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The Pseudoprimes to 25 • 109

By Carl Pomerance, J. L. Selfridge and Samuel S. Wagstaff, Jr.

Abstract. The odd composite n < 25 • 10 such that 2n_1 = 1 (mod n) have been

determined and their distribution tabulated. We investigate the properties of three

special types of pseudoprimes: Euler pseudoprimes, strong pseudoprimes, and Car-

michael numbers. The theoretical upper bound and the heuristic lower bound due

to Erdös for the counting function of the Carmichael numbers are both sharpened.

Several new quick tests for primality are proposed, including some which combine

pseudoprimes with Lucas sequences.

1.  Introduction.  According to Fermat's "Little Theorem", if p is prime and

(a, p) = 1, then ap~1 = 1 (mod p).  This theorem provides a "test" for primality

which is very often correct:   Given a large odd integer p, choose some a satisfying

1 <a <p - 1 and compute ap~1 (mod p).   If ap~1 pi (mod p), then p is certainly

composite.  If ap~l = 1 (mod p), then p is probably prime.   Odd composite numbers

n for which

(1) a"_1 = l    (mod«)

are called pseudoprimes to base a (psp(a)).  (For simplicity, a can be any positive in-

teger in this definition.  We could let a be negative with little additional work.   In the

last 15 years, some authors have used pseudoprime (base a) to mean any number n > 1

satisfying (1), whether composite or prime.)  It is well known that for each base a,

there are infinitely many pseudoprimes to base a. We have computed all psp(2)'s

below 25 • 109.

The difficulty with using (1) for several bases a as a test for primality is that

there are odd composite n, called Carmichael numbers, which are pseudoprimes to

every base relatively prime to n.  It is widely believed that there are infinitely many

Carmichaels.  Although this conjecture remains unproved, several different possible

growth rates have been suggested for the counting function of the Carmichael numbers.

We will explain in Section 5 why we support a growth rate like that proposed by

Erdös [8].

In the present work, we consider two modifications of the pseudoprime test,

which discriminate even better than (1) does between primes and composites.  An odd

composite n is an Euler pseudoprime to base a (epsp(a)) if (a, ri) = 1 and

(2) a(»-D/2=^\   (m0d«),
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where (a/ri) is the Jacobi symbol.   Euler's criterion states that (2) holds when n is

prime, hence the name.*   D. H. Lehmer [13] has shown that no odd composite num-

ber is an epsp(a) for every base a relatively prime to it.  Solovay and Strassen [23]

proved that no odd composite number is an epsp to more than half of the bases rela-

tively prime to it.  When a is small compared to n, the arithmetic of (1) and (2) re-

quire about the same computation time to perform.  Using the quadratic reciprocity

law, the Jacobi symbol is nearly as easy to compute as a greatest common divisor.

Now consider how the exponentiation of (1) is performed.  One standard method

is to write n - 1 = d • 2s, with d odd.  Compute ad (mod «), then square the result

(mod n) s times.   The second modification to the pseudoprime test (1) examines this

process more carefully. An odd composite number n (with n — 1 = d • 2s, d odd, as

above) either is a strong pseudoprime to base a (spsp (a)) if

(i) ad = 1 (mod n), or

(ii) 0a'2  = -1 (mod n), for some r in 0 < r < s.

Note that if n is prime, then either (i) or (ii) must hold, because the equation x2 = 1

has only the two solutions 1, -1 in a field.   Gary Miller [15] was the first to con-

sider examining ad'2   as in (ii), but his test was slightly different from ours.  Michael

Rabin [19] has proved that no odd composite is an spsp to more than half of the

bases relatively prime to it.  Malm [14] has shown that being epsp (a) is equivalent to

being spsp(a) for numbers n = 3 (mod 4).  We show below that, for each base a, there

are infinitely many spsp(a)'s, and that every spsp(a) is an epsp(a).  The calculation of

(i) and (ii) has at least one fewer multiplication and reduction (mod ri) than is needed

for (1), but it usually requires more comparisons.  For large n, the arithmetic labor of

an spsp test is practically the same as for a psp or epsp test.

Pseudoprimes   to base   2

341

Euler  pseudoprimes   to base  2

1905

Strong pseudoprimes  to base 2

2047

Carmichaels

2821

561

">

15841

Figure 1

The least element of each set is shown

♦The term "Euler pseudoprime" first appears in Shanks [22].
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Figure 1 shows the least psp(2) of each of the possible types with respect to the

preceding definitions.  We note that 4369 and 4371 are the only twin psp(2)'s below

25 • 109.

Note that the set of bases to which an odd composite n is a pseudoprime forms

a subgroup of the multiplicative group of reduced residue classes modulo n.  The same

is true for the Euler pseudoprime bases, because the Jacobi symbol is multiplicative.

However, the following example shows that the set of bases to which « is a strong

pseudoprime need not be closed under multiplication:    Let n = 2284453 =

1069 • 2137 and e = (« - l)/2 = 1142226.  Then n is an spsp(2) and an spsp(7) be-

cause 2e = T = -1 (mod n), but n is not an spsp(14) because 14e = 1, while 14e/2

= 4275 (mod ri).  Nevertheless, it is true and easy to prove that if a and t are positive

integers and n is an spsp(a), then « is an spsp(af).

