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A Weak Discrete Maximum Principle and Stability

of the Finite Element Method in Lx

on Plane Polygonal Domains. I

By Alfred H. Schatz*

Abstract.   Let ÍÍ be a polygonal domain in the plane and Sy(£l) denote the finite

element space of continuous piecewise polynomials of degree < r — 1 (r > 2) defined

on a quasi-uniform triangulation of ii (with triangles roughly of size h).   It is shown

that if un e Sy(Sl) is a "discrete harmonic function" then an a priori estimate (a

weak maximum principle) of the form

""ftHi^n) < CII"/illL„.(3iï)

holds.

Now let u be a continuous function on £2 and un be the usual finite element

projection of u into Sy(f2) (with un interpolating u at the boundary nodes). It is

shown that for any xESf (ii)

ii" - "hhjitn < c(ln l)r ii" - xir^ii).  where '" = {„ ¡f \ > 3'

This says that (modulo a logarithm for r = 2) the finite element method is bounded

in L„, on plane polygonal domains.

0. Introduction and Statement of Results. The purpose of this paper is to

discuss some estimates for the finite element method on polygonal domains.  In

particular, we shall consider the validity of (for want of a better terminology) a

"discrete weak maximum principle" for discrete harmonic functions and then use this

result to discuss the boundedness in L^ of the finite element projection.  In this part

we shall discuss the case of a quasi-uniform mesh.  In Part II we shall concern our-

selves with meshes which are refined near points.  Let us first formulate the problems

we wish to consider and state our results.  References to other work in the literature

which are relevant to our considerations will be given as we go along.

For simplicity let S2 be a simply connected (this is not essential) polygonal

domain in R2 with boundary 3fi and maximal interior angle a, 0 < a < 27r, where

we emphasize that in general Í2 is not convex.  On £2 we define a family of finite

element spaces.  For simplicity of presentation we shall restrict ourselves to a special

but important class of piecewise polynomials.  For each 0 < h < 1, let Th denote a

triangulation of Í2 with triangles having straight edges.  We shall assume that each

triangle r is contained in a sphere of radius h and contains a sphere of radius yh for

some positive constant y. We shall also assume that the family {Tn } of triangulations
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is quasi-uniform, i.e., there exist a constant 70 such that

(0.1) 7>70>0

independent of h.  Let Sh(£l) = Sh, r > 2, an integer, denote the finite dimensional

space of continuous functions on £2 whose restriction to each triangle t E Th is a

polynomial of degree < r - 1 and Sr (£2) denote the subspace of S"(£l) consisting of

those functions which vanish on 3£2. Note that S*(Í2) C Wl(ti).

Consider the bilinear form £>(•, •) on Wl2(íl) x W\(il) defined by

(°-2) D(u, v)= fnW ■ ivdx.

Now if m G Rjííí) is harmonic in £2 then

D(u, v) = 0    for all v E Wl2(Sl).

It is well known that if in addition u is continuous on Í2 then it satisfies a maximum

principle, i.e., its maximum and minimum values are taken on 3S2. We shall say that

uh E Sh is discrete harmonic in £2 (relative to Sh(£l)) if

(0.3) £>(«„, x) = 0    for all X S S?(Í2).

In [1], Ciarlet and Raviart showed that if 5y (O) is taken as the space of piecewise

linear functions (r = 2), then un satisfies a maximum principle if and only if the

maximum angle in any triangle r E Th is < 7r/2.   Recently Mittelman [4], has shown

that if SH(&1) is taken to be piecewise quadratics (r = 3) then a maximum principle

holds if and only if all the triangles r E Th are equilateral.  Obviously then a discrete

maximum principle holds under very restrictive conditions.

More generally we shall show (see Section 3) that the following a priori estimate

(a "weak discrete maximum principle") holds for the subspaces Sh(Sl):

Theorem  1. Let Í2 be as above.   Suppose that the {Th} are quasi-uniform

(i.e., satisfy (0.1)) and un E Shr(ÇÏ) satisfies (0.3).   Then for h sufficiently small

(0.4) Klli0Q(n)<cIKIlL_on).

where in general O 1 is independent of h and uh, but may depend on £2, y and r.

