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Cyclic-Sixteen Class Fields for Q(-p)l/2 by Modular

Arithmetic

By Harvey Cohn*

Abstract.   Numerical experiments result in the construction of cyclic-sixteen class

fields for Q(—p)   '  , p prime < 2000, by radicals involving quadratic and biquadratic

parameters.   These fields are characterized by rational factorization properties modulo

a variable prime; but it suffices to use only three primes selected and checked by com-

puter to verify the class field, if earlier work (jointly with Cooke) on the cyclic-eight

class field is utilized.

1.   Introduction.   To give a specific example of a new result in rational arithme-

tic, the current computation shows that a (large) prime q satisfies q = x2 + 2Sly2 (in

Z) exactly when a certain equation over Q of degree 32 splits into 32 (different) linear

factors modulo q.   The general root of this equation is expressible (with "too many

conjugates") as AXJ2, where

A0 = (-5 + 2(-257)1/2)(l + (1 + 16/)1/2)

(U)                                   /-9+C-257)1/2 ,., 1/7V/2
•(-——-(16 + 2571/2)1/2 )      ,

so that the radicals in A0 must be chosen with correct signs.  It will prove advantageous

to replace a rather appalling equation of degree 32 by the following system of five

quadratic congruences in which the signs are implicitly specified:

x\ =(-5 +2Xj)   1 +

x2=-257,   x\=-l,   x\ = 16~xxx2,

xl = (-9 +xx)x3/(l -x2), (mod q).
(1-2)

i ~x2/x3

1 - x2

Now the system (1.2) is solvable for just those primes q (> 13) which satisfy q = x2

+ 257y2.

In terms of definitions given below, it will be clear that we are constructing cyclic-

sixteen class fields of k2 = Q(-£>)1/2 for those primes p for which h, the class number

of k2, is divisible by 16.  In principle, this construction is finitary but not routine (see

[la] );and the generator AQ is far from unique (in fact, another value is more conve-

nient later in Section 3 below).  Yet this construction is especially amenable to corn-
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puters because, as we shall see, once a correct guess is made, it is sufficient to test

three mechanically chosen primes q to establish the congruence properties like those

just described for x2 + 2Sly2.

2.  The Class Fields.  We start with Cl, the ideal class group of order h for the

field

(2.1) k2 = Q(-p)x /2    (prime) p = 1 (mod 8).

The 2-Sylow subgroup Cl2 is known to be cyclic C(2T), for some T > 2. We call the

2m -class group (0 < m < T) the subgroup Cl2m of Cl consisting of those classes of Cl

which are 2m -powers; then the even part of the 2m-class group is C(2r_m).

The 2m-class field rc,m + 1 is defined uniquely as that normal extension of k2 for

which a prime ideal q in k2 (of prime norm q) splits completely in k2m + x precisely

when q belongs to a class in Cl2"1.   Then Gal kim + x/k2 = Cl/Cl2"1 and [k2m + x: k2]

= 2m.  Another characterization of k m + x is that it is the unique unramified normal

extension of k2 of degree 2m.

For notation we use Latin letters for rational integers and Greek for algebraic,

while subscripts or German letters denote ideals (always) in k2, e.g., (2) = 22, (e) =

txt2, etc.  We summarize an earlier paper which goes as far as kx6, (see [2]).   For

Cl2 we have genus theory, and

fc4 = k2ií).(2.2)

For Cl4 we have

(2.3) -8 - -41

where e is a fundamental unit of Q(px l2), (see table in [5] ),

(2.4a) e=s + tpxl2,      e' = s-tpx/2,

k8=k4(exl2),

(2.4b) s2-t2p = -l,      s>0,t>0.

(3.9)    *   k32   =   k16(A V2.

!(S20)    Î    (3.6)

!(U

Í   klg   =kg(r1/2)

Figure 1

Tower of class fields over k2

Q(e1/2)
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For Cl8 (when 8 I h) we have

(2.5) *i6 = *8(r1/2),

where T is defined by th<i relations

(2.6) -p=f2-2e2,     f=-limod4),e>0,

(2.7) r = (/+(-p)1/2)e1/2/(l-i).

3.  Input Data for Cyclic-Sixteen Class Fields.  We continue to define new param-

eters for when 8 In.   First of all we solve

(3.1) ew2=u2+pv2,   v>0,w>0,u=fvimode).

The solvability of this equation follows from the fact that in k2    (2) = 22 so 2X is an

ideal whose class is of order 2, while by (2.6) e = Aej, where e x is in a class of order

4.   Similarly, w = A/ro, so ro, is in a class of order 8.  The congruence conditions of

u and v guarantee that e2 |/+ (-p)x/2, while tx \u + v(-p)x^2 (this is important when

e is composite).  The actual computation is done by machine after preliminary calcula-

tions show that v cannot always be assumed to be one.  For the current run we can

take v < 5.

