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On Maximal Finite Irreducible Subgroups of GL(n, Z)

V. The Eight Dimensional Case and a Complete

Description of Dimensions Less Than Ten

By Wilhelm Plesken and Michael Pohst

Abstract.   All maximal finite (absolutely) irreducible subgroups of GL(S, Z) are deter-

mined up to Z-equivalence.   Moreover, we present a full set of representatives of the

Z-classes of the maximal finite irreducible subgroups of GL(n, Z) for n < 9 by listing

generators of the groups, the corresponding quadratic forms fixed by these groups, and

the shortest vectors of these forms.

1. Introduction. The present paper completes our discussion of maximal finite

(C-)irreducible subgroups of GL(8, Z) which we began in Part IV [15]. There are 26

Z-classes of such groups described in Theorem (4.1) as Z-automorphism groups of cer-

tain quadratic forms.

The major part of this note is concerned with finding the quadratic forms F of

degree 8, the automorphism groups A of which are irreducible and satisfy the condi-

tion: each irreducible subgroup oî A has no Q-reducible subgroup of index two.  (All

other forms of interest were already obtained in Part IV [15].)   The procedure is

nearly the same as in Part I [15].  First, we determine essentially all minimal irreduc-

ible finite subgroups of GL(8, Z) up to Q-equivalence satisfying the condition from

above (Section 2).  Then we compute the Z-classes of the natural representation mod-

ules of these groups, respectively, the -<-maximal centerings of the corresponding lat-

tices, by the centering algorithm [15, Part I].  The centerings are listed on the micro-

fiche at the end of this issue.  A detailed description of the output and the associated

quadratic forms in which we are mainly interested are given in Section 3.  Finally, the

automorphism groups of these forms and of the ones obtained in Part IV [15] are de-

rived in Section 4.  They are the representatives of the Z-classes of the maximal finite

(C-)irreducible subgroups of GL(8, Z).

In an appendix and on the second part of the attached microfiche we present a

complete list of the results for all degrees 2 < n < 9.

The extensive electronic computations were carried out on the CDC Cyber 76 of

the Rechenzentrum of the Universität zu Köln and on the CDC Cyber 175 of the

Rechenzentrum of the RWTH Aachen.  For various parts of this paper, especially for
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calculations in matrix and permutation groups, we made use of the implementation of

group theoretical algorithms in the Aachen-Sydney GROUP System [4].

2. Minimal Irreducible Finite Subgroups of GL(8, Z).  Because of the results of

Part IV [15] we are no longer interested in all Q-classes of minimal irreducible finite

subgroups of GL(8, Z) but only in those containing groups G with the property: (ß) G

has no subgroup of index two which is Q-reducible.  In this paragraph we shall derive a

set of representatives of the Q-classes of these groups.  Often it is more convenient to

compute a Q-irreducible subgroup H oî G which fixes—up to scalar multiples—exactly

one quadratic form.  They are obtained more easily and their number is smaller.  The

character x of the natural representation of H can be of two types:

X = 2i^, where i// is irreducible, rational and of Schur-index 2, or

X = i//j + ip2, where \p¡ is irreducible (i = 1, 2) and \p2 is the complex conjugate

of i//j. We do not check in each case, if H is really contained in an irreducible group

G.   This can, however, be decided by the results of Section 4, where we compute the

automorphism groups of the obtained quadratic forms.

Let A be the natural representation of a minimal irreducible finite subgroup G of

GL(8, Z) with property (j3), and let TV be a maximal abelian normal subgroup of G.

Applying Theorem (3.1) of [15, Part I] (an integral version of Clifford's Theorem) we

have Aljy- = Tl + • ■ ■ + Tr, where T,, ..., Tr are integral representations of TV satisfy-

ing rt ~q kAj (i — 1,..., r, k €: N) with Af being Q-irreducible, integral, and inequiv-

alent of the same degree m.   Furthermore, T^N) = ■■■ = Tr(N) holds.  As a conse-

quence, we must discuss all possible solutions of the equation 8 = k m r:

(i)  (ii)  (iii)  (iv)  (v)  (Vi)  (vii)  (vüi)  (ix)  (x)

k 1 1 1 1 2 2 2 4 4 8

m 1 2 4 8 1 2 4 1 2 1

r       8     4     2      14     2      1        2       11

In the cases (i)—(iii) and (vi)—(viii) there are no groups G.   We prove this except for

case (vii) by the following lemmas some of which will also be used in the other cases.

(2.1) Lemma.   If G < GL(2", Q) is an irreducible 2-group, then G has a sub-

group of index 2 which is Q-reducible.

Proof.   By a result of Vol'vacev [1] G is conjugate to a subgroup G of the iter-

ated wreath product

<-1> 'v C2 'v, •■ • 'v C2

n

which has a subgroup of index 2 consisting of block diagonal matrices.  The intersec-

tion with G is certainly a Q-reducible subgroup of index 2 in G.    Q.E.D.

(2.2) Lemma.   G/N is isomorphic to a minimal transitive permutation group of

degree 8 in case k = 1.
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Proof   Since the Schur-indices of representations of abelian groups are equal to

1, the restriction of A to N is the sum of eight 1-dimensional inequivalent complex

representations which are permuted faithfully by G/N.   G is irreducible, if and only if

G/N acts transitively.  This fact implies the result as in the proof of Theorem (3.2)

in [15, Part I].    Q.E.D.

(2.3) Lemma.  For prime numbers p the minimal transitive permutation groups

of degree pa (a £ N) are p-groups.

For a proof see [15, Part III, Lemma (2.1)].

(2.4) Lemma.   In the cases (i)-(iii) G does not satisfy (ß), i.e. G has a subgroup

of index 2 which is Q-reducible.

Proof.   By (2.2) and (2.3) G/N is a 2-group in each case.  In case (i) TV is also a

2-group; hence, G is a 2-group and violates (ß) because of (2.1).  In cases (ii) and (in)

G/N acts imprimitively on the absolutely irreducible constituents of A|jy.  One can easily

find block stabilizers the inverse images of which yield a Q-reducible subgroup of in-

dex 2.    Q.E.D.

(2.5) Lemma.   In the cases (vi) and (viii) no group G exists which fulfills (ß).

Proof.   In case (viii) TV is obviously isomorphic to the Klein-four-group.  The

centralizer of TV in G is Q-reducible and of index 2.  In case (vi) G permutes the C-

irreducible constituents of A^ imprimitively, since the constituents of Tj form a

block.   Clearly, the block stabilizer 5 is a Q-reducible subgroup of index 2 in G.   (S is

also the centralizer of TV in G.)    Q.E.D.

The remaining cases are discussed one after the other.

Case (iv).  (Compare Case (ii) in [15, Part II, p. 555f].) TV must be cyclic with

<p(\N\) = 8 (ip denotes Euler's ^-function) and \G\ = 8|TV|.    Therefore, |TV| G

{16, 24, 20, 15, 30}.  For |TV| = 16, G is a 2-group and violates (j3) by (2.1). We dis-

cuss |TV| = 24 in greater detail, since it is the most complicated case.