If £2 is convex then C is independent of Í2.

Remark 1.  The condition that £2 be simply connected is not essential.  An

inequality of the form (0.4) is also valid in this case.

Remark 2.  The methods used here in proving (0.4) differ entirely from those

considered in [1].  Here we shall apply in our situation, techniques developed in

Natterer [5], Nitsche [6], [7], Nitsche and Schatz [8], Schatz and Wahlbin [9],

[10], [11], R. Scott [12].  Our proof depends in part on a priori estimates given

below (see Lemma 1.2) for the problem - Au = /in Í2, v = 0 on 8Í2 on polygonal

domains.  Thus the inequality (0.4) also holds for the discrete analogue of solutions

of homogeneous second order differential equations for which estimates of this type
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are known.  As a simple example of this we may take un E Sh(^l) satisfying (with

(". t>) = Ssiuvdx)

Diuh, *) + o(un, 0) = 0    for all * E i*(J2),

where a is a given constant.  Here un is the discrete analogue of a solution of

-Au + ow = 0ini2.  If a > 0 then a maximum principle holds for u but if a < 0

and is not an eigenvalue then it does not hold.  However, an inequality of the form

remains valid and (0.4) also for the corresponding discrete solution un.

Remark 3.  As is well known, a major feature of the maximum principle for the

continuous case is its independence of the domain.  Theorem 1 states that for convex

Í2, the constant C appearing in (0.4) is independent of Í2, i.e., Í2 may be any convex

mesh domain.  In this case C depends only on 7 in (0.1) and the order of piecewise

polynomials used.  The corresponding result for a general mesh domain is an open

question.  Our proof for nonconvex regions does not yield this because of several

points, for example the use of the a priori estimate (1.5) which is domain dependent.

Remark 4.  If we are willing to replace the constant C appearing in (0.4) with

a term of the form CXJn 1/h) or ch~e for arbitrary e > 0 where in general C =

C(e, S2, y, r) then a simpler proof of Theorem 1 may be given than that presented in

Section 3.  In other words we shall go through some extra difficulties in order to

obtain the form (0.4).

Remark 5.  Let £2 be fixed and let Gd Ç Í2 be the set of points in Í2 whose

distance from 9Í2 is greater or equal to d. One can show that if d = hl ~e for any

e > 0, then

where C* —* 1 as h —► 0. We conjecture that this is also the case for the constant

C occurring in (0.4).

We shall now apply (0.4) to investigate the stability of the finite element

projection in /,„, on a polygonal (not necessarily convex) domain.  Let « be a con-

tinuous function on Í2.  For example, u may be thought of as a weak solution of

-Au = f   in £2,

u = g   on 9Í2,

where /and g are prescribed (but not specified here) so that u is continuous on Í2.

Let us note that for any \p E Sh(£l), D(u, \¡j) makes sense by integration by parts.

In fact, for continuous « we may define (see Schatz and Wahlbin [9] )

T<ETh f

where ds denotes arc length along br.

Let un be the finite element approximation to u determined in the following

way:   On OÍ2 let un interpolate (see Section 2 for further details) u at the boundary
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nodes, then un E Sh(£l) is defined to be the unique solution of

(0.5) D(un, 4/) = D(u, i/0   for all \p E °Sh(Q,).

We wish to estimate \\u - un\\L   ,ay  Our approach here will be to compare uh to

another related problem defined on a convex polygon say £2 containing £2.  To this

end we shall make the following assumption which says that the family {Th} may be

extended to a quasi-uniform family of triangulations of £2.
*+** r+*r

A.l. There is a convex polygonal domain £2, £2 C £2, such that for h sufficiently

small, each triangulation Th of £2 can be extended to a triangulation Tn of £2 and the

family {Th} is quasi-uniform with the same constant y appearing in (0.1).