We also need to assign signs to radicals. We begin by arbitrarily assigning signs to

(3.2) i-p)x'2,i,exl2,Txl2,

subject to pxl2 = -(-p)x^2i in the computation of e (see (2.4)) and

(3.3) e'x'2=i/exl2.

Other radicals are now determined.   For example, by squaring both sides,

(3.4) (1 +s/)1/2=(e1/2-e'1/2)/(l-0-

Furthermore, if we decompose

(3.5a) p = a2 + b2,    (odd) a > 0, (even) b,

we can choose the sign of b so that for suitable integers, zx and z2

(3.5b) (1 + si) = (a + bi\zx + z2i)2,      zx>0,z2>0

(note z2 + z\ = t).  This is done by using a double-precision complex square-root of

the two fractions (1 + si)l(a ± \b\i) to find which one is closer to a Gaussian integer.

Therefore,

(3.5c) ia + bi)x I2 = (e112 - e'x '2)/(l - i\zx + z2i).

We finally read in from a table of units [6] the fundamental unit for the Gauss-

Pell equation

tx +it2 +(ux +iu2)(a + bi)xl2

(3.6) no =-,
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where (a + to)1'2 has a sign already specified by (3.5c).  According to general meth-

ods of Dirichlet [3] (in analogy with the "ordinary" case (2.4)),

(3.7) ArQ(/)£20 = Htx + it2)2 - (ux + iu2)2(a + bi))/4 = ±i.

(Often there is a more convenient Slx in Q(a + bi)x/2 of norm i%2, % E Q(i), which

differs from Sl0 by a square factor.  Thus when p = 257', we can use Slx =

(1 + (1 + 1601/2) instead; see (1.1).)

The entries of Table I are now completely accounted for.

Coniecture 3.8.    Vhen 16 \h, the radicand of the 16-class field

(3.9) *32=*i6(A1/2)

may be taken as

(3.10) A-(« + a(-p)1/*)nr1/*,

where SI is either Sl0 or iSl0 (as remains to be determined).

We verify this conjecture for the fourteen p < 2000 where 16 I h. There either

h = 16 and Cl16 consists only of principal classes, or h = 32 and Cl16 also contains

those equivalent to 2X.  Thus, in any case, for q = Nq and q £ Cl16, we can write

(3-11) f0<l=x2+py2,        16/0IA.

We must show that for exactly such (large) q the defining equation for A1 ¡2 splits

modulo q into 32 factors once we have chosen the right SI (= Sl0 or iSl0).

4.  Galois Group Considerations.  We must have k32/k2 cyclic and rc32/Q di-

hedral.  Thus, we want (compare [2] )

(4.1) Gal k32/Q = (o, t\o16 = t2 = (or)2 = 1 >,

where o and t may be chosen as follows:

(4.2a) o:

Í-P)ll2-Í-P)112,    P112

,1/2 e'l/2        e'l/2 -*l/2

,1/2

,  r^r/e,

£2 —► oSl,       A —> AoSllSlex /2,

(4.2b) T.

,1/2

:l/2

>1/2,     i-pY'2

e1'2,   e'1'2

i-p)112,   i

-.'1/2 ,  r — ee2/r,

SI rSl,    A->e2w2e1/2rí2í2/A.

For the operations on SI, write a and ß as elements of Q(/), using a' and ß' to denote

conjugates over Q,
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a + ßiex>2-e'xl2),

a' +ß'ie1'2 +e'x'2),

cx-ßie112 -e'xl2) = ±i/Sl,

a'-ß'ie1'2 +e'x'2) = ±i/o3Sl.

To verify the Galois group (4.1) requires, first of all, normality:

Conjecture 4.3.   ikx 6 =) k&iVx /2) D ksÇEx l2)2ks, where

(4.4) 2 = í2aí2e1/2.

From this result rc16(A'^2) is normal over Q.  We see this by listing the conju-

gates of 2 generated by a and t (all differing by square factors).  Since all conjugates

of k32 over k2 must be generated by a and since A1'2 ^ kx6 (as implied by Conjec-

ture 3.8), then Gal k32/k2 = CY16).  Similarly, k8(Ex/2)/k2 is cyclic independently

of Conjecture 4.3.  The more tempting conjecture, kx 6 = ksÇEx'2)Ç3k8), seems

valid but is not needed for now, (compare Section 7 below).

We shall produce a computer output to simultaneously verify Conjectures 3.8

and 4.3.