(2.6) Lemma.   For |TV| = 24 we obtain exactly one group Gx with five generators:

Si

11
0

0

0

0

"o

1   -2     0

1 -3 0

2-4 0

3-6     0

2 -4 -1

2 -3 -1

2 -2 -1

1  -1  -1

0 0\

0 0 \

0 1

1 0

1 0

0 0

0 0 /

0 0/
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S2 =

/:

0
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0

0

\°\0

2

2

3

4

3

2

2

1

0 -1

0 -2

1 -3

0 -4

0 -3

0 -2

0 -2

0 -1

0

1

1

2

2

2

2

1

1   -1

1 -1

2 -2

3 -3

2 -2

1 -2

0 -1

0     0

:\
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S$

/

£3 =

1     0 -2

1 -1  -3

2 -1  -4

3 -2 -6

2 -2 -5

2 -1  -4

\ 1  -1  -2

\0     0 -1

0

1

1

2

2

1

0

0     0

0     0     1

0

/o    0    0

0 -1 -1

£4 -

1 -2

2 -2

0-1-1     3  -3  -

1-2-2     4  -4 -

\

1 -2

0 -2

0 -1

-1

0

0

3 -3

2 -2

1  -1

00000-

/

0     1     1 1 -1

0     0     2-2     1-2

1 1

1 1

0     1

2 -3

4 -5

4  -4

1 -2

2 -3

1   -2

ö\

0

\0

0     1     3-3     1-2     1

0     2-2     1-1     0

0     1-1     1-1     0 0/

1\

213 -2

4 -2

6 -3

5 -3

4 -2

3  -2.

2 -1/

where TV = <#,, £s>.

/Voo/!   G must be an extension of C24 by its automorphism group (acting in the

natural way). We have C24 = {a, b\a3 = bs = [a, b] = 1> and Aut(C24) = <a, ß, y)

with aa = a, ba = ft3, ^ = a,bß = b~\ ay = a'1, by = b.

The cohomology group H2((a), C24) as {x G C24|jca = x}/{xxa|x G C24} is

trivial.  Hence, there is only one extension El of C24 by <a>.  The center Z(E¡) of El

is <a> x <¿>4>.  Similarly, H2({ß), Z(Ey)) = C2; and there are at most two extensions

E2, E2 of Ex by <0>. We have Z(E2) =Z(E2) = Z(EX). Finally, H2((y), Z(E1))^C2;
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hence, there are at most two extensions in each case.  Thus, we end up with at most

four extensions altogether.  We give a construction for each of them:   Let T = D12

and f = (a, b\a6 = b4 = 1, a3 = b2, ab = a~l) be the two extensions of C6 by

Aut(C6) and

U = {a, b, c\a8 = b2 = c2 = 1, ab = a3, ac = a'1, [b, c] = 1),

U= (a, b, c\a8 = b2 = c4 = 1, ab = a3, ac = a~l, a4 = c2, [b, c] = 1>,

be the two extensions of C8 by Aut(C8).  Then the central products T Y U, T Y U,

f Y U, f Y U yield the four extensions of C24 by Aut(C24).*

However, T Y U, T Y U have no faithful Z-representation of degree 8.   T, T

have only one faithful character of degree 2, the one of T being of Schur-index 1 over

R and the one of T being of Schur-index 2.  Similarly, U, U have only one faithful

character of degree 4, the one of U having Schur-index 1 and the other one 2.  The

faithful characters of T Y U, T Y Ü, T Y U, f Y Ü are outer tensor products of these

two and four dimensional characters.  Hence, their Schur-indices over R are 1 in case

of T Y U and T Y U.  For G = Tv U one easily sees that G has a reducible subgroup

of order 2 (isomorphic to T Y H, where H is a subgroup of index 2 of U).  By some

lengthy computations one obtains an embedding of T Y U into the Weyl-group of the

root system E8.    Q.E.D.

(2.7) Lemma.  For |TV| = 20 there is no group G.

Proof.   One obtains four extensions of C20 by Aut(C20) in exactly the same

way as in (2.6).  The corresponding characters of two of them have Schur-index 2 over

R.  One of the other two groups

iD8 x Aff(l,5)with Aff(l,5)
a ß

0  1
a, j3GZs,a^0

has a Q-reducible subgroup of index 2.

The last group is isomorphic to the central product Tl Y T2 of the quaternion

group Tl as Q8 and a nonsplit extension of Aff(l, 5) by C2.   Tl Y T2 has a nonfaithful

integral representation of degree 8.  Namely, the centralizer of the subgroup of GZ,(8, Z)
-3,  -5,

isomorphic to 7\ in Q8x8 is isomorphic to the quaternion algebra (  "'    ") in which
—3—5 —1—1

Q8 a 7\ cannot be embedded, since (—'——) £ (—^—).    Q.E.D

(2.8) Lemma.  For |TV| = 15 we obtain exactly one group

G2 = {a®b be

*For the notation see Huppert [11, p. 49].
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Proof   By applying the Schur-Zassenhaus Theorem one gets G = S3 x Aff(l, 5).

Q.E.D.

(2.9) Lemma.   For \N\ = 30 there is no group G.

The proof is analogous to the one of (2.7).

Case (v).  The restriction A|jy of A to the maximal normal abelian subgroup TV

is given by Al^ = 24=1 2T¡, where the T¡ are 1-dimensional and inequivalent.  Hence,

TV is clearly a subgroup of {diag(a1( a2, a3, a4)\a¡ G <-/2>} of index 1 or 2.

(2.10) Lemma.   In Case (v) there are two Q-classes of minimal irreducible sub-

groups of GL(8, Z) both containing the Q-irreducible group

^.= ®        _ ^«-1'-1'1'1)^ 2,

Proof   As a consequence of Schur's Lemma G fixes a quadratic form

diagpfp X2, X3, X4).  Hence, we may assume that G is a subgroup of the automor-

phism group of I4 ® X with X G {(¿ »), ( 2 ~i)}, since (¿ °) and (J\ ~\) are-up to

multiples and Z-equivalence—the only forms of degree two with an irreducible auto-

morphism group.  Also, by Schur's Lemma the elements of the centralizer CG(N) are

of the form diag(fc,, k2, k3, k4) with k¡ G Aut^*) (i = 1, ..., 4).  Even CG(N) = N

holds.   For a proof we first assume that CG(N) is not abelian.  Then CG(N) would be

a subdirect product of four copies of dihedral groups of order 8 for X = (¿ !?) or of

order 12 for X = (_2 ~').  In each case we §et a normal abelian subgroup containing

TV properly, namely of exponent 4 in the first case, of exponent 6 in the second. Hence

CG(N) is abelian, but since it is normal and contains TV it must be TV itself.

The factor group G/N is isomorphic to a permutation group of degree 4, since it

acts on {Tl, ..., r4} faithfully.  By Lemma (2.1) G cannot be a 2-group, therefore,

3|(G: TV).  On the other hand, 8 divides (G: TV) by Ito's Theorem [11, p. 570]. Hence

G/TV-S4.

