in the sense that 5n is determined by a condition

other than the satisfaction of the differential equation at r = tn.  Such formulas are

potentially useful because of their minimum storage property.  Nordsieck [1962, p. 27]

considers the possibiUty of having ¡0 = ß0 but lx # a0, so that pn(t) interpolates yn

but not y'n; however, the results of his experiments were not promising.  Also, Wallace

and Gupta [1973] mention that "Other choices of bn axe rationaUy possible, and we

hope to explore some other choices later."  Finally, it is worth noting that Theorem

3.1 extends to the case q = fc.

4.   The Correspondence Between Multistep and Nordsieck Formulas.    In the

preceding section it was shown how to construct the modifier polynomial A(x) of a

Nordsieck formula from the polynomials p(£) and a(£) of a linear multistep formula

provided that p(%) and o(%) have no common divisors. In this section we show how

to obtain p(£) and o(%) from A(x), and we estabhsh a one-to-one correspondence

between (i) the class of aU (q + 1 )-value linear Nordsieck formulas and (ii) the class

of all Unear multistep formulas of formal order at least q and of stepnumber at most

q (including those for which p(£) and o(£) have common factors).

For each linear Nordsieck formula we define a corresponding linear multistep

formula (p , o ) by

(4.1)   p(£) := detß/ - P)eT(|/ - P)~H,      a(?) := det(?/ - P)e^I - P)-ll

Applying Cramer's rule to eT(|7 - P)~A for / = 1 and / = 0 yields

P«) = det

1-1     'o

0      /,

0     /.

-1

-2

l-.l

- 1

(')

?-l
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and

o(?) = det

-1 -1

1-1       -2

0 6-1. 0
s-i

Hence a (£) is a polynomial of degree q or less, and p (|) is of degree q since /j =£ 0.

Let

P© =: Z a^_/   and   °ß) =: Z #'"'■
1 = 0 , = o

It might happen that a   = ß   = 0, and hence express

(4.2) Pm=-r-lp(ï)    and    a(?)=:r-1a(|)

where a2. + ß\ > 0 and m - I = q - k.

The following theorem shows that the p(£) and a(£) corresponding to A(x) can

be used to reconstruct A(x) by the process of Section 3 if it is applicable.

have

Theorem 4.1.   With p(£) and o(%) derived from A(x) by (4.1) and (4.2) we

L'xAi-m) = 0,      / = 0(l)fc-l,

/„ = A(0) = ß0,      lx= A'(0) = a0,

A(-/) = A'(-/) = 0,      /=l(l)m-l,

A(- m) = (- l)qßk,      A'(-m) = (-l)qak.

Proof.   The relations l0 = ß0 and lx = aQ follow from the expressions for p(%)

and a(£) as determinants.  From (4.1) we have

p(S) = -(t-iy+1erl(i-$p-1r1p-1i

= -(l-l)q + 1 Zeir^-'l = -(M)'+1 Z A'i-j-l)?.
1 = 0 /=o

Clearly, A'(-j) = 0, / = l(l)m - 1, ak = (- l)qA'(-m), and

P(l) = -(É-0"+1 Za'(-/-*

Similarly, A(-/) = 0, / = l(l)m ~l,ßk = (~l)qA(-m), and

o(ï) = -tt-l)q + 1 Z MrJ-mW-
j=o
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From these expressions for p(£) and a(%) we get

- P(%) Z A(- / - mW + a(?) Z A'(- / - m)^ = 0.
/=o /'=o

Equating coefficients of the powers of £ completes the proof.    D

The next theorem shows that the multistep formula (p, a) corresponding to

A(x) is of order at least q, and therefore, it can be used to reconstruct A(x) by the

process of Section 3, if p(%) and o(£) have no common factors.