5.   The Conductor-Discriminant Theorem.   The radicand A was set up as a

perfect (ideal) square as the first step in finding an unramified k32 over kX6 (hence

over k2).   The worst possible case now is that k32 is ramified over even primes (i.e.,

2X) in k2.   This would mean, in effect, that for an ideal f (the conductor) in k2,

all odd primes in k2 congruent to one another modxf   (see (5.1a) below) split com-

pletely if one such prime does from k2 to k32.   This reduces the testing to a finite

set; see [4].

Lemma 5.1.   Let KDKX  D k, where GalK/k = (X2m), Gal Kx/k = C(2m_1);

and let Kx/k be unramified, while K = Kx(A1 ¡2), where A is an ideal square in Kx.

Then the conductor of K/k is a divisor of 4.  Thus, if Pj and p2 are two odd prime

ideals in k, they will factor alike in K/k when they belong to the same class (modx 4)

in k.

The proof follows from the fact that the different of Kx /k is 1 (unramified),

while that of K/Kx divides 2 (since A is an ideal square).  Thus, the discriminant of

K/k divides 22   .  But by the conductor-discriminant theorem (see Hasse [4] ), this

discriminant = II   f, where x are the characters of HQ = Gal K/k and f   is the con-

ductor over k of the field fixed by that subgroup of HQ for which x = 1 •  In effect,

fx = 1 for all proper subfields and fx is the conductor for K occurring as often in the

product as x is primitive, i.e., 0(2m) = 2m_1 times.  But 22"1 = 40(2"i).  D

We, therefore, need a refinement of Cl2™ to Cl2    (modx 4).  Here we consider

only odd ideals <t and b ; they are equivalent exactly when for odd integers in k2, name-

ly a and ß

(5.1a) <*a = ßb,      a = ß   (mod 4).

(4.2c)

SI

rSl = oSl

o2Sl

o~xSl = o3Sl =
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The even part of Cl2m(modx 4) is C(2T_m) x C(2) x C(2).  The cycles C(2) x C(2)

come from the four-group of odd principal ideals (a) modulo 4, i.e., ±a, where

(5.1b) a=l,    l+2(-p)x'2,    (-p)1'2,    (-p)1/2+2    (mod 4).

Once we verify the splitting properties in Cl16 (modx 4) in k32/k2 it will follow

(from the equivalent definitions of class field in Section 2) that k32/k2 is unramified

and the conductor f was actually the unit ideal.

Preliminary Computational Procedure 5.2.   For any p (with I6\h) we

can verify Conjecture 4.3 by testing to see that primes generating Cl8 (modx 4) split

completely in k8CL1^2).  To verify Conjecture 3.8 we need only have to assume Con-

jecture 4.3 and make tests to show that primes generating Cl8 (modx 4) split complete-

ly in kx 6(A* /2) while one prime which splits in kx 6 (i.e., an eighth-power class) does

not, (so A1 /2 £ kx 6).

We begin with Cl8.  For given p, let x and y vary so as to generate primes q

such that

(5.3) fQq =x2 +py2,   x>0,y>0,

where /0 = 1 and 2 when h = 16 and f0 = 1, 2, and e when h = 32.  When f0 = e,

we further require

(5.4) f0y-±x  (mod e)'

so for some choice of sign q ~ ey1 (compare (3.1)).  In all cases the class of q is an

eighth power, and together they generate Cl8.

Final Computational Procedure 5.5.  Select three primes q for each p as

follows:   Two of them are principal (fQ = 1) and correspond to two of the three non-

trivial classes in (5.1b).   The third corresponds to a nonprincipal class, namely a gener-

ator o/Cl8 (modx 4), (so /0 = 2 when h = 16 and fQ = e when h = 32). Procedure

5.2 can be restricted to just these q.

The slight improvement from Procedures 5.2 to 5.5 is due to the fact that we

really use a multiplicative symbol "((K/k)IC)" to test the splitting character of the

ideal q in class C from k to K.   Thus, it is trivial that the square of a class will split.

6.  Verification of Conjectures by Output.  The test primes q are chosen by a

machine search according to (5.3) (with the a priori guess that q < 9999 would suffice)

Actually, the machine accepted for output one representative q per class in Cl8 (modx 4)

when available, so Table II was selected from a much longer list.

The arithmetic modulo q was performed with the help of a table of indices gen-

erated internally for each q.   Thus, the machine tried to solve for xx, x2, x3, x4, x$

representing (~p)112, i, e112, F1/2, A1/2 (as residues modulo a prime divisor of q in

^32)

^l=(f + xx)x3l(l-x2), (modq).