Next we show X = (_2 ~*).  Namely, for X = I2 the inertia group of Vl had

epimorphic images isomorphic to D8 and an extension of C\ by D6.  Hence

|G|.

On the other hand, \G\ = 4!|TV||4!16, obviously a contradiction.

Now we claim that G is isomorphic to a subgroup of index 2 of the wreath

product C2 ^ S4.  We consider the faithful representation A: G —► GZ,(8, Z3): (g..)

r->(g¡¡ + 3Z).  This representation is reducible, namely I4 ® (J °) multiplied by a

suitable permutation matrix transforms A into (   l _ ), where the A(. are faithful and

monomial of degree 4.   But the group of all monomial matrices of degree 4 over Z3

is isomorphic to C2 ^ S4.  Hence, G is isomorphic to a subgroup of C2 'v S4.  The



MAXIMAL FINITE IRREDUCIBLE SUBGROUPS OF GL(n, Z).   V 283

rest of the proof follows from the character tables of C2 "^ S4 and its subgroups

in [3J.    Q.E.D.

Case (vii).  We have A|jy = 2r where T is a Q-irreducible representation of de-

gree 4, hence TV is a cyclic group with */j(|TV|) = 4, i.e. |TV| G {8, 12, 5, 10}.  The cen-

tralizer CG(N) of TV in G is contained in the commuting algebra of TV in Q8X 8 which

is isomorphic to the ring of 2 x 2-matrices over the |TV|th cyclotomic field.  Since TV

is a maximal abelian normal subgroup, we obtain A|c   ,N* ~c A, + • ■ • + A4, where

the Af are inequivalent irreducible, algebraic conjugate representations of degree 2.

Moreover, G/CG(N) as Aut(TV) is of order 4.

(2.11) Lemma.   There is no minimal irreducible subgroup of GL(8, Z) in

Case (vii).

Proof.   If A,(CG(TV)) is an imprimitive subgroup of GZ,(2, C), it has either a

characteristic abelian subgroup properly containing A,(TV) or it is a product of A,(TV)

and a quaternion group of eight elements.  In both cases TV cannot be a maximal abe-

lian normal subgroup of G.   Hence, A1(CG(N)) is a primitive subgroup of GZ,(2, C).

In Blichfeldt's book [2] we find a list of all finite primitive subgroups of

PSL(2, C).   From these we obtain the finite primitive subgroups of GZ,(2, C) in the

following way.   For each group K in the list take those subgroups K of the group gen-

erated by the matrices representing K and some scalar matrices of finite order which

satisfy K/Z(K) = K.   Then A,(CG(TV)) is isomorphic to a subgroup of a central prod-

uct of a cyclic group with one of the groups SL(2, 3), G£(2, 3), SL(2, 5).  In each of

these cases the proper subgroup of G generated by TV and a 2-Sylow subgroup is still

irreducible, since all of the primitive finite subgroups of GZ,(2, C) contain the quater-

nion group of eight elements Q8.   Q.E.D.

Case (ix).  The restriction Al^ of A to the maximal abelian normal subgroup TV

is rationally equivalent to 4r, where T is an integral representation of degree 2.  Hence,

TV is a cyclic group of order 4, 3, or 6.   Analogous to Case (vii) we find (G: CG(N))

= 2 and A|c  (N\ ~c At + A2, where the A(. are inequivalent irreducible, algebraic

conjugate representations of degree 4.  There are exactly three possibilities for Aj : It

is monomial, imprimitive of minimal block-size 2, or primitive as a complex representa-

tion. We consider them separately.

(2.12) Lemma.   // Aj is monomial, G contains a group which is rationally

equivalent to one of the following four groups:

H2 =<diag(l,-l,-l, 1,-1, 1, 1,-1)Z>((18)(253764)),

diag(- 1, 1,1,-1,1,-1,1,- 1)Z)((12)(34X56X78))>

= S4 Y C4,

where Y stands for central product and D denotes the natural permutation representa-

tion of S8, and S4 is the binary octahedral group;
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0

1

0

0

0

0

0     0     0     0\

-1    0 -1    o\

0 0

0-110

0 0 0 0

0 0-1-1

0 0 0 0

0     0     10

-1 -1

0     0

0  -1

0 -1

1 0

0     1 /

/000000-10\\

/    1      1     0     0     0     1     1     1 \
0-1 2-1-1 1 0 1

-2 1-1 0 0-1 0

-1     2-1-1     0     0     1

:

10     0-10 0

110-1000/

0-1     0     1-1-1-1//

— iS4 x C3;

HA

/l  0  0  0

-1\   I 0 0  0   1

0/' 10100

0 0   10

= GZ,(2, 3) Y C4;

\

s GL(2, 3) x C3.

Proof.   From Clifford's Theorem we conclude that G can be transformed into a

(complex) monomial matrix group.  All matrices corresponding to diagonal matrices

are contained in TV, since TV is a maximal abelian normal subgroup.  Hence, CG(N)/N

is isomorphic to a transitive permutation group of degree 4.   Aj can be considered as

an irreducible projective representation of a transitive subgroup P of S4.  Because of

\P\ > 42 we have S4=P= CG(N)/N.   Therefore, CG(TV) is a central product of TV

with the binary octahedral group S4 or with GL(2, 3).  In both cases CG(N) is al-

ready Q-irreducible and fixes only one quadratic form up to scalar multiples.  There-

fore, we obtain four groups H2 = S4 Y C4, H3 = ^4 x C3, H4 s GZ.(2, 3) Y C4, and

Hs as GZ,(2, 3) x C3.   Q.E.D.

(2.13) Lemma. If the minimal block-size of Aj is 2, there is no group G.
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Blichfeldt's

notation
Order

Isomorphism

type
K/K'

(A)

(B)

(C)

(D)

(E)

(F)

(G)

(H)

(K)
Io

2°

3°

4°

5°

6°

7°

8°

9°

10°

11°

12°

13°

14°

15°

16°

17°

18°

19°

20°

21°

60

60

360

2520

168

25920

120

120

720

144

288

288

720

576

1440

3600

576

576

288

7200

1152

80

160

360

960

1920

960

1920

5760

11520

SL(2, 5)^A5

As

SL(2,9) = A6

An

SL(2, 7)

Sp(4, 3)
r*^i

A4 Y A4

S4 0S4

A4 Y S4

A4 vA5

04 Y 04

54y25

^5   Y^5

(2°IC2)S

(2°IC2)ns

0°IC2)

(7°IC2)

(5°IC2)

(E\C5)

(E\Dl0)

(E\Mf(l, 5))

(E\A5)

(E\S5)

(C4 y E\A5)

(C4 Y E\S5)

(C4 Y E\A6)

(C4 y E\S6)

C,

C3 x C3

C2 x C3

L2 x C2

Ks-y      X    v^o

C2 x C3

L"2     "   ^"5

Proof. By Clifford's theory G can be transformed into a subgroup of the wreath

product H 'v S4, where H is a primitive subgroup of GL(2, C). The matrices of G cor-

responding to the block diagonal matrices in H 'v S4 form a subgroup S of index 2 in

•For an explanation of this table see next page.
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CG(N).  From the lattice of normal subgroups of the finite primitive subgroups of

GL(2, C) (see proof of Lemma (2.11)) and the maximality of TV as a normal abelian

subgroup of G we conclude that S is a central product of TV with one of the groups

SL(2, 3), S4, GL(2, 3) or SL(2, 5).  In case of SL(2, 3) the group G becomes mono-

mial.  In cases of S4 and GL(2, 3) the product of TV and a 2-Sylow subgroup of G is

still irreducible.  In case of SL(2, 5) the normalizer of a 5-Sylow subgroup is still irre-

ducible; compare also the proof of (2.11).    Q.E.D.