Theorem 4.2.  The linear multistep formula corresponding to a (q + l)-value

linear Nordsieck formula has formal order at least q.  Moreover, it is of order at least

q + 1 if and only if b 1 = 0, where the components ofb are the Bernoulli numbers

defined by
■7                  bJz      _ v^   _i_

z       i *-        /'ez - 1     /=o    '•

Proof.   According to the definition of formal order and Eq. (4.1), it must be

shown that

z« + 1eT((l + z)I-P)-H = log(l + z)z<?+1eT((l + z)I - P)~ll + 0(zq + l);

and so it is enough to show that

eJ(I-z-lF)~l =log(l +z)eT(/-z-1F)-1 + 0(z),

where F := P - I.  Because Fq + 1 = 0, it is not difficult to verify that

log(l + z)(I - z-l F)-1 = log(/ + Fyi - z- 1F)~1 + 0(z);

and so it suffices to show that eTlog(7 + F) = eT.  This holds because I + F = P =

exp(ö), where

0 =

0 1

To prove the second assertion, retrace the first two steps of the proof to get the

foUowing condition for formal order of at least q + 1 :

*oTf
•^ + ••• + ^(-^1 = 0.

The matrix in braces is

10E(/ + JO_Ô_=f zXry
F exp(ß)-l     ¿fc/!   ^'

from which the second part of the theorem follows.    D
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Remark 1.  The matrices P, F, and Q obviously represent the linear operators

shift, forward difference, and derivative, respectively, for polynomials of degree q or

less.  Defining B = I - P~* to be the matrix representing the backward difference

operator V it is not difficult to show that the condition bTl = 0 is equivalent to

Z jij v'A(- D = °
j=o'

as well as

A(-l)- Z 7f+iV/A'(-l) = 0,
T=0

where the 7*+ j are the coefficients for the backward difference form of the Adams-

Moulton formulas.  These conditions on the polynomial A(x) arise in another situation

inHenrici [1962, p. 342].

Remark 2.  The condition bTl = 0 is obtained by WaUace and Gupta [1973],

although the coefficients A- are not identified as the BernouUi numbers.  Instead, a

recursive definition is given for the b-, which should read

¿o = l.

Remark 3.  It is shown by Gear [1966] that a stable Unear Nordsieck method

is convergent of order q in all components of an, and it is shown by Skeel and Jackson

[1977] that it is convergent of order q + 1 in all components if and only if bTl = 0.

It has thus been shown that to each linear Nordsieck formula, which is uniquely

specified in terms of 1, there corresponds a linear multistep formula of formal order at

least q and of stepnumber at most q.  We now establish a correspondence in the

opposite direction.  We have from (4.1) that

a(l + z) = z? + 1eT(z/ -F)~1l = zqel ¿ z~'Fh,
j=o

where F := P -1 is the matrix of the forward difference operator.   Equating coefficients

of powers of z gives a^\l)lj\ = Aq~'AiO), and hence A(x) is determined from its

corresponding a (£) by Newton's forward difference formula

Since the Unear multistep formula is uniquely specified by o (£), the one-to-one

correspondence is estabUshed. The inverse transformation is conveniently expressed as

a(?) = Z  A'A(0)(i - l)q~>   and   p(?) = ^  A>A'(0)(| - l)q~A
/=o /=o

Note from (4.3) that the popular normaUzation a(l) = 1 corresponds to lq = l/q\.

Remark.   Theorem 3.1 can be generaUzed to any modifier polynomial A(x) for

which m > 2.  Express a(£) =: £ô(£).  Then
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a(/)(l) = 5(/)(l)+/o(/-1)(l),

from which it can be shown that

., .    V   5"'») (* + 1'

and

9-1 0^(1)   /       x

Aix) := Aix) - Mx - 1) = Z   —jr [q-l-j

Clearly, Â(x) is the modifier polynomial for the g-value formula.

5.   Equivalence of Linear Nordsieck Formulas to Linear Multistep Formulas.

Recall that a linear Nordsieck formula determines successive values by the system of

difference equations

(5.1) a„=Pa„_! +ldn,

where dn is chosen so that y'n = fitn, yn).  We do not consider the more general

formula a„ = Aan_x + 16n because formulas with A i^ P axe of dubious value, and

in any case, most of the results for A = P generalize if minor restrictions are imposed

on A.

For theoretical purposes a rewriting of (5.1) is often useful.  Premultiplying

(5.1) by eT yields S„ = l7lQifn - eTA„_,).  LetT := lxH and S := (/-TeT)P;

and we get

(5-2) "»=V» +hTf"'

where fn is chosen so that fn = f(tn, e[San_x + h\ fn).   Expressions for p(%) and

0(£) in terms of 5 are given by the following theorem, whose proof uses an idea from

Osborne [1966, Eq. (4.3)].