In Section 4 we shall show

Theorem 2.  Let £2 be as above and suppose that S,(£2) satisfies A.l. Let u

be a continuous function on SI and un E 5j?(f2) satisfy (0.5) where on 9£2, un inter-

polates u at the boundary nodes.   Then there exists a constant C independent ofu,

un and h (for h sufficiently small) such that for any x e S(?(i2)

(0.6) II" - u„h„w < C(ln i)' II" - Xfe„(n>-

IfuEWliSl),

(0.7) *-*Ki<cHy*"**it*y
Several remarks are in order.

(1) The inequality (0.6) says that (modulo the usual logarithm for r — 2) one

can obtain the best rate of convergence in Lœ that the subspace can provide even

when the domain is nonconvex.  This is in contrast to the rate of convergence in

¿2(£2) where for nonconvex domains the finite element method is not bounded in L2(Sl).

Now if l> 0 is an integer let C;(£2) denote the space of functions having continuous

partial derivatives up to order / which are continuous in £2 with the norm

Define the seminorm

IIhIUo, =   X   max ID"K|.

i i |m(x) - ujy)\
\u   _ _   =   sup    —^-!¿-a

ca(ft)     x,yka      \x-y\a

and for I > 0 an integer and 0 < o < 1, CI+ a(i2) will denote the usual Holder spaces

with the norm

■*+•<*) - IIU"c<(ft) + £, ^WnY\y\=i

It is well known that if / + a < r and u E Cl+a(Ü) then there exists a x e ^î(^) such

that \\u - xll o -   < C7z'+CT(£2)||«|| ,+ a _ .   This together with (0.6) immediately

implies the following

Corollary.   Under the conditions of Theorem 1, let u E Cl+ CT(Í2) for some

integer I > 0 and 0 < o < 1, then
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<°-8> «"" Ml.fc <<**'(* Ö^W
In Nitsche [7] it was shown that if £2 is convex, u = 0 on 9£2 and .> (£2) is

taken to be piecewise linear functions (r = 2) the one has the estimate

■"-^■¿-<o)<c»(h¿)*,-xlirl(0)

for any x E S?(£2).

In the nonconvex case, again with u = 0 on 9£2, it was shown in Schatz and

Wahlbin [10] (using a much simpler technique) that one may obtain an almost
O

optimal rate of convergence in L^ of order /r  e provided u E W\ C\ W\+^~e(Sl)

(e > 0 arbitrary), where ß = tr/a and a as before.  There it was assumed that near the

corner with maximal angle a the solution u behaves like (using polar coordinates

(R, 8)) u KcxR^ûn ßd + smoother terms.  The methods used there do not extend

to yield the "optimal" rate of convergence if u is smoother.  This latter fact is very

useful for example in finding pointwise estimates for the error when singular functions

are used in the finite element method in conjunction with the usual piecewise poly-

nomial subspaces.  This will be the subject of a future publication.

(2)  In Schatz and Wahlbin [9] (see Section 2 for more details) it was shown

that if £20 CC £2j CC £2 then one has an interior estimate (valid for a large class of

finite element methods) of the form

(0.9)        II" - Ml„<h0> < C(ln ¿)FII« - Xh^nx) + * " «*ll-p.n-

The major point of (0.6) is that it is valid up to boundary for nonsmooth domains.

We shall find it convenient to use (0.9) in proving Theorem 2.

An outline of this paper is as follows:   In Section 1 we introduce some notation

and collect some preliminaries.  In Section 2 we shall discuss some properties of the

subspaces Sh(Cl) and some preliminary results for the finite element method.   Section

3 is devoted to proving Theorem 1 and Section 4 to proving Theorem 2.

In Part II of this study we shall first localize the results presented in Theorems 1

and 2 and use these results to show that inequalities of the type (0.4) and (0.6)

"almost" hold when the finite element spaces are defined on a class of meshes which

are refined near certain points of the domain. Applications will also be given.