Next, we must discuss the case of Aj being primitive.  It is useful to present part

of Blichfeldt's results [2] on finite primitive subgroups of PSL(4, C).  We give a list of

all finite subgroups K of GZ,(4, C) of minimal order such that all primitive subgroups

of PSL(4, C) can be derived by factoring out the center Z(K ) of K.   (Compare also the

proof of (2.11).)  The orders of the groups K in column 2 are written as products

(K: Z(K)) • \Z(K)\. The groups which can be obtained as subgroups of GZ,(4, Z) are

marked by an asterisk in column 3.  Column 5 gives the structure of the commutator

factor groups which is important for the construction of all primitive finite subgroups

of GZ,(4, C) from the groups of this list.  The symbol Y denotes the central product,

0 denotes the central product with common factor group C2, (2°|C2) denotes an ex-

tension of 2° by C2.  The subscripts s, ns refer to the extension to be split or nonsplit,

respectively. E denotes the central product of the quaternion group of order eight with

the dihedral group of order eight: E = Q8 Y D8.

We are now able to prove

(2.14) Lemma.   // Al is primitive, G contains one of the following three groups:

I

/-■
hA =

0 1

0

0 0

0     0

;

i -i

2  -1

0-1     0

0-1     0
-1 0-2     0

-2 0-2     0

0     0     3-2 0-1-1

0     0     3-2 0-1 0

0

0     1-1     0     0     0

0     2-2     1-1

as SL(2, 5),

where h\ = h\ = (h3h4f =-/8;
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"7 =

— C3 x A$.

Proof.   The centralizer of TV is a central product of TV and one of the groups de-

rived from the list above.  In all cases CG(N) is already Q-irreducible as a subgroup of

GL(8, Z).  The character of group (A) is rational of Schur index 2.  Hence, (A) yields

a Q-irreducible subgroup of GZ,(8, Z) fixing a quadratic form which is unique up to

scalar multiples.  This subgroup is Q-equivalent to H6.  The groups (C), (D), (F), (G)

and (K) need not be considered since they contain (A) [6, p. 307].  Group (B) yields

the groups H1 and H8.  (H) contains (B) and, therefore, need not be considered.  (E)

does not occur, since the field generated by the character values is not quadratic.

All of the groups Io—21° contain one of the extra-special groups of order 32 as

a subgroup.  Therefore the proper subgroup of G generated by TV and a 2-Sylow sub-

group of G would still be irreducible.    Q.E.D.

Case (x).  In this final case we have A\N = 8r, where T is an integral representa-

tion of degree 1.  Hence, TV is a subgroup of <-/8). We subdivide the case into four

sections according to the minimal degree of the blocks of the complex natural repre-

sentation of G.

(2.15) Lemma. If G can be transformed into a monomial subgroup of GL(8, C),

G is Q-equivalent to

0     0 0 0-1      1-1

0     0 0 0     0     0-1

0 0     0

0 0 0     0

0 0 10

0 1 0

0 0 0     0     0     0

0     0     0     0

0     0

0     0     0     0

0     0     1  -1\\

1-1   1 -1 \

0     0     0-1

0     0     1-1     0     0

0 0-1

0     0     0     0     0

1 0     1

1     0     0

as PSL(2, 7),
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where (¿ }) i-> g6, (l2 °) *->g7 defines an epimorphism of SL(2, 7) onto G3;or G con-

tains a subgroup which is Q-equivalent to

/-.

0     10     0     0     0     0

0     0     0     0     0     0 :\
0 0     0     1

0 0-10

0 0     0     0     0

0 0     0     0-1

0     0     0     0

0     0     0     0

1     0     0

0     0     0

\o
0     0     0     0     0     0

0     0     0     0     0

0-,

1     0/

K =

10 0 0 0 0

0 0 0-1 00

0-100000

0 0 0 0 0 0 0

0 0-10000

0 0 0 0 1

0 0 0 0 0-1

0     0     0     0     0     0

0

0

0     0

0
-1

= SL(2, 7),

where h5 •-» (° ~¿), h6 r-> (* J) defines the isomorphism.

Proof.   The natural representation A of G can be transformed into a complex

monomial representation. Let tp: G —>S8 be the associated permutation representation.

Since ker ^ is a normal abelian subgroup of G we get ker <p = TV.  We first assume that

TV is trivial.   Then G is isomorphic to a transitive permutation group of degree 8. Since

the imprimitive permutation groups of degree 8 are solvable, y(G) must be primitive.

Hence G is isomorphic to one of the groups PSL(2, 7), PGL(2, 7), A8, or S8 [18].

But A8 and S8 have no irreducible characters of degree 8 and PGL(2, 7) contains

PSL(2, 7), yielding only G3.

Now we assume TV = <-/8>.   Some lengthy but elementary arguments show that

tp(G ) is a primitive permutation group, because TV = ker <p is the only abelian normal

subgroup of G   Again, if *p(G ) is one of the two primitive solvable permutation groups

of degree 8 (which are isomorphic to extensions of elementary abelian groups of order

8 by C7 or Aff(l, 7) [18]) then G must have an abelian normal subgroup properly

containing TV. Hence, G must be isomorphic to a nonsplit central extension oiPSL(2, 7),

PGL(2, 7),A8, or S8.  However, A8 and S8 have no irreducible projective characters

of degree 8 [17].  In the other two cases the commutator subgroup G ' of G is isomor-

phic to SL(2, 7) ( [ 16] ; [ 11, p. 641 ff.] ). By inspection of the character table of SL(2, 7)

[16] we see that G must contain H9 as a subgroup of index 2.    Q.E.D.