Theorem  5.1.   77z<? polynomials p (%) and o(£) defined by (4.1) satisfy

p(?) = det(£/-<0eT(£/-S)-1l

and

o(t) = det(%I-S)el(%I-SYl\.

Proof.   We have

£/ - S = J/ - P + TeTxP = (%I - P)i¡ + ÍCI-P)-1 Te¡P),

and so

det(£/ - S) ■ i%I- S)'l\ = det(?/ - P)det(/ + (|/ - P)- {le¡P)

■ (i + (y - pf1 ïejpyl & -p)-h.

This can be simplified by means of the identity

det(/ + xyT)-(/ + xyTr1x = x,
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which follows from Cramer's rule.  Thus, we get

detß/ - S) • (%I - S)' !T = detß/ - F) ■ (?/ - /=)" lT,

from which the lemma immediately follows.    D

Note that ejs = 0T; and so p (£) = det(£7 - S)!-1/^, which gives the characteris-

tic polynomial of S as det({-/- 5) = /¡"'^p©.  Thus, the strict root condition is

satisfied by the linear Nordsieck formula (cf. Skeel and Jackson [1977]) if and only

if it is satisfied by the corresponding linear multistep formula.

The theorem that follows shows that in the case of all Nordsieck formulas the

zeroth and first components of the vectors a„ satisfy the difference equation of the

corresponding linear multistep formula (p, o).  Hence, all the limitations on the accuracy

of multistep formulas (Dahlquist [1956], [1963]) apply also to Nordsieck formulas.

Theorem 5.2.  The values yn, y'n, n = 0(l)rV, computed from (5.1), satisfy the

linear multistep formula

PiE)yn_k = hoiE)y'n_k

defined by (4.1) and (4.2) for n = fc(l)rV.

Proof.   From (5.2) we have

sk-\-k = \-j-kTlsi-¡wn_i
i—i

and

P(S)*n-k = Z ^n-j-Z   <V*£tf-/ÎV,,-i.
/=0 /=0        i=j

Premultiplying by eT and rearranging gives

Z *Pn-i =  IX   Z ^'-4îA/„_,. + eTp(S)a„_fc.
/=0 '=0        (/=0 )

It needs to be shown first that

(5.3) ^)=¿ej   ¿^-/¡îç«-'.
t=o      (j=0 )

We have that

aß) = /f^iöejd/- s)-ii = Pi&îii-r'sr'T

= Í<*jtq-''qf r'e0T5'L
/=0 1=0

which leads to (5.3). It remains to be shown that

ejp(^) = fVT.

Because S satisfies its characteristic polynomial, eTp(5)5m = 0T. Also, because S is of
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rank q, it has only one linearly independent left eigenvector associated with the eigen-

value 0; and so eTp(5)5m _1 isa multiple of eT. This implies elp(S)Sm " ' (/ -TeT) =

0, and so by (5.3)

elpiS)Sm-l=ßk+m_xe].

If m > 1, then eTp (S)Sm -1 = 0T, and this argument can be repeated until the assertion

is estabUshed.   D

Remark 1.  We have y'n = fn except possibly for n = 0.

Remark 2.  This theorem improves the result of Descloux [1963] and Osborne

[1966] in two respects:   first, p(£) and o(£) are given in closed form, and second,

the result is shown for n > fc rather than n > q.

The next theorem proves that Nordsieck and multistep methods are equivalent

in the sense of Gear, for it is shown that there is a nonsingular matrix that relates the

scaled derivative approximations an to certain linear combinations of computed y and

y values.   As a consequence, in practicaUy all cases linear Nordsieck methods cannot

be regarded as generalizations of linear multistep formulas (cf. Gear [1971a, pp. 102,

136]).