Table 1

Count of pseudoprimes, Euler pseudoprimes, strong pseudoprimes

and Carmichael numbers below x

P2(x) E2(x) E2(x)-S2(x) S2(x) C(x)

10"

IO4

105

106

io7

io8

io9

io10

25•IO9

3

22

78

245

750

2057

5597

14884

21853

1

12

36

114

375

1071

2939

7706

11347

1

7

20

68

213

583

1657

4415

6505

0

5

16

46

162

488

1282

3291

4842

1

7

16

43

105

255

646

1547

2163

For each base a, let Pa(x), £"a(x), and 5fl(x) denote the number of psp(a),

epsp(a), and spsp(a), respectively, not exceeding x.  Write C(x) for the number of

Carmichaels not exceeding x.  We have SJx) < Ea(x) < Pa(x) < [x/2] for every a

and C(x) < P2(x).  (Only the very first inequality is not obvious; we will prove it as

Theorem 3.) Table 1 gives the values of P2(x), E2ix), S2(x), and C(x) for various x

up to 25 • IO9.  Poulet [18] found the psp(2)'s and the Carmichaels below IO8 and

Swift [24] tabulated C(x) for x < IO9.

It is known [30], [8] that for all large x, we have

In x < P2ix) < x ■ exp(-c(ln x • In In x)'/2).
81n2
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We show in Theorem 1 that S2(x) > c  In x for all large x.   Erdös [8] showed that

there is a positive constant c" such that for all sufficiently large x,

C(x) < x • exp(-c" In x • In In In x/ln In x).

In Theorem 6 we will prove that one may take c" arbitrarily close to 1.

We have deposited in the UMT files complete tables of the psp(2)'s, epsp(2)'s,

spsp(2)'s, and Carmichaels below 25 • IO9.  We possess similar tables which also give

the factorization and pseudoprime character to prime bases < 30 for each number, but

these were too bulky to put in UMT.

The most time-consuming part of the work was determining the psp(2)'s.  This

project occupied one CPU of a dual processor DEC KI-10 at the University of Illinois

for several months.  A long sequence of 15-minute jobs was run, with each one sub-

mitting the next automatically.  The algorithm used by the program is described in Sec-

tion 2.  We thank the University of Illinois Computing Services Office for permitting

so much computer time to be used for this project.  We thank Professor H. Diamond

for valuable discussions concerning Section 5.  We are grateful to H. W. Lenstra, Jr.

and D. Shanks for then helpful criticisms of this paper.

2.   Some Elementary Properties of Carmichael Numbers and Pseudoprimes.   Two

classical facts about Carmichael numbers are these:

Proposition 1 (Carmichael [5] ).   // the prime p divides the Carmichael num-

ber n, then n = 1 (mod p - 1), and hence n=p (mod p(p - 1)).

Proposition 2 (Carmichael [5]). Every Carmichael number is square free.

Conversely, it is easy to see [10] that every odd composite squarefree number n

which satisfies n — 1 (mod p — 1) for each of its prime divisors p must be a Carmichael.

Ankeny remarked [1] that for odd composite squarefree n, n is Carmichael if

and only if the denominator of the Bernoulli number Bn_ 1 is 2«.  This rule is not

quite correct, because the denominator often has many other prime factors.  By the

von Staudt-Clausen theorem, the denominator of Bn_x is the product of all primes p

for whichp - 1 divides n — 1.  For example, the denominator of B560 is

2 • 3 • 5 • 11 • 17 • 29 • 41 • 71 • 113 • 281 # 2 • 561,

although 561 is a Carmichael.  The correct formulation of his remark is that an odd

composite squarefree number « is Carmichael if and only if n divides the denominator

of the Bernoulli number Bn_x.

Note that it is usually much harder to show that a given large number is Car-

michael than it is to show that it is a psp(a), spsp(a) or epsp(a).  The most obvious

test is to factor the number completely and then apply the converse of the propositions.

But the corrected version of Ankeny's remark provides a means of deciding whether n

is Carmichael, when we can factor n - 1 completely, while n itself is hard to factor.

In this case we determine the primes p for which p — 1 divides n — 1.  (This process

is usually easier than factoring n, especially if n — 1 has not too many divisors.)  The
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test is completed by checking whether n equals the product of those primes just dis-

covered which divide n.  If we learn that n is Carmichael in this manner, then we will

have discovered its prime factorization as a by-product.   However, we may prove that

n is not Carmichael without factoring n at all.

We now prove two simple propositions which are analogs for psp(a)'s of the two

facts above.   Let la(p) denote the least positive exponent h for which ah = 1 (mod p).

Proposition 3.   If the prime p divides the psp(a) n, then n = 1 (mod la(p)),

and hence n=p (mod p • la(p)).

Proof.   We have a"-1 = 1 (mod p), whence la(p) divides n — 1.

Proposition 4.   If n is a psp(a) and pr divides n, where p is prime, then ap_1

= 1 (mod pr).  Conversely, if the last congruence holds for some odd prime p and

some r > 1, then pr is a psp(a).

Proof.   Write n = prt.   Since a"-1 = 1 (mod n), so that a" = a (mod pr), we

have

a?"l = (a")p-! = aPrt(P- 0 = (a^p'))'" = 1    (mod pr),

where 0 denotes Euler's function.  The converse is clear.

For fixed a > 1, solutions to the congruence ap_1 = 1 (mod p2) are apparently

quite rare.   For example, among the primes p < 3 • IO9, the congruence 2P_1 = 1

(mod p2) holds only for p = 1093 and p = 3511; see [34].  Thus, Proposition 4 says

that psp(a)'s are "nearly squarefree".  Table 2 lists the nonsquarefree psp(2)'s below

25 • IO9.   Rotkiewicz [21] has exhibited two (larger) psp(2)'s which are divisible by

10932.  No solution to the congruence 2P_1 = 1 (mod p3) is known.

Table 2

List of nonsquarefree pseudoprimes to base 2 below 25 • 109

Number Factorization spsp(2)?