2 = (u + vxx)x^y4x4    (=w5),
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Table II.   Output

qfr
2^2

x  +py index  (base r) of

x_ wr

257

353

409

521

569

809

857

953

1129

1153

1201

1217

1249

1657

16

16

16

32

32

32

32

32

16

16

16

32

32

16

10,

m,

in.

m,

10,

in.

m,

293
1109

241

389
1493

181

509
1637

229

557
2309

101

2333
2357

641

1709
3461

149

1181
4157

53

1277
3821

157

1229
4517

569

1637
4621

577

1237
4813

601

4133
4877

37

1733
5021

269

1693
6637

829

12
437

80

78
245

56

91
817
107

158
1052

27

278
661

66

724
840

40

9
1182

4

63
586

53

183
2257

1

255
1617

288

395
327
300

872
1306

1

856
1791

57

225
1397

414

73
277

60

97
373

45

127
409

57

139
577

25

583
589
160

427
865

37

295
1039

13

319
955

39

307
1129

142

409
1155

144

309
1203

150

1033
1219

9

433
1255

67

423
1659

207

120
493
161

128
675
103

150
948
150

332
1510

67

658
1227

445

849
2510

83

479
1907

22

422
195

6

782
215

258

848
146

170

58
257

325

2042
340

2

1171
1397

125

1260
3690

254

97
257

54

165
64
29

238
32 8

24

148
1119

4

589
17

256

18
702

13

18
282

4

333
1805

73

525
1667

261

526
171
209

5
1642

10

77
545

4

0
1052

145

252
558
109

238
1534

227

474
1992

33

2232
382
355

52
26
89

742
2616

5

850
1236

4

670
2934

46

696
3556

109

474
1180

279

920
1270

7

755 1094
1425 4018

32  203

380
624
160

167
1040

797

112
68

216

50
12

134

156
174

10

362
1602

68

494
590
176

294
3152

44

884
1766

36

998
1076

98

1194
2592

380

842
2566

280

190
1580

86

370
734

0

942
4212

126

1402
4214

130

Here SI is represented by y4, where

(Tin -ft ^-ll. ■   (Ml   +M2*2X*3-*2/*3)
(6.2)   y4 = f(x2, x3) = -ltx + t2x2 + —-——-—

2 \ (1 ~x2)izx +x2z2)
(mod q);

and, of course, we let U = 0 if SI = Sl0 and U = 1 if SI = iSlQ.

To check Conjecture 4.3, test 2 (see (4.4)) by

(6.3) x\=yAy\x3    i=w6)    (modij),
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where y'4 represents oSl.  Thus by (4.2a),

(6.4) y\ =f(-x2, x2/x3)    (mod q).

The output is given by the indices of xx, x2, x3, x4, ws, w6 with primitive root

r (mod q - 1) as shown in Table II.  We now have the sign choices of (3.2) in the xx,

. . . ,x4 and the residuacity of w5, w6.  Thus, Procedure 5.5 requires that w6 has an

even index, while w5 has an odd index just when fQ > 1.

We use "large" q to avoid q \2ewtp, so 0 is never a factor in (6.1).  If h =

16 -odd or 32 -odd, no modification is required (since our search at worst misses eli-

gible primes q where f0qodd = x2 + py2).  If, however, 641 h, we should have to use

a different value of f0 in (5.3) to catch the nonprincipal generator of Cl8, e.g., if

128 \h, we could take/0 = w.

7.   Concluding Remarks.   Further computations seem to indicate that when p =

1 (mod 4), fc8(TI/2) = íc8(S1/2) = kX6, (even when 8ffc).  In fact, it would seem

that k8 has as a 2-fundamental system of units

(7.1) j, SI, oSl, e1/2

of torsion-free rank 3, although this system becomes no part of a 2-fundamental set

in kX6 (because S1'2 occurs).

The rank of the unit system is an indication of how the current results lead to a

much more chaotic state of affairs.  It is an easy guess that the 32-class field k64 is

generated by A*1'2, where

(7.2) A* = (u* + v*(-p)l/2)Sl*All2r~112.

Here u*2 + v*2p = ww*2, as in (3.1), with a similar sign condition to ensure the ideal-

square property of A*.   Likewise, SI* is a unit of kX6 (not k8); and the torsion-free

rank of such units is now 7 (not 3).  Thus, the chances of guessing SI* become in-

creasingly remote.  Nevertheless, the pattern of inductively finding the 2m-class field

seems, at least conjecturally, clear from (3.10) and (7.2).

As a parallel problem, the criterion for 16 I h is as yet unknown and seems to be

of a much greater degree of difficulty than that of 8 I h, which is given by the represent-

ability of p = a2, 4- 32^; see [1]. The author is greatly indebted to Jeff Lagarias

for helpful discussions and speculations as well as comments on the present paper.

The Computing Center of the City University of New York has kindly provided

the service of the Wylbur-IBM 370 System.
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