Theorem 5.3. Assume the polynomials p(£) and a(£) corresponding to a given

(q + 1 )-value Nordsieck formula have no common factors.   Then there exists a unique

nonsingular (q + 1) x (q + 1) matrix T depending only on 1 such that an = T~lyn

for n = k - l*(l)N, where

y«  '— lsn-m' • • • ' sn-m        ' ^n-0* » ■ • • » J'n-m + l' A>V • • • ' ^n-m-tll    •

Proof.   By Theorem 4.2 the formula (p, a) is of order at least q, and hence by

the Corollary to Theorem 2.1 there exists a unique nonsingular matrix T such that

p(0

hp'(tn)

hqP(q\tn)lq\

for any polynomial of degree q or less.  Define values y- and y'- for / = 1* - fc(l) - 1

such that

y0 = TV

The process of Section 3 may be applied to construct a (q + 1 )-value linear Nordsieck

formula which would compute vectors T~lyn , n = 1(1)/V.  The results of Section 4

imply that this formula would be identical to the given Nordsieck formula, and hence

a„ = T~lyn.  The uniqueness of T follows from the fact that the method is exact for

all polynomials of degree at most q if the starting values are exact.  D

Remark.   For implicit formulas Wallace and Gupta [1973] give an informal

argument suggesting that the quantities an     , and S„_ -, j = l(l)q - I, can be ex-

LlP<An-m)

LnPÜn-m)

hp'Vn-m + l)
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pressed as linear combinations of yn_¡, /„_,■» 7 — 1(0<7-  Their conjecture is correct as

long as |m_1p(l) and %m~lo(%) have no common factors.  In that case it is an

immediate consequence that the components of an _ x are linear combinations of yn _■,

/„_,, / = l(l)q-

Theorem 5.3 does not extend to Nordsieck formulas for which the corresponding

p and o polynomials have common factors.

Theorem  5.4.  Assume that p(%) and a(£) have a common factor and that the

formula (p, o) is of order at least q.   Then an cannot be expressed only in terms of

y„_j, hy'n_j, j = 0(1)«.

Proof.   We begin by showing that there exists an eigenvector v associated with a

nonzero eigenvalue |0 of S such that eTv = 0.  From (4.3) it follows that p(£) and

o(%) have the common factor 1 if and only if /   =0.  First, suppose that /   = 0.  Then

£ = 1 is a common root, and so the formula must be of formal order at least fc + 1.

Hence bTl = 0 where

T _    t   logy?)
0    P-I    '

and so

(bT + eT)S = bTP = bT + ej log P = bT + eT.

Also, /   = 0 implies e*S = eT.  Therefore, the null space of S - I is at least of

dimension two; and so we can choose v =£ 0 such that Sv = v and eTv = 0.  Second,

suppose that lq^0.  Let

v(£) = det(£/-S)-a/-S)-1l,

which is a vector of polynomials in £.  Let £0 be a common root of p(£) and a(£).

Then v(£0) ¥= 0, since eTv(£) = (£ - l)qlq.  Also

(?o7 - SMIo) = det«o7 - S) ■ 1 = 0,

and eTv(£0) = a(£0) = 0. Therefore, in either case there exists £0 # 0 and v # 0 such

that iSv = £0v and eTv = 0.  Moreover, e, v = 0, because eT is a left eigenvector for

the eigenvalue 0.  This means that if a0 were changed to a0 + v, the values of yn and

hy'n would remain unchanged for all n, and yet an would become an + |£¡v.  This

proves the nonexistence of an expression for an in terms of the values yn and y .    D

Theorems 5.3 and 5.4 do not cover the case where the order is less than q due

to a common factor of % - 1, but extending the results to such formulas does not

seem worthwhile.

6. Equivalence of Predictor-Corrector Formulas.   The use of a linear Nordsieck

formula requires the solution for 6   of the equation

^yo+'i^^^.o+'o0-.).

where yn 0 = e^Pan_x and hy'n 0 = eJPanX.  In practice, this must be approximately
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solved by some iterative process:

S„,o:=0.

5«,M+1   :=5n,p- Pi* -'oW«,m]_1^,0  +/1S«,m_/Z7«,mÍ'

p = 0, 1,. . .,M(ri)-l,

where /„M, 1, and /„ M_j are defined as in Section 2 with vw M = y^ 0 + l0bnß.