Next we assume that G is C-equivalent to a subgroup G of K 'v- S4, where K is

one of the finite primitive subgroups of G¿(2, C) which were already described in the

proof of (2.11).   Let <¿>: G —*S4 denote the permutation representation derived from

the embedding of G into K ^ S4.
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(2.16) Lemma.   If G can be transformed into an imprimitive subgroup G of

GL(8, C) of minimal block-size 2, G has a group H of index 2 which is rationally

equivalent to

#10 -

0

1

0

0

0

0

0

0

1 0

1 0

0 0

0 -1

0     0

0

0

0

1 -1

0     0

0     0

0 -1

1 -1

0 0

0 0

0 0

0 0

-1

0

1

0
-1

0 -1

0 0

0     0

0 0 0 0 0 10

10 0 0 0 0 1

0-1     0-1     0-1     0

1 0-1 0-1 0-1

0     0     0     10     0     0

0     0     0     10     0

10     10

0     10     1

1     0

SL(2, 3) Y SL(2, 3),

where the epimorphism of SL(2, 3) x SL(2, 3) onto Hl0 is given by

:,-:)• (-: :;)K ((-; ::)■ (r
Proof.   First we want to determine ker <p which is certainly a subgroup of

{diag(a,, ..., a4)\a¡ G K}.  Let 7T,-: diag(a1( ..., a4) >-* a¡ denote the projection of

ker <p onto the ith component (i = 1, ..., 4).   From the character relations we get \G\

= |ker <p\W(G)\ > 82 + \v(G)\, hence,

Iker 0| > -Azr- + 1 > fr + 1 > 3.
k(G)| 24

Therefore, ker <p contains TV properly and is not abelian.   Furthermore, the n¡ are irre-

ducible representations of ker <p.  7r,(ker (¿>) must be isomorphic either to Q8, SL(2, 3),

S4, GL(2, 3), or SL(2, 5), since all other irreducible finite subgroups of GZ,(2, C) have

a characteristic abelian subgroup of order bigger than 2 which would yield a normal

abelian subgroup of G containing TV properly.  Since the nontrivial normal subgroups

of 7t, (ker <p) all contain the nontrivial center of 7r,(ker <p) we conclude that the n¡ are

isomorphisms because of the general structure theory of subdirect products.  An appli-

cation of Clifford's theory provides that all of the 7r(. are equivalent representations

(note : none of the five groups above have more than two faithful inequivalent repre-
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sentations of degree 2).   Since the sum of the characters of the n¡ has to be rational,

we end up with ker <p isomorphic to Q8 or SL(2, 3).

By Clifford's theory the natural representation of G is equivalent to the tensor

product of two irreducible projective representations Ax and A2 of G of degrees 4 and

2, where Aj can even be considered as a projective representation of <p(G).  Since S4

is the only permutation group of degree 4 which has an irreducible projective represen-

tation of degree 4, we obtain ¡p(G) = S4; more precisely, G is a nonsplit extension of

Q8 or SL(2, 3) by S4.  In the first case some computations show that G has an ele-

mentary abelian normal subgroup of order 8, contradicting the maximality of TV.   In

the second case the centralizer CG(ker <p) of ker <p is easily seen to be isomorphic to

SL(2, 3), and the character of the restriction of the natural representation of G con-

tains both complex faithful characters of SL(2, 3) with multiplicity 2.  Moreover, the

product ker <p • CG(ker ip) is a subgroup of index 2 in G which is equivalent to the Q-

irreducible group H10.    Q.E.D.

Next we assume that G is C-equivalent to a subgroup G of K 'v S2, where AT is a

finite primitive subgroup of GZ,(4, C) for which we refer to the list preceding Lemma

(2.14).  Again let <¿>: G—*S2 denote the permutation representation of G coming from

the embedding of G into the wreath product G ^ S2.  Clearly [12, p. 86], the natural

representation of G restricted to ker <p is the sum of two inequivalent irreducible repre-

sentations A,, A2 of ker <p. Unlike Lemma (2.16) it is now immediate that A(.(ker ip)

is a primitive subgroup of G¿(4, C).

(2.17) Lemma.   If G can be transformed into an imprimitive subgroup G of

GL(8, C) of minimal block-size 4, G contains a group H which is rationally equivalent

to H6 (obtained in (2.14)) or

= SL(2, 3) Y SL(2, 3),
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where the epimorphism ofSL(2, 3) x SL(2, 3) onto Hi0 is given by

^h9,
-1-1        0-1

0 -1/' \1     0
'10'

-10     0     0     0-11

0     0     0     0     0-1     0
-1

0

1

1    1 -1

0     1 0
-10 0-

0     0 0-

l   0     0-1     1  -

\ 0     0-1     0 -

as 51(2, 3) Y SL(2, 3),

where h9r-*h9, hlQ^hll defines an isomorphism ofHx2 onto Hlt;

H13

a-10 110 0 0

0-1-1     1     0 0 0

0     0 10     0 0 0     0

0     0 0     10 0 0     0

0     0 0     0     0 1 1-1

0     0 0     0-1011

0     0 0     0     1 1 0-1

0     0 0     0-1 1 1     0

'0000

0     0     0     0

*13  "

where the conjugates of h12 generate an extraspecial group Q8 Y D8 of order 32, on

which h j 3 induces an automorphism of order 5 by conjugation.

Proof.   If the Af are not faithful, A,-(ker ip) contains the group (B) as A5. Name-

ly, all the other finite primitive subgroups of GZ,(4, C) have a nontrivial center which

is contained in each of the other nontrivial normal subgroups.  This, however, yields a

normal subgroup of G containing TV properly (compare also the proof of (2.16)).  Now
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it is easy to see that ker ¡p contains a subgroup isomorphic to A5 x A5.  Moreover,

A¡(A5) can be chosen integral from which one can conclude that either G was not

minimal irreducible or contains a Q-reducible subgroup of index 2.  Therefore, the A(.

are faithful algebraic conjugate representations of ker ¡p which can be constructed over

a quadratic number field.

We must now check the list preceding Lemma (2.14) for possible candidates of

A,(ker ¡¿).  Groups (A) and (C), (D), (F), (G), (K) which contain (A) can only provide

a group G containing H5 (compare Lemma (2.14)).  The argument at the beginning of

this proof can be applied to the groups (B) and (H).   Finally, (E) yields H9.  The re-

maining groups 1°—21° are treated separately.

Ad 1°.   Since the center of 1° and the commutator factor group are relatively

prime, ker <p is isomorphic to 1°.  This group has nine faithful irreducible representa-

tions of degree 4 one of which is rational, whereas the others can be constructed over

Q(\^3) and fall into four pairs of complex conjugate representations.  One of the

subgroups of GZ.(8, Z) derived from these has already been listed in (2.16).  The other

two are Hl l and Hl 2.

Ad 2°.  This group can already be conjugated into GZ,(4, Z).  Therefore, we only

have to deal with a subgroup of index 2 of <i/4, 2°> (i2 = - 1) the center of which has

order 2 and which is not isomorphic to 2°.  If A, (ker ip) is equal to this group, the 2-

Sylow subgroup of G would already be irreducible by an argument outlined in 3°.

Ad 3°.  In this case the 2-Sylow subgroup of G would still be irreducible as one

concludes by observing that 3° contains an extra special group of order 32 and that

the character of 3° is irrational on certain elements of order 2.

Ad 4°.  The argument of 3° can be applied to the normalizer of the 5-Sylow

subgroup.