1.  Notations and Some Preliminaries.   All functions considered in this paper

will be real valued.  If 1 < p < °°, then

with the usual modification when p = °°.  For each; =1,2, define the seminorm

i/p
lui   •       = Í   H  ILDa«f

and the usual norm on the Sobolev space IV£(£2), k a nonnegative integer,
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ll"V>s(í„MV>p

o

Wp(£2) is the completion of Cq"(£2) under the IVÍ;(£2) norm.  For the L2 inner product

we set (u, v) = fCiu(x)vix)dx.

If £20 Ç £2, then for d > 0,7Vd(£20) will denote a d neighborhood of £20 relative

to £2 , i.e.,

JVd(£20) = {x : x G £2; dist(x, £20) < d}.

In the special case that £20 is a point, say {x0}, we set Nd(£20) = Sd(x0), the

intersection of £2 with a sphere of radius d centered at x0.

We shall need the following version of Poincaré's inequality.

0

Lemma 1.1. Let £2 be a simply connected polygonal domain and v E W\ (£2).

Then for any d > 0 and x E 9£2

(1.1) ll^2(V-))<47rd|ü^2(Sd(r))-

Proof   It is sufficient to consider v E Cq (£2).  Extend v as v = 0 outside £2 and

introduce polar coordinates (p, 0), where p = |x - x |.  Then

ü(Xj, x2) = u(Xj + p cos 0, x2 + p sin 0).

Since ue = ~vx p sin 0 + vx p cos 0 and v vanishes at some point on each chele

p = constant, it follows for 0 < p < d that

\vixx, x2)\2 <(jT(l%| + \vX2\)p-de)2 <47rd2p0\\vXl\2 + \vX2\2)dd;

the inequality now follows on integrating this last inequality over Sd(x ).

Remark.   If £2 is not simply connected then (1.1) holds for all d <d0 for some

d0 = d0(£2).

We shall frequently use the following inequality which is a consequence of

Holder's inequality.  Namely if diam(£2) < d, 1 < p < 2 and v E £2(£2) then

(1.2) INlLp(ft)<^(1-2/p)IMlL2(n)-

We shall also need some estimates for weak solutions of-Aw=/in£2, u = 0
O

on 9£2 when £2 is a polygonal domain.  Let v E W \(£2) satisfy

(13) Div, i//) = (f, i//)   for all i// E W^(£2).

As in the introduction, let 0 < a < 2n be the maximal interior angle in £î and set

ß = nia.

Lemma 1.2. Let v satisfy (1.3), then

(i) (0. A. Ladyzenskaya and N. N. Urafceva [3], Grisvard [2]). For any convex

£2 (1 < ß), v E W\iQ.) n ^(£2) and
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(1.4) |u|iv2(ft)<l^2(ft)-

(ü)  iGrisvard [2] ). IfK<ß<landfE L (Í2) for some l<p< 2/(2 - 0),
9 1

then v E Wp(£2) D IV2(£2) and there exists a constant C idepending on £2 and p) such

that

(1.5) «*'„»<«> <<™V°>-

(iii) IffE L2(£2), supp(0 C Sd(x0), x0 G £2, dist(x0, 9£2) < d, then

(1-6) l"l^(ft)<4tó|^2(Sd^o))-

Proof of (iii).

|M|t2(ft) = (V"' VM) = & "> < ^W^d^

There exists a point x G 9£2 such that Sd(x0) C S2</(x), and (1.6) now follows on

applying Lemma 1.1.

We shall need local versions of (i) and (ii) of Lemma 1.2.

Lemma 1.3. Under the conditions of Lemma 1.2, there exists a constant C

such that if £20 Ç £2, Ç £2, /V*d(£20) Ç £2,, p = 2 when £2 is convex (ß > 1), and

1 <p< 2/(2 - ß) when K<ß<l, then

^      M^(O0)<c^,i«,)+rf"1|^>1,+rf"3!|D«v«t)>'

where C is independent of £2 if £2 is convex.