1194649 10932 yes

12327121 35112 yes

3914864773 29-113-10932 yes

5654273717 10932-4733 yes

6523978189 43-127-10932 no

22178658685 5-47-79-10932 no

The program mentioned at the end of Section 1 used two sieves to find the

psp(2)'s.  A sieve of Eratosthenes generated the composites in some interval.  Then a

second sieve removed those odd composite numbers excluded by Propositions 3 and 4

with a = 2 and several small primes p.   For example, since /2(5) = 4, the residue class

15 (mod 20) contains no psp(2).   Likewise, the second sieve deleted the classes 33, 55,

77, 99 (mod 110) because /2(11) = 10.   It also excluded the multiples of 9, 25, 49,
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etc., in accordance with Proposition 4.   It was not efficient to use large primes in this

sieve.  The odd composites which survived were tested for being psp(2)'s by the

definition.   In this manner we obtained the list of psp(2)'s below 25 ■ IO9, which was

the basis for much of our other numerical work in this paper.

3.  Some Theorems About Strong Pseudoprimes and Euler Pseudoprimes.

Theorem 1.   If n> 2 is an integer, let <!>„(x) denote the nth cyclotomic poly-

nomial; and letfnia) = *„(a)/(<ï>n(a), ri) for each integer a > 1. If fn(a) is composite,

then fn(a) is an spsp (a).  For all a > 1 and x > a15a + l,we have

Sa(x) > In x/(4a In a).

Proof.   It follows easily from the definition that n is an spsp (a) if and only if n

is a psp(a) and there is an integer k such that 2k \\la(pb) for all prime powers pb for

which pb || n.  Now fn(a) is ^„(a) with any intrinsic prime factor removed, so that if

fn(a) has the prime factorization fl'= xp. ', we have /a(p. ') = n for each i.   Thus /„(a)

= 1 (mod ri) and/„(a) is either prime or an spsp(a).

Let k(a) be the squarefree kernel of a, that is, a divided by its largest square

factor. Let r? = 1 if k(a) = 1 (mod 4) and n = 2 if k(a) = 2 or 3 (mod 4). Schinzel

[6, Theorem 2] has proved that if h is an odd positive integer, then fnrtk(a)(a) nas at

least two prime factors except in a few cases which have h < 5. llenes, fhr¡k,ay(a)is

composite and therefore an spsp(a) for every odd h > 7. Since/ftí?fc(a)(a) <aah + 1

for each h, we have 5a(aû'1 + 1) > (h - 5)/2 for each odd h > 7. Thus, for all x >

a15a + 1, we have

Sa(x) >
ln(x - 1)     5

2a lna        2
y   In x

4a In a

Corollary. Each composite Mersenne number 2P - 1 (p prime) and each com-

posite Fermât number Fn = 22    + 1 is an spsp (2).

Proof.   We have 2P - 1 = <Kp(2) = /p(2) and F„ = $2„+ x(2) = /2„ + 1(2).

In a forthcoming paper, the first author will show that 5a(x)/ln x —► °° for every

natural number a.

Theorem 2. If n is a psp(2), then 2" - 1 is an spsp(2).  There exist spsp(2)'s

with arbitrarily many prime divisors.

Proof.   Let n be odd and 2n~1 = 1 (mod ri).  Then 2"_1 - 1 = nt for some

integer t, necessarily odd. We have (2" - 1) - 1 = nt • 21. Plainly, 2" = 1 (mod 2" - 1).

Hence 2nt = 1 (mod 2" - 1), so 2" - 1 satisfies case (i) of the definition of spsp(2).

Since n is composite, so is 2" — 1.

Erdös [36] (also see Szymiczek [25]) showed that there exist squarefree psp(2)'s

n with arbitrarily many prime factors.   By the above, 2" - 1 is an spsp (2).   Since it is

divisible by 2P - 1 for each divisor p of«, and since the numbers 2P - 1 with distinct

primes p are relatively prime, 2" - 1 has at least as many prime factors as «.
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Malm [14] has proved the following theorem for n = 3 (mod 4). The theorem

for all odd « is mentioned in [22] and a variation of our proof appears in [35].

A. 0. L. Atkin and R. Larson have obtained Theorem 3 independently.

Theorem 3. If n is an spsp(a), then « is an epsp(a).

Proof   Let « be aii spsp(a) and let the prime factorization of « be PjP2 • ■ ■ pf,

where perhaps some prime factors are repeated.  Define k- by 2 ' || p¡ - 1 and assume

kx < k2 < • • • < kt.  Since « is an spsp(a), there is an integer k > 0 with 2k ||/a(p*)

for all prime powers pb for which pb \\n.  Since laipb)llaip) is 1 or a power of p, and

hence odd, we have 2k ||/a(p.) for each/.  Then k < kx.  Let i > 0 be the number of

/ with kj = k.   Then « = (2k + 1)'' (mod 2k + 1), so that 2k || « - 1 or 2k+ ' I « - 1

according as í is odd or even.  Now if pb || «, then a^"-1^2 is -1 or +1 (mod pft)

according as 2fc || « - 1 or 2k+ ' | « - 1.  We conclude that a{n~l)l2 is -1 or + 1

(mod ri) according as / is odd or even.

Now (a/pj) = -1 or +1 according as / < i or / > 7, since (a/p) = -1 if and only

if the exponent on 2 in la(p) is the same as the exponent on 2 in p - 1. Thus (a/«)

= n(a/p;) = (-1)'.  We conclude that a(n_1)/2 = (a/«) (mod ri).

Theorem 4 (Malm [14]).  If n = 3 (mod 4) and n is an epsp (a), then « is an

spsp(a).  Thus, in the congruence class 3 (mod 4), strong and Euler pseudoprimes are

the same.

Proof.   Since « = 3 (mod 4), we have « - 1 = d ■ 21, where d is odd.  The hy-

pothesis that « is an epsp (a) tells us that ad = (a/n) (mod ri), which is + 1 or — 1, be-

cause (a, ri) = 1.  Thus, one of the two cases of the definition of spsp (a) is satisfied,

depending on the sign of the Jacobi symbol.