Ad 5°, 9°, 12°.  The same argument as in 3° applies.

Ad 6°.  The character values of Ax are not contained in a quadratic number

field.

Ad 7°, 11°.  The same argument as in 4° applies.

Ad 8°.  The same argument as in 2° applies.

Ad 10°.  Here we either obtain a group containing one of the groups from 1° or

the same argument as in 2° holds.

Ad 13°—21°.  All these groups contain 13° which already yields an irreducible

subgroup Hl 3 of GL(8, Z) with a unique primitive quadratic form (note: the character

of 13° is rational of Schur-index 2).    Q.E.D.

Finally, we assume that G is primitive as a subgroup of GZ,(8, C). We rely on

results of Huffman and Wales [9] in case 7 \ \G\ and on results of Feit [7], [8] in

case 7||G|.

(2.18) Lemma.   If G is C-primitive, each group in the Q-class of G fixes a qua-

dratic form which is integrally equivalent to one of the forms F¡ (i = 1, ..., 26) ob-

tained in [15, Part TV] respectively in the next paragraph.

Proof.   First we assume 7 \ \G\.  By [9] G/Z(G) s PSL(2, 9) as A6 or G is a
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tensor product of two primitive groups of degree 2 and 4.  One checks easily that

neither PSL(2, 9) nor SL(2, 9) has an irreducible integral representation of degree 8.

Since the finite primitive subgroups of GZ,(2, C) and GL(4, C) contain proper irreduc-

ible subgroups, G cannot be minimal irreducible.

Hence 7||G|.  We must check whether G is one of the groups listed in Theorem

A in [8].  The groups listed under A(i), A(iii), and A(iv) cannot be transformed into

subgroups of GZ,(8, Z); compare also [7].  The groups in A(ii) have an irreducible 2-

subgroup.  Some of the groups in A(v) yield minimal irreducible subgroups of GL(8, Z)

(having PSL(2, 7) as a nonabelian composition factor); all of them were already treated

(H9, G3). A(vi) yields SL(2, 8) as a minimal irreducible subgroup of GL(8, Z).  The

representation comes from the 2-transitive permutation representation of SL(2, 8) on

nine elements.  However, the centerings which one gets are the same as those of S9 by

[13, Theorem 5.1].  The forms derived are multiples of F5, Fl0, Fl3.  This also set-

tles A(viii), since in that case G is isomorphic to A9 or S9.  Also, the groups in A(ix)

contain A9 and, therefore, are not minimal irreducible.  Those groups of A(vii) which

are rational certainly contain /76.   Finally, A(x) yields a group H isomorphic to

Sp(6, 2), which is a subgroup of W(E8) = Autz(F5) [7, Theorem 4.4], since Sp(6, 2)

contains a subgroup isomorphic to A8 (= GZ,(4, 2) = SO+(6, 2)).  Therefore, H

contains a subgroup isomorphic to A 8 or to the covering group A 8 of A 8.   In the

second case H contains H6 of Lemma (2.14).  The first case easily leads to a contradic-

tion if one computes the lattices invariant under A8 by the methods in [14].    Q.E.D.

3.  Computation of the Z-Classes.   From the centerings of the groups G¡, Hj

(i = 1, ..., 3;/' = 1, ..., 13) we obtain the quadratic forms Fl8, ..., F26 which to-

gether with Fx, ..., FX1 from Part IV [15] form a full set of representatives of the

Z-classes of the positive definite primitive integral quadratic forms of degree 8 with ir-

reducible automorphism groups.  The forms are given by their matrices: (Jk G zfexfc

has all entries one.)

18 = (3/2 -J2) ® (5I4-J4);      det F18 = 125215

19 (3/2 - J2) ® (/4 + J4); detF19 = 1432152;

20 detF20 = 122264;



WILHELM PLESKEN AND MICHAEL POHST

/    3       1      0      0      0-1-1       1\

/l     300     10001
0     0     3-1

0     0-13

1 -1

0 0

1 1 0

0     0-1

0     1   -1
-1     0     1

0     3-1

0-131

3

1      1

0

1 -1     0     0-1     1     1     3     1 /

\   1     0     1     0     1     0     1     3/

detF21 = 143262;

3 -1

1 3

1

1

6

0

3

1

1

3

1 -1

1 2

0 3

6 3

3 6

3     3

o\

detF22 = 122262122;

/

\

8-4-1 2 2-4 -1

4     8     2-4-1     2-1

1 2 8-4-4 2 2

2-4-4 8 2-1 -1

2-1-4     2     8-4     2
-4     2     2-1-4     8  -1

-1   -1     2-1     2-1     8

2 -1   -1   -1   -1     2  -4

detF23 = 1 ■ 34213;

detF 24 1J7421;
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^25  =

/  4     2     2-1     0

/   2     4     1     0-1
2     14-12

-10-140

0-1     2     0     4

110     2     1

0     12     11

\-l   -110     1

1

1

0

2

o-i\
1   -1 \

1       1

4     1

4

2

detF2s = 1S7Z21;

26

14     1     7-4     4

1    14 -4     7  -4

7  -4   14 -5     5
-4     7 -5   14 -5-5     4     1

4-4     5-5    14 -1     5  -1

4-4     5-5  -1    14 -1     5
-5  -1-1     4     5  -1    14

1     5-4     1-1     5     5 14/

detF26 = 1 -32215.

The centerings of the groups G¡, H¡ (i = 1, ..., 3; / = 1, ..., 13) are listed on

the attached microfiche. We chose the example of//j to explain the output.  Let av

a2, a3 be the generators of 77,, A the natural representation of//,, An and A12 the

constituents of A modulo px = 2, A21 the only constituent of A modulo p2 = 3.

These input data are printed in the output as follows:

Generators

Constituents mod 2

No. 1       Auf«,)      Ail(a2)      Axl(a3)

No. 2      A12(a,)      A12(ii2)      A12(a3)

Constituents mod 3

No. 1       A21(a,)      A21(a2)      A21(a3).

Then the bases of all <-maximal centerings C(i) of H1 are printed (expressed as

coordinate columns with respect to the standard basis of the natural representation

module C(l) = Z8 xl), together with the quadratic form Cjj)* ■ F • C(i), where F is

the matrix of the quadratic form fixed by Hl and C(i') denotes the matrix of the basis

of C(i).  The elementary divisors of both matrices follow.  Then the names of the max-

imal centerings C(j) of C(i) are printed which are of 2- respectively 3-power index in

C(i).  Also, the isomorphism types of C(i)/C(j) are given (e.g., prime 2 constituent

no. 2 leads to C(j)).  In case C(i)¡C(j) is not absolutely irreducible C(j) is listed sev-
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eral times.   Thus, we obtain the following lattice of centerings for /Yj :

The quadratic forms in the output are not necessarily multiples of the forms

Fv ..., F26 but only Z-equivalent to them.  These equivalences have been checked

partly by hand and partly by machine.  The reader can identify a form in the output

with one of the F¡ via the elementary divisors of the corresponding matrices. Fx = I8

and the Weyl form F5 are the only two forms with the same elementary divisors.