/too/   By a straightforward covering argument it is sufficient to consider the

case when £20 = Sd/2(x0), £2t = Sd(x0) and x0 G £2^,.   Let co e C^ÍS^Xq)), u> = 1

on B2d/3(x0), ID"co| < C/dM, \a\ = 1, 2, where 5d(x0) is the open ball of radius d

centered at x0.  Then cou G W2(£2) n IV2(£2) and (1.7) follows by applying (1.4) and

(1.5) to the function cou instead of u.

2.   Some Properties of the Subspaces and Further Preliminaries.  We shall need

some properties of the subspaces 5j?(£2).  To begin with, let T be a fixed triangle.  We

choose the nodes for T to consist of (see [13] and [12] ) (i) the vertices of T, (ii) if

r > 3, the r - 2 points on each edge that divides the edge into r - 1 equal parts,

(iii) if r > 4, (r - 3)(r - 2)/2 points in the interior of T.  The nodes in any triangle

t G Th are defined by an affine identification of t and T. The interpolant u¡ G Sh (£2)

of u is defined by u = u¡ at the nodal points.  We shall collect some well-known

properties of the subspaces ^(£2).  If Mh is any mesh domain, i.e., the union of

triangles in Tn and if m G W2{Mn) for some 1 < p < 2, then

an       n-i\\u-ulh2(Mh) + \"-"i\wï(Mh)<c^2IPMw2p(Mhy



84 ALFRED H. SCHATZ

If Mh is any mesh domain then for any x e S"iM)

(2.2) MWUMh)<Ch~lM^^

and

(2.3) IWIi„(M/l)<^-1llxlli2(Ai/]).

The constant Cin (2.1), (2.2) and (2.3) is independent of Mh.

Now let un E S"(£2) be arbitrary, and let uh E ShiD.) be equal to un at all

interior nodes and uh = 0 at all boundary nodes.  Then obviously,

(2.4a) SUPP("/, _ "Á) Ç Aft = {x : x G £2, dist(x, 9£2) < h};

and since the nodal basis is uniform (see [13]), it follows that

(2-4b) ll«*-«*ll¿.(n)<CII«hllLao(an) =

where C is independent of £2 and depends only on y and r.

We shall need some local estimates, for the finite element method, up to the

boundary in W\; see Nitsche and Schatz [8], Schatz and Wahlbin [10] and interior

estimates in L„, Schatz and Wahlbin [9].

Lemma 2.1. Suppose that (A.l) is satisfied.   There exist positive constants

C, and kx such that

(0 // £20 Ç- ni Ç ft ^d(ty>) Q fl,, d > kxh and u G ÍV»(£2) and uh G J'I(£2)

satisfy
0

(2.5) Diu-un,i¡j) = 0   forall\PEShiSll),

then for h sufficiently small and any x G ¿>  (£2)

II" - "h II   i
A'V2(ft0)

(2.6)

<C(l"-xl^(ft1)+d"1|l"-^2(«1)+d~1ll"-"/Illi2(n1))-

(ii) // £20 CC £2! CC £2, d = dist(£20, 9£2, ) >kxh,uE C(£2) and un E Sh(£2)

satisfies (2.5) (see Section 0), then for h sufficiently small and any x e ShiSl)

(2.7)   II« - «äIILod(„o) < C(ln ¿)r(||« - xJt.iflp + <T'll« - M¿2(0l)).

w/iere

_     II    <T>-2,

10   ifr > 3.

/« (2.7) and (2.6), C" is independent of £20, £2,, £2, u, uh and h, for h sufficiently

small.

Let us note that if uh G S" (£2) satisfies

ZX"/I,X) = 0    foraUxei'1^)
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we are at liberty to choose u = 0 and x = 0 in (2.7) and, hence,

(2.8) Kh^a0)<Cd"t^hk2(al)'

where C is as above.