Theorem 5. // « is an epsp (a) and ia/n) = -1, then n is an spsp (a).

Proof. Write « - 1 = d • 2s. Then a"'2*'' = a("-l)l2 = (a/«> = -1 (mod ri),

so that case (ii) of the definition of spsp (a) holds.

Corollary.  If n = 5 (mod 8), and n is an epsp(2), then n is an spsp(2).

Proof.   We have (2/«) = -1 for « = 5 (mod 8).

Likewise, one can show that if « = 5 (mod 12) and « is an epsp(3), then n is an

spsp (3); and many similar theorems.

4. The Controversy Concerning the Growth Rate of C(x). Let lnrx denote the

r-fold iterated logarithm.  We have already remarked that Erdös [8] showed that

(3) C(x) <x • exp(-c In x • ln3x/ln2x),

for some positive constant c and all sufficiently large x. In the same paper, Erdös

claimed that he believed (3) to be nearly best possible. To substantiate this claim,

Erdös gave an outline of a heuristic argument that had the conclusion that for every

e > 0 and x > x0(e), we have C(x) > x1 ~e.
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The principal argument against the reasoning of Erdös is that the data appear to

suggest a much slower growth rate for C(x).   Indeed, if one tries to approximate C(x)

by a function of the form Kx", one finds that 0.15x0"4 fits very well over most of the

range for which C(x) is known; see Table 3.  Furthermore, C(x) shows no tendency to

increase more rapidly for x near 25 • IO9, as one might expect if Erdös were correct.

Swift computed the ratio r(x) = C(10x)/C(x) in his summary [24].  We have r(x) =

2.44, 2.43, and 2.53 for x =  IO6, IO7, and IO8, respectively.    Swift commented

that the increase in the ratio from 2.43 to 2.53 might be significant in support of

Erdös's conjecture. However, r(109) = 2.39 and r(1010/4) = 2.34.  To investigate the

possibility that the exponent 0.4 might increase for somewhat larger x, we searched

for Carmichaels between IO15 and 101S + IO7.  We found 289394 primes in this

interval, but not even one psp(2).

10'

io5

io6

io7

io8

5-108

109

9
5-10

io10

1.5-10

2-10

2.5*10

10

10

10

Table 3

Two approximations to C(x)

Nearest integer to

C(x)     F(x) G(x)     C(x)/F(x)

7       6 6 1.21

16       13 15 1.20

43       32 38 1.33

105       81 95 1.30

255      208 238 1.23

469      408 453 1.15

646      547 597 1.18

1184     1090 1137 1.09

1547     1470 1500 1.05

1782     1753 1764 1.017

1983     1986 1979 0.998

2163     2189 2164 0.9882

C(x)/G(x)

1.17

1.07

1.14

1.11

1.07

1.04

1.08

1.04

1.03

1.010

1.002

k(x)

2.1955

2.0763

1.9795

1.9339

1.9049

1.8920

1.8799

1.8722

1.8687

1.8686

1.8678

0.9995  1.8668

F(x) = x • exp(-ln x • (1 + In In In x)/ln In x)

G(x) =0.15 • x0-4

C(x) = x-exp(-k(x)ln x-ln In In x/ln In x)

The strong form of the prime k-tuple conjecture implies that C(x) > cxxl /3/ln3x:

If 6m + 1, 12m + 1, and 18m + 1 are all prime, then then product is a Carmichael

number.  (See [22].)
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In the next section we carefully rework Erdös's proof of (3), trying to get the

constant c as large as possible.  We also rework Erdös's heuristic argument, trying to

find the largest lower bound for C(x) for which there is a plausible supporting argument.

We thus prove that for each e > 0 and x > x0(e), we have

(4) C(x) < x ■ exp(-(l - e)ln x ■ ln3x/ln2x).

We also give a heuristic argument that for each e > 0 and x > x0(e), we have

(5) C(x) > x • exp(-(2 + e)ln x • ln3x/ln2x).

We are not sure which of (4) and (5) is closer to the truth about C(x). The gap

between (4) and (5) suggests the introduction of the function k(x), defined by the

equation

C(x) = x • exp(-fc(x) • In x ■ ln3x/ln2x).

If there is an e > 0 such that C(x) «x1 ~e (as some people believe), then k(x) —► °°

as x —► °°.   If our conjecture (5) is true, then lim sup k(x) < 2.  Our theorem (4)

asserts that lim inf k(x) > 1.  We present values of k(x) for selected values of x <

25 • IO9 in Table 3.  These data certainly throw cold water on the assertion k(x) —►

°°, since the values presented are steadily decreasing.

We submit the function

F(x) = x • exp(-ln x • (1 + ln3x)/ln2x),

which, as can be seen in Table 3, agrees fairly well with C(x) for x < 25 • IO9.  It may

be that C(x) ~ F(x).  If so, then we would have lim k(x) = 1.  Also, we would ex-

pect C(x) >xll2 for all values of x surpassing a number near IO92.

If we only assert the weaker statement C(x) > x • exp(-2 • In x • ln3x/ln2x),

which is true for every value of x > IO6 in Table 3, then we would certainly have

C(x)>x'/2,ifx> IO2391.

We remark that the following approximate equalities hold in Table 1:

P2(x)l\n P2(x) « C(x) and E2(x) « & P2(x).  (Compare [22].)  If we assume the first

formula and, respectively, C(x) ** x • exp(—In x ■ ln3x/ln2x), C(x) « F(x), and C(x)

« x • exp(-2 • In x • ln3x/ln2x), then in an interval of length IO7 near 101S we

would expect to find, respectively, 775, 0.019 and 0.00086 psp(2)'s.

5.  The Distribution of Carmichael Numbers.  For the convenience of the reader

we have made an effort to keep the notation in this section similar to that used by

Erdös in [8].