However, Ft is odd and Fs is even.  We should mention that we have added a reduc-

tion subroutine to the original program of the centering algorithm described in Part I

[15].  This subroutine reduces the bases of the centerings with respect to the associ-

ated form.  It became necessary since the entries of the C(i) obtained by the earlier

version of the program became too large, especially for high class numbers.

In four cases, namely in case of H6, H1, H9, and Hl3, the centering algorithm

does not terminate by the usual test, i.e. there are infinitely many <-maximal center-

ings.  (Note: the H¡ (i = 1, ..., 13) are not C- but only Q-irreducible.)  In these cases

we have to make sure that we already found sufficiently many centerings.

(3.1) Lemma.   77ie quadratic forms obtained from the centerings ofH6, H13 are

multiples of F5 which is the Weyl-form of the root system E8.

Proof.   Let Lv L2 be two centerings of Z8X1 with respect to H6 (H13).  If Li

and L2 belong to the same genus, then clearly the determinants of the primitive posi-

tive forms associated with Lv L2 are equal.   For both groups Hb, H13 the Q-class of

the natural representation can split into at most two genera.  We prove this for H6 ;

for H y 3 the proof is similar.

The output shows that the lattice of 3-centerings of H6 is linearly ordered.
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Therefore, we have at most two isomorphism classes of Z*/Y6-modules lying in the

Q3-class of (Z*)s x'.  (For prime numbers p we denote the field of p-adic numbers by

Qp, the ring of p-adic integers by Z*.)  For p = 2, 5 the output shows that (Z*)8X1

becomes reducible ([19, Proposition 6.2] and the well-known results of Maranda).

(Z*)8 xl is also reducible for an other prime numbers p by standard arguments be-

cause of p \ |//"6| = 24 • 3 • 5.  Therefore, by Theorem 1.6 in [14] there is only one

Z*-class in the Q*-class of (Z*)8 xl for p + 3.  Hence, we have at most two genera.

The only quadratic forms in the output concerning H6 (Hl3) are multiples of

F$.  Every quadratic form belonging to a centering of H6 (Hl3) is even, since the

natural representation of H6 (Hl3) has no 1-dimensional constituent modulo 2.  Hence,

all forms must be multiples of F5, F5 being the only positive definite even form of

degree 8 with determinant 1.    Q.E.D.

(3.2) Lemma.   The class number of the natural representation of H1 is four.

The isomorphism types of lattices are represented by C(i) for i G {1, 3, 4, 7} (com-

pare microfiche).

Proof   The matrix A — (¡   ~04) centralizes H6. Because of C(2) =

(/„ + A)ZSX\ C(8) = (78 - 24)Z8X1, and C(9) = (/8 + 2A)ZSX1 these centerings

are isomorphic to C(l).  Therefore, all centerings of H1 which are not contained in

C(2), C(8) or C(9) contain representatives of the centerings of C(l).   But these are

given by C(i'), i G {1, 3, 4, 7}.  No two of them can be isomorphic as can be seen

from the lattice of centerings.    Q.E.D.

A similar but slightly more complicated argument shows that a set of representa-

tives for the isomorphism classes of centerings of H9 is given by C(l), C(2), C(4),

C(5), and C(8).  (Note: The centralizer of Ct5)_1T79C(2) in Z8x8 is isomorphic to

Z[(l+V^7)/2].)

4.  The Irreducible Maximal Finite Subgroups of GL(8, Z).  There are—up to Z-

equivalence—26 such groups.   They fall into 16 Q-classes.   For the derivation we use

freely the results in four dimensions [3].

(4.1) Theorem.   The irreducible maximal finite subgroups of GL(8, Z) are Z-

equivalent to the automorphism groups of the quadratic forms Fv ..., F26.

(i) Autz(F, ), Autz(F2), and Autz(F4) are Q-equivalent. They are isomorphic to

the wreath product C2 ^ 58 of order 288!. Autz(F,) is the full monomial group of de-

gree 8.

(ii)  Autz(F3) is isomorphic to the wreath product W(F4) ^ C2 of the Weyl

group of the root system F4 with C2 of order 115222.

(iii) Autz(Fs) is isomorphic to the Weyl group of the root system E8 of order
2143s527.

(iv)  Autz(F6) is isomorphic to the direct product S3 x W(F4) of the symmetric

group on three elements and the Weyl group of the root system F4.  It is of order

3Ü152.

(v)  Autz(F7) is isomorphic to the wreath product Dl2 'v S4 of the dihedral

group of order 12 with the symmetric group on four elements.  It is of order 1244!.
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(vi)  Autz(F8) ~q Autz(F,,).   77ie>> are isomorphic to C2 x (S3 'v. S4) of or-

der 2 • 644!.

(vii)  Autz(F9) is isomorphic to the wreath product (C2 x (S3 'v C2)) ^ C2 of

order 14422.

(viü)  Autz(F10) ~q Autz(F13). Both are isomorphic to C2 x S9 of order

2 -9!.

(ix)  Autz(F12) is isomorphic to the direct product C2 x (S3 % S3) of order

2 ■ 633!.

(x)  Autz(F14) ~q Autz(F16). Both are isomorphic to the wreath product

(C2 xS5)^C2 of order 24022.

(xi) Autz(Fj s) is isomorphic to an extension of the central product of SL(2, 5)

with itself by C2.  It is of order 2 • 6022.

(xii)  Autz(F, 7) is isomorphic to the direct product C2 x (S5 'V C2) of order

2 • (5!)22.

(xiii)  Autz(F18) ~q Autz(F19).  Both groups are isomorphic to the direct

product C2 x S5 x S3 of order 2 • 5! • 3!.

(xiv)  Autz(F20) ~q Autz(F21).  They are isomorphic to the Weyl group W(F4)

of the root system F4 of order 1152.

(xv)  Autz(F22) is isomorphic to a subdirect product of S3 with the Weyl group

W4)- It is of order 1152 • 6 • 2~l.

(xvi)  Autz(F23), Autz(F24), Autz(F2s), and Autz(F26) are rationally equiva-

lent.   They are isomorphic to the direct product C2 x PGL(2, 7) of order 2 • 336.

Proof.   Ad(i).  Compare Theorem (6.1) in Part I [15].

Ad(ii).  This follows immediately from [5].

Ad(iii).   Compare [10, p. 66].

Ad(iv).  F6 is the Kronecker product of (_2 ~2) with Weyl form of the root

system F4.   Therefore, Autz(F6) certainly contains a subgroup H as S3 x W(F4).  We

must show that H is already the full automorphism group.  F6 contains 36 vectors of

shortest length—up to sign—in its lattice.  These are permuted transitively by H.   The

stabilizer Hx in Autz(F6) of one of these vectors operates on a sublattice of index 4

on which F6 induces the quadratic form (_2 ~\) ® 214.  Hence, TYj is rationally equiv-

alent to a subgroup of the stabilizer in Autz((_2 ~\))r^>S4 of the lattice belonging

to F6.  The order of this stabilizer is 253 which proves H = Autz(F6).

