TABLE ERRATA

565.-I. S. Gradshteyn \& I. M. Ryzhik, Table of Integrals, Series, and Products, 4th ed., Academic Press, New York, 1965.

On page 838 , in formula 7.376 .3 the gamma functions should be $\Gamma(v / 2+1)$ and $\Gamma(n+3 / 2)$, so that the formula should read

$$
\int_{0}^{\infty} e^{-2 \alpha x^{2}} x^{\nu} H_{2 n+1}(x) d x=(-1)^{n} 2^{2 n-v / 2} \frac{\Gamma\left(\frac{v}{2}+1\right) \Gamma\left(n+\frac{3}{2}\right)}{\sqrt{\pi} \alpha^{\nu / 2+1}} F\left(-n, \frac{v}{2}+1 ; \frac{3}{2} ; \frac{1}{2 \alpha}\right) .
$$

This equation is derived from equation 18 b on page 150 of Buchholz [1], which itself contains one of the misprints. Furthermore, a direct proof has been given by the writer in [2].
D. T. Birtwistle

Department of Mathematics
The Polytechnic of North London Holloway Road
London N7 8DB, England

1. H. BUCHHOLZ, Die konfluente hypergeometrische Funktion mit besonderer Berücksichtigung ihrer Anwendungen, Springer, Berlin, 1953.
2. D. T. BIRTWISTLE, Polytechnic of North London Technical Report PNL-MA-25, March 1979.

EDITORIAL NOTE: For previous notices of errata in this edition see Math. Comp., v. 33, 1979, p. 430, MTE 557; ibid., p. 846, MTE 564 and the editorial footnote thereto.