If x and y are positive numbers, let \p(x, y) denote the number of positive in-

tegers « <x such that n is divisible by no prime exceedingy. We have from de Bruijn [4] :

Lemma 1. For each e > 0, there is an x0(e) such that, whenever x > x0(e) and

lnx<y <x, we have

t//(x, y) <x ■ exp(-(l - e)u In u),

where u = In x/ln y.
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Remark. Although there has been much work on the function \p(x, y), precise

estimates when y is in the vicinity of exp((ln x)112) remain a murky area. Unfortunately,

this is exactly the range of y we seem to need in our study of Carmichael numbers. An

improvement in Lemma 1 for this range of y will give us corollary improvements both in

Lemma 2 and in the main result of this section, Theorem 6.

Now if k > 2 is an integer, let f(k) denote the least common multiple of the

p — 1 for prime divisors p of k.  Also, let /(l) =1.   By Propositions 1 and 2 and

their converse, the Carmichael numbers are precisely those composite, squarefree «

satisfying n = 1 (mod /(«)).

Let #A denote the cardinality of the set A.

Lemma 2.   For each e > 0, there is a y0(e) such that for all y > y0(e) and all t,

#{k <y: fik) = t} <y exp(-(l - e)ln y ■ ln3y/\n2y).

Proof.   We may assume t > 2.   Let qx < q2 < ■ • • be the primes q with

q - l\t and q < exp((ln2^)2/ln3 y), and let rx < r2 < • • • be the remaining primes

r with r — 1 |r.   Let a = \n3y/ln2y, and let 8 > 0.  We now show that if y > yxi8),

we have for each i such that rt exists

(6) rl>J»J+<1-3a>a,

where P. is the 7th prime.  Since rx >4 = P2, (6) is true if i = 1.  Now assume 1 < i

< exp((ln2^)2/6 ln3y).  Then

r,. > i6 > (2/ In i)2 > P2 > pi+(i-3«)«)

since by Rosser [20], P¡ < 2/ In i holds for all / > 1.   So we now assume z >

exp((ln2 jy)2/6 ln3y).  Noting that Sa In i - 2 ln27 is an increasing function of i for

i > (In y)       " 3 y and that for large j we have

i>Qny)3'6 >(hiyf'61^,

we thus have for y > y2(8)

8a In i - 2 ln2i > 8a(3l8)ln2y - 2 In(3/6) - 2 ln^

= ln3y - 2 ln(3/6) > In 4.

Thus, for >>->.y2(ô) and /> exp((ln2^)2/6 ln3y), we have

(7) ida > (2 In 02.

Now let Sj, . . . , s- be the distinct primes in t.  Clearly, i is at most the number

of integers less than r¡ composed only of sx, . . . , s¡.  Thus, i is at most the number

of integers less than r¡ composed only of Px, ... ,Pj.  Note that there is an absolute

constant c such that P¡ < c In t for all t > 2.  Since t <k < j>, we have for y > y3i8)

by Lemma 1, that

/ < «p(r/5 c In t) < !//(r,, c In y) < r,. exp(-(l - 6)«, In u{),
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where u¡ = In r¡¡]n2y.  Since rt > exp((ln2^)2/ln3y), we have u¡ > ln2y/ln3y. Hence,

i < r,.exp(-(l - 26)«f ln3y) = r,exp(-(l - 28)a In r,),

so that

r-fXO-O-26)«)-1 >,l+(l-28)o

Thus using (7), we have for y > yx(8) = max{72(6),^3(6)},

ri>(2/lni)1+<1-36>a>P/+<1-38>flt,

which proves (6).

Now let 1 = Qx < Q2 < • • • be the integers composed of just the primes q¡,

and let 1 = Rx <R2 < • • ■ be the integers composed of just the primes r¡.  Then for

y > y<\(8) and any z > 1, we have by (6) that

(8) N(R,z)d=   #{Rt: R¡ < z} ^¿(i+d-ss)»-)-1 < zi-U-46)«

Also, if z > yd, we have by Lemma 1 for y > y5(8),

N(Q, z) däf #{ß,.:  Q, < z) < *(*, expain^)2/^^))

< z exp(-(l - 6)u In «),

where u = In z • ln3 .y/(ln2 >>)2 •  Thus, for j> > .ys(ô), z> ys,

(9) 7V(Ö, z)<zexp(-(l -26)alnz) = z1-(1-26)a.

We thus have by (8) and (9), that if y >y6(8) = max{j1(5),>'4(ô),>'5(ô)},

then

#{k < y : f(k) = t} < # {* < y: k = Q,Rf for some i, j}

=   Z    Z    -< Z (y/Qù1-11-49*
Q¡<y Rj<ylQi Q¡<y

=/-(,-45)aj z (¿i-4i)^i+  £  si1-48*-1!

</-(4a)Ä]   y    „(i-4a)a-1+    "<&*)    +2f,     NjQ, z)dz  )

)    *? s vl-(l-48)a J   6   z2-(l-46)a-
I n<y * y

<    l-(l-48)«   J    26a+    -28a+2    f*    z-l-26a ¿J

I V i
<:vl-(l-7S)a_

So letting 6 = e/7 and y0(e) = y6(el7), we have Lemma 2.

Theorem 6. For eac« e > 0, rnere is an x0(e) sue« r«ar for all x > x0(e), we

have C(x) < x exp(-(l - e)lnx • ln3x/ln2x).
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Proof   Let ô > 0.  We divide the Carmichael numbers n <x into three classes:

(i) «<x1-6,

(ü) x1 _s < « < x and « has a prime factor p > xs,

(hi) x1-6 < « < x and all prime factors of n are below x5.