3. Proof of Theorem 1.  Let un G S* (£2) satisfy (0.3), and let x0 G H be such

that l«ft(x0)| = ||uft||L   (n).  Set d = dist(x0, 9£2). It follows from (2.8) that there

exists a constant kx > I such that if d > 2kxh

|Mft(x0)|<cfi-1|l«JIL2(Sd(Äo)).

On the other hand if d < 2kxh, then using the inverse property (2.3) we have that

since x0 G t E Tn for some t

K(xo)\^ch~l\Kh2(T)<ch~l\Kh2(s2n(x0)y

Hence

(3.1) KIIl.í«) <^"1|KIIl2(sp(,0)).

where

(3.2) P = max(r¿, 2h).

Now

IKIIi,(S   (*„)) =        JUP K"h' V)UMIl,(S  (*„)) = !•
« ¿2Pp(.*0»     ^ecôiSp^fj)) ^2^p^o»

o j

Let u G W2 (£2) be the unique solution of

(3.3) Z>(u, uV) = (v?, u/)    for all r¡, E W»(i2),

and let vn E Sh(£l) be the finite element approximation to u defined by

(3-4) Divh,x) = (<P,X)   for all x G l?(£2).

We note that since & < ß, by Lemma 1.2, there exists a 4/3 < p0 < 2, where p0 = 2

if £2 is convex, such that u G W2p (£2) n ÍV^(£2).

Let i/ft = u,, on 9£2 satisfy

(3.5) DiUh,\p) = 0    for all i// G IV\(£2).

Note that [/„ satisfies -At/,, = 0 and, since Un E Wx„(bü) and Un E C(£2), £/fc

satisfies a maximum principle. We write uh = un - Un + Un. Then using (3.2), (3.3),

(3.4), and (3.5)

\(un, *)| < K«* - Uh, *)| 4- |(t/„, ?)| = |D(«h - Uh, v)\ + \(Uh, *>)|

<|Z)(Mll,ü)| + KIILoo(an)IMIL  (s   (x0))
(3.6) ^

< !£)(«„, u)| + plKII£ooon)IMlL2(ft) < Wf*h> u)l + PKIIi.on)-
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In view of (0.3), (3.3) and (3.4) we have for any x G 5^(£2)

(3.7) WPh, v)\ = D(uh,v-vn) = D(un -X,v-vh).

We now choose x = Uh satisfying (2.4a) and (2.4b).  Then, using (2.2) and (2.3),

Wuh -uh,v- vh)\ < c\uh - uh\wl(a)\v - vh\w{(Ah)

(3.8)
<ch-1\\uh-uh\\Loo(a)\v-vh\wX(An)<ch   1lü-üÄlH,,(AÄ)KIILooon),

where as in Section 2, An = {x : x G £2; dist(x, 9£2) < h}. Collecting (3.1)—(3.8), we

arrive at

t-ifc-t(3.9) KllLoo(n)<c0>  'A  Mw-wJ^^ + OKIL^an)-

The proof of Theorem 1 will be complete once we have shown

(3.10) p~lh~llv-v¿W\(Ah)<C-

Let R0 = diam £2 and consider the annuli

Af= {x :xE £2, 2~U+1)R0 < |x -x0| < 2_/Ä0},   / = 0, 1, 2, etc.

and

A,l^AMU"-UAiUAf+1 U---UAj+„     I =1,2, etc.

Set dj = RQ2~', and let 1 </ </= [ln2(£0/8p)] + 1 where [•] denotes the greatest

integer function.

We first note that for any / — 0,1,..., etc.,

(3.11) mes04/ n A„ ) < cd/i,

where, in general, c depends on £2 if £2 is nonconvex but is independent of £2 if £2 is

convex.  This is easy to see in the nonconvex domain where £2 is a fixed polygonal

domain; and hence, its boundary is composed of a fixed finite number of straight

line segments.  To see this for a general convex £2 we first notice that

(A n A„) Ç (Sd.(x0) n A„) C {x : x G Sd(x0), dist(x, 9Sd.(x0)) < h} = G¡.