Ad(v). This follows immediately from [5].

Ad(vi).  The forms 9F81 and Ft 1 are integrally equivalent.  Hence, their auto-

morphism groups are rationally equivalent.  Similar arguments as in the proof of Theo-

rem (4.1) in Part III [15] show that Autz(F8) acts on a lattice with the induced form

•^4 ® (_2   \)-    Therefore, Autz(F8) is rationally equivalent to a subgroup of

Autz((-2 ~2)) "^ ^4» more precisely to

l_l     2 (l,...,l)^=±(l,...,l)mod3
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Ad(vii).  This follows also from [5].

Ad(viii).  The forms 9Fj~01 and F, 3 are integrally equivalent.  Therefore, their

automorphism groups are rationally equivalent. Fy 3 contains—up to sign—nine vectors

of shortest length.  The result now follows as in the proof of Theorem (4.1)(vii) in

Part III [15].

Ad (ix).  Clearly, the automorphism group of

'..-(r3*(rHr3
contains all matrices gx ® g2 ® g3 with g¡ G Autz((_2 ""*)), i = 1, 2, 3, as well as

those permutation matrices which conjugate gx ® g2 ® g3 into^/j^ ® gnr2\ ® g^n)

(tt G S3). These generate a subgroup H of Autz(F12) with H = C2 x (S3 ^ S3). To

verify H = Autz(F12) we note that F12 has 27 vectors—up to sign—of shortest length.

Similar arguments as used in the proof of Theorem (4.1) in Part III [15] then show

that Autz(F12) has a centering with induced quadratic form /4 ® (_2 _£) and, hence,

is rationally equivalent to a subgroup of Autz((_2 ~')) % S4.

Ad(x).  The forms 5Fj"4 and F16 are integrally equivalent; hence, their auto-

morphism groups rationally equivalent.  The rest follows from [5].

Ad(xi).   First we describe the construction of a group H which will turn out to

be Z-equivalent to the full automorphism group of F15.  The group SL(2, 5) has a

faithful representation of degree two which can be realized over a quadratic extension

E of Q(\JS ).  From this representation and the regular representation of E/Q we ob-

tain a Q-irreducible representation A of SX(2, 5). The enveloping algebra of A(SL(2, 5))

is isomorphic to a quaternion algebra over Q(V5 )• Its centralizer in Q8X8 is isomorphic

to the same quaternion algebra.   Therefore, we get a subgroup //' of GZ,(8, Q) and,

hence, of GL(8, Z) which is isomorphic to a central product of SL(2, 5) by itself.

The centralizer of//' in Q8X8 is isomorphic to Q(\/5) and //' fixes a two dimensional

space of quadratic forms in which one finds a form F being Z-equivalent to Fj 5. After

this it is not difficult to obtain an automorphism g of F, g G //', g2 G //'.  Set H =

(H', g).

We now want to verify that H is the full automorphism group of F   The lattice

of F contains—up to sign—60 vectors of minimum length.  Each of the subgroups of

//' isomorphic to SL(2, 5) operates transitively and regularly on these vectors.  (Note:

the enveloping algebra of A(SZ,(2, 5)) is a division algebra.)  Some lengthy computa-

tions now yield that the stabilizer in Autz(F) of one of the vectors is isomorphic to

the symmetric group on five elements.

Ad(xii).  The same argument as in the proof of (vi) yields that Autz(F, 7) is

rationally equivalent to

{^GAutz(5/4-74)-vC2|(l, ..., l)g = ±(h ..., l)mod5}.

Ad(xiii).  The forms 15Fj~8 and F19 are integrally equivalent; hence, their auto-

morphism groups rationally equivalent.  Using the fact that F18 has—up to sign—15

vectors of minimum length, one easily derives
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Autz(Fj 8) = {g ® h\g G Autz(5/4 - J4), h G Autz(3/2 - J2)}.

Ad(xiv).  The forms (>F2¿ and F21 are integrally equivalent; hence, their auto-

morphism groups rationally equivalent.  Similar arguments as in case (vi) show that

Autz(F20) is rationally equivalent to

{g G Autz(F6)|(l 0 0 1 1 0 1 0)g = (1 0 0 1 1 0 1 0) mod 2}

which turns out to be a subgroup H of index 6 of Autz(F6) = S3 x W(F4) with

H=W(F4).

Ad(xv).  As in case (xiv) Autz(F22) is rationally equivalent to a subgroup H of

Autz(F6) = S3 x W(F4).  More precisely, H is the biggest subgroup of Autz(F6)

leaving the sublattice L ' of index 22 of Z8X1 invariant given by the kernel of the Z-

epimorphism <¿>: Z8X1 —*■ Z2X1 described by the matrix (? ¿ i ? ? o ? ¿)-  Now the

result follows easily.

Ad(xvi).  The forms 21F23 and F24 as well as 21F2^ and F26 are integrally

equivalent.  As in Theorem (4.1) case (vii) from Part III [15] one sees that all four

automorphism groups are rationally equivalent.   From the way we obtained these

forms we know that the group G3 in Lemma (2.15) is a subgroup of the automor-

phism group of F2 3. This and the fact that F2 3 has—up to sign—21 vectors of minimum

length lead to the desired result by some elementary calculations.  (Note: <_/8> x G3

is already transitive on the vectors of minimum length.)    Q.E.D.

5.  Appendix: List of Maximal Finite Irreducible Subgroups of GL(n, Z) for

n < 9.  The second part of the attached microfiche** contains a complete list of a

set of representatives {G(i)|i = 1, ..., k(n)} of the Z-classes of maximal finite irre-

ducible subgroups of GL(n, Z) for 2 < n < 9.   For each group G(i) the output gives

the following information:

(1) The matrix F(i) G Z"x" of the primitive quadratic form fixed by G(i'), i.e.

gTF(i)g = F(i) for all g G G(i), the greatest common divisor of the entries of F(i) is

one, G(i) = Autz(F(i")).

(2) Generating matrices for G(i).

(3) Elementary divisors of F(i).

(4) The order of G(i).

(5) The vectors of minimum length (up to sign) of F(i) as coordinate columns

with respect to the natural basis.

The number k(n) of groups for each dimension n is

n 2345678        9
k(n)      2      3      6      7      17      7      26      20'

In almost all cases we chose the same quadratic forms F(i) which already occur in this

paper or in Parts I—IV [15], except for

F6, F7 of degree n = 5, since the forms given in Part I [15] were not reduced;

F10 of degree n = 6, where some signs in Part II [15] are missing.   It should read

correctly F, 0 = (3/2 - J2) ® (I3 + J3).

**Headline: Irred(ucible) Maximal F(inite) U(nimodular) Groups of Degree 2—9.
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We also correct three further misprints in this paper.  On page 564 the determinants

of F10, Ftl are 4233, 4433 respectively, and on page 570 the (5, 5)-entry of B(T2)

has to be 1 instead of 0.
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