For each prime p > xs the number of Carmichael numbers « < x and divisible

by p is at most x/pip — 1) by Proposition 1.  Thus, the number N2 of Carmichael

numbers in the second class satisfies

N2<x   Z    1/P(p-I)<2x1"5.
p>xh

We now consider Carmichael numbers « in the third class.    Every such n

necessarily has a divisor k with x1 ~26 < k < x1 ~s.  The number of Carmichael num-

bers n < x divisible by an integer k is at most 1 + x/kfik), since any such « satisfies

n = 0 (mod k) and « = 1 (mod fik)) (so if there are any such «, then (k, f(k)) — 1).

Thus N3, the number of Carmichaels in the third class, satisfies

/v3<xi-8+    z     x/kfik)=xi-s + T.d     £     *•
x1~2S<k<xl-s <*«*    x1-25«;*«*1-«

f(k)=d

We now assume x is sufficiently large and apply Lemma 2 and partial summation to

the inner sum. We get

Z r < In x • exp(-(l - 3ô)ln x ■ hux/ln,x).
x1-26<*<*!-«   k 3       2

/(*) =d

Thus

N3 <x1-6 + x ln2x • exp(-(l - 36)ln x • ln3x/ln2x)

<x1-5 + x • exp(-(l - 45)lnx • ln3x/ln2x).

Thus, the number of Carmichael numbers below x is at most

x1-6 + N2 + N3 < 4xl ~s + x ■ exp(- (1 - 46)lnx • ln3x/ln2x)

<x ■ exp(—(1 — 56)lnx • ln3x/ln2x).

Hence, by letting S = e/5, we have Theorem 6.

We next present a heuristic argument for the following lower bound for C(x).

Conjecture 1. For each e > 0, there is an x0(e) such that for all x > x0(e),

C(x) > x • exp(-(2 + e)ln x • ln3x/ln2x).

Let \p '(x, y) denote the number of primes p < x for which p - 1 is squarefree

and all prime factors of p - 1 do not exceed y.  We now make the following

Conjecture 2.   For each e > 0, there is an x0(e) such that whenever x >x0(e)

and exp((ln x)1 /2/2) <y < exp((ln x)1 /2), we have

\¡/'(x, y) > 7r(x)exp(—(2 + e)u In u),

where u = In x/ln y and n(x) is the number of primes not exceeding x.
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Let 5 > 0, let x be large, and let A = A(x) denote the product of the primes

p < In x/ln2x.  Then for all sufficiently large x, we have .4 < x    "2JC.   Let r1,..., rk

be the primes in the interval (In x/ln2x, (In x)   2 ) with rf — 1\A.  Thus, by Conjec-

ture 2, we have for large x,

(10) k> 7r((ln x)1"2*) exp(-(2 + 6) ln2x • ln3x).

Let now m,, . . ., mN be the composite squarefree integers not exceeding x

composed only of the r¡. We now prove (cf. Erdös [7]) that for all sufficiently large x,

(11) N > x • exp(-(2 + 2ô)ln x • ln3x/ln2x).

Let / = [In x/(ln2x)2], c = exp(-(2 + 5)ln2x • ln3x).  Since any product of / dis-

tinct rf is less than (In x)    2   < x, we have that

■"-(îM-ffr.^Mr)'.
Thus, by (10) we have

/c(lnx)ln2X/2(ln2x)2VnJc/(,n2x)2

7V>
In x/(ln2x)2

exp Í In x

\ { 0*2*)

ln(c/2)     -1 + ln2x

ln2x

= x • exp I In x
-(2 + 6)ln3x       ln2

ln2x (ln2x)2     ln2x

> x • exp(-(2 + 2ô)ln x • ln3x/ln2x).

This proves (11).  We now note that each mf is relatively prime to A.

Conjecture 3. We have m,,..., mN at least roughly uniformly distributed

in the residue classes modulo A that are relatively prime to A. Specifically, there are

at least N/A2 choices of i for which m{ = 1 (mod A).

Since A <x      2*, it follows from Conjecture 3 and (11) (which follows from

Conjecture 2) that for all large x the number of m¿ = 1 (mod A) is at least x ■

exp(-(2 + 36)ln x • ln3x/ln2x). But each such m¡ is a Carmichael number, since m¡ is

composite, squarefree and fim¡)\A \m{- 1. If we now let 6 = e/3, we have Conjecture 1.

We thus see that Conjecture 1 follows in straightforward fashion from Conjec-

tures 2 and 3. We now give plausibility arguments for the latter two assertions.

Concerning Conjecture 2, we first believe that the condition that p - 1 is square-

free in the definition of \p'(x, y) is not very important.  Specifically, we believe (com-

pare with Mirsky [16] ) that i//"(x, y), the number of primes p < x for which p - 1 is

divisible only by primes not exceeding y, should be of the same order of magnitude as

i//(x, y) but for values of y that are ridiculously small (note that \¡/'(x, y) is bounded
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as x —► °° for fixed y, while i//"(x, y) need not be bounded, or at least it appears so on

the surface).  Moreover, with a little extra effort, we could have dispensed with

i//(x, y) in the argument, using instead of Conjecture 2, the corresponding (weaker)

conjecture for ip"ix, y).  Secondly, and more importantly, we believe that \¡j"(x, y)/n(x)

should be of the same order of magnitude as \p(x, y)/x (again one would want to ex-

clude very small values of y). This belief fits nicely into the framework of the

Titchmarsh divisor problem and other results (cf. [7]) which assert that the shifted

primes p — 1 behave like ordinary integers. Furthermore, from de Bruijn [4], we in

fact do have

±uV(x, y) > exp(-(2 + e)u In w)

for u = In x/ln y, exp((ln x)1/2/2) < j> < exp((ln x)1/2), and x > x0(e).  In a forth-

coming paper, the first author shows that ^"(x, y)/irix) and i//(x, y)/x are in fact the

same order of magnitude for the smaller range y > x4'9.  It also should be noted that

a conjecture of Halberstam and Richert that Bombieri's prime number theorem holds

for all moduli k < x1_e can be used to prove that i//"(x, xu)/tt(x) ~ i//(x, x")/x for

each fixed u, 0 < u < 1.  Thus, we feel that Conjecture 2 is a reasonable assertion.