Since £2 is convex, then Sa.(x0) is convex and the length of 9S</.(x0) < 27r<¿-.  Hence,

mes(/4- n Ah) < mes(Gy) < 2itdjh, which proves (3.11).

Using Schwarz's inequality and (3.10),

p-'/î-'llu-uJI   .
I h   w\(Ah)

<P_1/j_1) V |u-u„|   , +\v-vh\   . _ |
(3.12) ¡¡to h,w\(AhnAf) *V}(AfcnS8p(,0))J

<C\'£(>-1h-*d*\v-vh\   . A  „A+p-V2hJ/2\v-vh\   . f.
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Note first that in view of (2.1), (1.4), (1.5) and (1.2)

lü_,;J^(AfanS8p(,0))<|y-^^(ft)<lü-ü^l(ft)

<^"2/P°W^o(ft)<C,l2_2/PO|MIS0(V^))

Since W\L2(Sp(x0)) = 1. Po > 4/3 and h\p < 1

(3.13) h~Vlp'VilV-V"]w2ÇAhnS8pix

/Ä\3/2-2/p0

A-VHlu-Ufalu/líA  nç   „0))<<pj

where c is independent of £2 if £2 is convex.

Let Z = {j : I <f <J;AnnA¡¥= 0}.  For ; G Z we apply (2.6) to the domains

/4;. and .4*, respectively, and obtain using (1.4), (1.5) and (2.1)

\v~vh\   . <c{|u-ur|   ,    ,   + dj* ||u - Ur||        i

+ d7Hv-vh\\ }
(3.14) L*u/>

<c{/i2_2/p0|u|   2      2   + rfr1||u-ujl        , }.

Since u is harmonic in Af, we have using (1.7) and (1.2) that

A2_2/p0|u|   2      .   <c/z2-2/pod2/Po-'(í/ri|ü| +dr*M        ,).
W2oU?) ' > w\(Af) ' "L2(Af)J

Since diam(,4?) < 4d¡, A3 n A,, =£ 0 and, therefore, dist(/l?, 9£2) < A, there exists

a point x- G 9£2 such that Aj C S8d .(*/)•  Hence, by (1.1) and (1.6)

(3.15) /.2-2/p°|u|   2      2   <c/i2-2/poj2^o-2M <c/M2-2/Po

We now estimate the second term on the right of (3.11).  For j EZ and x- as

above

llV-V"K2(Af)<llV-V^2(Ssd.&j))

(3.16)

rjEC
sup \(v-vh,v)\,W\L2Íslid(xí)) = 'í-

yes«*/*/» '

Let co G K^1 satisfy £>(co, t//) = (r¡, \¡j) for all i// G W\(SÏ) (note that co G ^(£2)),

and let \ph E 5h(£2) satisfy Z)(co„, x) = 0?, x) for all x G 5"(£2). Then in view of

(1.4), (1.5), (1.2) and (2.1)
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\(v - vh, r¡)\ = \D(v-vn, co)| = \Div ~vh,u>- coA)|

< |ü - ^(O)1" - ^wiW < lV " ü^2(ft)k - W42(ft)

<c/I4-4/pO|MILpo(n)W,po(n)<cÄ4-4/%2/"o-^2/Po-i.

From this (3.13), (3.12) and (3.11 ) we obtain after summing over jEZ

2 ,-'*-»*>-».i„1(A,n„,,

(3.17) r hV2-2/p0    j ,        "I
<cU3/2-2/pov_!_+-_- y —-—■

L       h dV2-2^    p2-2/po h ^;/2-2/poJ

Since p0 > 4/3, 3/2 - 2/p0 > 0, 7/2 - 4/p0 > 0, d¡ > p we obtain from (3.14), (3.10)

and (3.8) that

where in view of (3.2), the inequality (3.9) follows which completes the proof.