After determining ôn := ô^ M,n*. and adding the increment \bn a final function

evaluation may or may not be performed.  For a P(EC)* Nordsieck formula

a„ :=7\-i +1S„

and for a P(EC)*E Nordsieck formula

*„ :=7\-i +lSB+e1A(/ft-^))

where A^; := hy'n0 + lxbnM(n)_x.

Remark.   The predictor-corrector Nordsieck formulas of Gear [1971a] are

introduced independently of linear ("corrector only") Nordsieck formulas.   For this

reason these predictor-corrector formulas use lx 1 - lr¡hJn     := 1.

For the P(EC)* formulas we have that hy'n = e\P&n_x + lxbn, and so the

recurrence can also be expressed as

a» = s*n-i +My'n-

Therefore, the equivalence results apply to P(EC)* formulas as much as they do to

linear formulas.  The underlying multistep predictor formula can be obtained from

yn o = eo7Jan -1 by expressing an _ x as linear combinations of the components of

yB_l> thus, it has stepnumber of at most fc + 0*.

The situation is quite different for P(EC)*E formulas. To determine the equivalent

multistep formula, one begins with the recurrence

a„ = San_x + (T- ex)hy'n + exhfn.

Proceeding as in the proof of Theorem 5.2, one obtains a difference equation involving

y„-j, J = 0(l)fc, y'n_j, j = 0(l)fc - 1, and y'n_j, j = l(l)fc, which is not a true

P(EC)*E multistep formula.

For example, consider the three-value Nordsieck formula. By expressing yn and

v„_, as functions oXy'n, y'n_x, fn_x, and an_2 and then eliminating h2y"n_2\2, one

obtains the difference equation

yn+(2l2-2)yn_x +(l-2l2)yn_2

= l0hy'n + [(1 - l0)hy'n_x + (l2 - l0)hy'n_x] + (l0 +l2- l)hy'n-2'

which is not a P(EC)*E formula unless /0 = l2.  For the third-order Adams-Moulton

formula this is

yn-yn-l=\\hy'n+\\\hy'n-l  +J^hy'n_x\   +J¿hy'„_2.
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7.  Applications.  An important practical consequence of the equivalence theory

is that aU multistep formulas are minimum storage formulas.  This idea is certainly

implicit in the investigations by Gupta and WaUace of new multistep formulas.  It is

also the rationale for the computer search of Kong [1977] for fc-step formulas of

order fc having the smallest error coefficient for a given angle a of /l(a)-stability.

Previous searches by DiU and Gear [1971] (the error coefficient for their formula

should be 14.0, rather than 0.0108) and by Jain and Srivastava [1970] concentrated

on formulas for which most of the trailing coefficients of a(£) were set to zero.  The

computer results of Kong suggested formulas which lead to a proof of the following

result:   for any a < 7r/2 there exists an ^4(a)-stable fc-step formula of order fc.  This

is also proved by Grigorieff and Schroll [1977].

The paper of Nordsieck mentions that "the potential advantage of a more

elaborate procedure in which the matrix hf  is numerically computed at every step

and 1 is made a chosen function of hf , implying a nonUnear process tailored to the

subject differential equation system, is an interesting topic for future investigation,"

where we have substituted our notation for his.  The idea is developed further in a

report of Gear [1966], which proposes a formula for scalar implicit differential

equations of any order.  For the equation y - f(t, y) = 0 the formula becomes

1 := 1AM - lBDA/y

and

M-Wi.il :s=1+*V?,

where  AM and BD refer to the (17 + l)st Adams-Moulton and ¿¡rth order backward

differentiation formulas, respectively.  (The subscripts;^1" in the equation on p. 21

of Gear's report should read a .) This idea is extended to systems of differential equations

by Skeel and Kong [1977], who suggest

1 := JAM _ 7,BD^

and

hl-lryhJ^-^-chfyf,

where 7 and c are free parameters.   In Section 4 it was shown that p(%) and o(%)

are linear transformations of 1, and so a linear combination of 1 vectors corresponds

to that same Unear combination of the corresponding linear multistep formulas.

Thus, under the assumption of constant hf   the "blended" Nordsieck formula is

equivalent to the same blend of linear multistep formulas.
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