On the subject of Conjecture 3, we note that in [9], Erdös and Rényi treat a

similar situation.  They have an arbitrary finite abelian group G and elements ax, . . . ,

ak.  Their conclusion is that if k is somewhat larger than In #G, then for most choices

of ax, . . . , ak, the 2k products n a¡', where each e. = 0 or 1, are uniformly distribut-

ed in G.   For us, our group G is the multiplicative group of reduced residue classes

modulo A and our given group elements are rx, . . . ,rk. We have the additional con-

dition that we are only looking at those products Hr{' which do not exceed x, but we

do not feel this side condition is of overwhelming importance, since #G is much

smaller than x (#G < x    "2*).  Thus, for Conjecture 3 to fail there must be some-

thing very peculiar about our set rx, . . . , rk.  Now our group G is isomorphic to the

direct sum ?,p\AZp_1, where Zp_j is the cyclic group of order p — 1.  A necessary

condition for a set ax, . . . , ak in G to be "random" (i.e., not "peculiar") is that the

projections of ax, . . . , ak on the various Z     j should be uniformly distributed.  But

it is certainly not unreasonable for us to assume there are just as many r, = 1 (mod 3)

as r. = 2 (mod 3), etc.  Although this may not be a sufficient condition for Conjecture

3, it seems to be a step in the right direction.  We, thus, believe Conjecture 3 to be at

least plausible.

6.  Distribution of Pseudoprimes in Residue Classes.  Table 4 gives the number of

psp(2)'s, epsp(2)'s, spsp(2)'s, and Carmichaels below 25 • IO9 which he in various

residue classes with small moduli.  We have a similar table for all moduli < 200.  The

distribution is similar for larger moduli, except that the irregularities become less pro-

nounced for large prime moduli.  For most m < 200, the residue class 1 (mod m) con-

tains the largest number of psp(2)'s.  The first exception is m = 37. There are 1267

psp(2)'s divisible by 37, while only 1152 he in 1 (mod 37).  The other 35 classes

(mod 37) have about 500 to 600 psp(2)'s in each.
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Table 4

Number of pseudoprimes below 25 • 109 in each residue class

Euler but

Modulus  Class Psp(2) Euler  not strong Strong Carmichael

3 0 628 314 313 1 25
1 18413 9501 5677 3824 2118
2 2812 1532 515 1017 20

4 1 19269 10314 6505 3809 2116
3 2584 1033       0 1033 47

5 0 1474 757 702 55 203
1 12721 6460 4136 2324 1652
2 2743 1492 547 945 82
3 2685 1440 586 854 102
4 2230 1198 534 664 124

7 0 2025 968 935 33 401
1 8730 4491 2803 1688 1096
2 2049 1054 499 555 105
3 2491 1351 583 768 152
4 2039 1119 549 570 129
5 2258 1176 567 609 138
6 2261 1188 569 619 142

8 1 12654 8887 6505 2382 1781
3 1295 505 0 505 20
5 6615 1427       0 1427 335
7 1289 528       0 528 27

9 1 11395 5833 3782 2051 1609
2 935 517 172 345 9
3 318 160 160 0 11
4 3513 1805 895 910 259
5 937 498 170 328 6
6 310 154 153 1 14
7 3505 1863 1000 863 250
8 940 517 173 344 5

12        1 16281 8666 5677 2989 2071

3 29 0        0 0 0
5 2389 1334 515 819 20
7 2132 835       0 835 47
9 599 314 313 1 25

11 423 198       0 198 0

The missing residue classes contain no psp(2)'s.

The distribution of spsp(2)'s is slightly different.  For most m < 200, the residue

class 1 (mod m) contains the greatest number of spsp(2)'s and the class 0 (mod m)

contains the least number of them, often none at all.  The first exception to either

statement is m = 109, for which each of the 109 classes contains between 28 and 70

spsp(2)'s.  The classes 0 and 1 (mod 109) contain 46 and 59 spsp(2)'s, respectively.

For m = 157, the class 0 (mod m) contains 51 spsp(2)'s, which is more than any other

class modulo 157.   For every odd prime m < 200, except m = 167, there is at least

one spsp(2) below 25 • IO9 divisible by m, but usually there is only a handful of them.
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The single spsp(2) that we found which is a multiple of 3 is 5455590801 = 3 • 691 ■

1481 • 1777.  Although there are 54 multiples of 167 below 25 • IO9 which are

psp(2)'s, none of them is strong.

The distribution of epsp(2)'s in residue classes is very similar to that of all

psp(2)'s on the average.  However, as Shanks [22] has noted, the fraction of psp(2)'s

which are epsp(2)'s is much larger for the class 1 (mod 8) than for the other three

classes modulo 8.  Also, no epsp(2) below 25 ■ IO9 is = 3 (mod 12), because then it

would have to be strong by Theorem 4, but there is only one spsp (2) divisible by 3,

and it happens to be = 9 (mod 12).

The distribution of Carmichael numbers differs from that of all psp(2)'s, in that

many more residue classes have no Carmichaels below 25 • 109, partly because of the

action of Proposition 1.  (Proposition 2 is no more restrictive than Proposition 4 for

moduli below 10932.)    Some empty classes not explained by the propositions are 3

and 11 (mod 12); 2, 3, 8, and 12 (mod 15); and 9, 11, and 20 (mod 21).  But see a

forthcoming paper by D. E. Penney and the first author, where examples are shown

for some of these classes.  For large odd m in our table, the class 0 (mod m) often

has more Carmichaels than 1 (mod m).  For example, we found 144 Carmichaels

divisible by 181, while the other 180 classes each contain between 4 and 22 of them.