4.  Proof of Theorem 2. Extend u to £2 as a continuous function on £2 (again

calling it u) such that u = 0 on 9£2 and

(4.1) H"llL„(ñ)<C1l"llL00(ft)-

~           °h   ~
Let wh G 5" (£2) be the unique solution of

(4.2) LHu -uh,n) = 0    for all t? G Sh(ñ).

Now

(4.3) llw - "JILoo(n) < II" - « A..<n) + Höft - "A^ft)-

Apply the interior estimate (2.7) to the domains £2 and £2, respectively, then for the

first term on the right of (4.3)

(4.4) II" - « A.cn) < C(ln f )' ML_(ti) + II« - Mz,2(S)-

Assume for the moment that we have shown

(4-5) ll«-"JlL2(ft)<cll"llL„(n)>

then from (4.4), (4.5) and (4.1) we have

<4-6) H"-aftii.w<41i)FB«llwo).

Consider the second term on the right of (4.3).  Since Diuh - uh, t?) = 0 for all
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17 G S1, (£2), i.e., un - un is discrete harmonic in £2, we have from Theorem 1 that

ll«ft - "A„(ft) < °^h - Ml „(an)

<c[ll«-^nLao(8n) + ll"-"A„oft)]-

The first term on the right may be bounded as in (4.6).  Since uh = u¡ on 9£2 and

""A„(an) < Mi(t(,n), we arrive at

K-"ftllL»(n)<c (ln±)'||«|
¿ooW

Combining this with (4.6) and using (4.3), we have

H«-"ftHL.(n)<c(taj[jrML-(n);

and the result would follow on applying this result to u - x with u - un = u - x~

("h - x).

Let us now prove (4.5). We write

II" - MÍ2(ñ) = ("-"„."- "fa) = D(u - «fa, i//),

where D(\p, 77) = (u - uh, 77) for all t? G W\(d).

Let \ph E S*(£2) satisfy D(\p - \pn, x) = 0 for all x G 5*(£2), then using this

and integrating by parts

II" - "JlL(ft) =D(u-uh,i,- i//fa) = ZX«, * - h)

(4.7)

<r   / r       °W ~ *h) C \

<
tBT'

m - *a)
bn W*»'********-«*

Since the triangulation is quasi-uniform, it follows (see [9] ) that for each t ETh

a(* - <M

and we obtain from (4.7)

(4-8)11» - «falli2(ftc) < cj»-1!* - Mw}(ñ) + J^ I* - *J^w|Hlx.(o

For the first term on the right-hand side of (4.8) we have from the definition of \¡Jn,

(2.1) and (1.4) that

.)•

»' - M*|<ft < "' - **"wJ(S) < W - *'"*t(5> < ̂ "^(S,
(4.9)

<C/i||«-«fal|L (ñ).
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In order to estimate the second term on the right of (4.8) we first note that the

interpolant \pr of \|/ has the property that

(4.10) H-MwiM^Kfa-

and for any x e ^(£2)

(4-11) M^w<ak'1Mir|W

Hence, using (4.10) and (4.11),

»-♦»■ïrî(r)<w-wirî(T) + W/-wwîw

<C"*l^(r,+*"1"*-*ilwJW+*"l,*-**lr|<r))

Now using (4.9),

Z i^-^lL2fT <cii"-"JlL2(ft)-
rer. "iw

This together with (4.9) and (4.8) proves (4.5) which completes the proof of (0.6).

In order to prove (0.7) we use (0.6) and (2.2) and write

<c(il«-«/llM,L(n)^1ll«/-«JlLoo(n))

< Cfll« - «¿„i. (n) + Ä_1II« - "Aœ(ft) + »_1II« - «ftllio.(n))

< c(|« - «/llH,L(n) + A"1 (in iy II« - Brlun))

<c(infY Hull   .V    V       VL(ft)-

The desired result (0.7) now follows on applying this last inequality to u - x for any

X G S? (fi) and writing « - un = u - x ~ («„ - x)-
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