For m = 179, however, every class has between 5 and 24 Carmichaels below 25 • 109.

This great discrepancy may be explained as follows.  In order for n to be a Carmichael

we must have f(ri) I n — 1. Now /(«) usually is divisible by most small primes, but it

is rarely divisible by a particular large prime.  Thus, if p is a prime for which p — 1

has only small prime factors, then we will have p - 1 I f(n) for most n, and so there

will be many Carmichael numbers divisible by p.  This is the case for 181, since 181 —

l = 2-2-3-3-5.  On the other hand, if p — 1 is divisible by a large prime, then

we will have p — 1 \ fin) for most n, and so there will be few Carmichael numbers

divisible by p (at least in the range where p is still considered "large").  An example

is p = 179, because 179 - 1 = 2 • 89.

For each integer k > 0, let ck denote the relative density in all primes of the

primes p for which 2*|| /2(p).  It follows from the Cebotarev density theorem that

each ck > 0.  (In fact, c0 = cx = 7/24, c2 = 1/3, and ck = 2~kl3 for k > 3.)  It

thus follows that for each fixed k, all but density 0 integers n have a prime factor p with

2k || l2(p).  Thus, for every fixed k, all but density 0 odd integers n have 2k \ l2(n).

But if such an « is a psp(2), then 2k \n - 1.  Thus, we believe it is reasonable to con-

jecture that for each fixed k, all but a set of relative density 0 of the psp(2)'s n have

2k | n — 1.  This argument would seem to explain the popularity of the class 1 (mod 4)

over the class 3 (mod 4) for psp(2)'s and also the popularity of the class 1 (mod 8)

over the class 5 (mod 8).  In fact, a similar argument can explain the popularity of the

class 1 (mod m) for psp(2)'s over other classes modulo m for every "small" m.

This heuristic argument also supports a conjecture of Shanks [22] that S2(x) =

o(P2(x)).  In fact, the argument suggests that most psp(2)'s are divisible by two primes

p, q with l2(p) odd and l2(q) even.  But such a psp(2) cannot be an spsp(2).
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7.   Distribution of Pseudoprimes According to Number of Prime Divisors.  Table

5 gives the number of psp(2), spsp(2), and Carmichaels below 25 • IO9 which have

exactly k prime factors (counted according to multiplicity). Observe that the spsp(2)'s

usually have only two prime factors and that the Carmichaels have more prime

factors than the typical psp(2).  Of course, the Carmichaels must have at least three

prime factors, but the discrepancy is more than can be so explained.

Table 5

Number and percentage of numbers below 25 • IO9 with exactly

k prime divisors, counting multiplicity

All

composites

%

psp(2)'s

#

spsp(2)'s

#       %

Carmichaels

#       %

14

22

23

18

12

6

3

9582

3145

4843

3455

786

42

0

44

14

22

16

4

0

0

4200

407

205

29

1

0

0

87

8

4

1

0

0

0

0

412

795

756

192

0

19

38

35

9

0

0

The percentages in the column headed "all composites" were computed from the

formula Ilfc(x)/(x - Ii^x)) with x = 25 • IO9, where flfc(x) is the number of integers

below x which have exactly k prime factors, counting multiplicity.  We used the well-

known asymptotic estimate

x Qn tax)*-1
U*W     In x   (k - 1)!     •

It is a mystery to us, why so many of the psp(2)'s have exactly two prime

factors, or why more psp(2)'s have four or five prime factors than three of them.

The spsp(2) with six prime factors is

10761055201 =13 • 29 ■ 41 • 61 • 101 • 113.

It is a Carmichael number, too.  Strong pseudoprimes with at least three prime factors

often are Carmichaels, but not always.

Let Cfc(x) denote the number of Carmichael numbers n < x which have exactly

k distinct prime factors.  We now show that for all large x, we have Ck(x) < x^k~l^lk.

Thus, if Conjecture 1 is true, then for each k, Ck(x) = oiCix)).  Let « be a Carmichael

number with exactly k distinct prime factors and x/2 < n < x.  Thus, n has a prime

factor p > (x/2)1^.  Also, n = 1 (mod p - 1) and n> p.  Thus, for each prime p,
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the number of Carmichael numbers n < x ' which are divisible by p is less than

xKp(P - !))•  Hence,

Ck(x) - Ck(xl2) <       £       */(Pi> - O) < \x(k~l)lk

p>(x/2)llk

for all large x.  Thus,

Ckix)<x1'2 +        Z      {Ckix • 2-') - Ck(x ■ 2-'-1)}

1<2'<S/I

<Jcl/2 +lx(k-l)/k £    2-,(fc-i)/fc <Jf(*-l)/ft

i»0

for ah large x.

We can show a similar result for psp(2)'s.  For each d, the number of primes p

with l2(p) = d is clearly less than ¿7 (since their product divides 2d — 1).  Hence,

there are fewer than x2e primes p with l2(p) < Xe.  Consequently, there are at most

x2fc6 integers n composed of exactly k primes p with l2(p) < xe. Now consider

psp(2)'s n < x composed of exactly k primes, one of which, p, satisfies l2(p) >= xe.

Any such n satisfies n = 0 (mod p), n = 1 (mod l2(p)), and n> p.   Thus, the number

of such « < x is at most

¡2(p)>xe      ¿ Xe<p<x

p<x

Hence, letting e = l/(2k + 1), we have that the number of psp(2)'s n <x with exactly

k prime factors is Ofc(x2fc^2k + 1^).   Thus, if Conjecture 1 holds, then the psp(2)'s

with exactly k prime factors form a set of relative density 0 in the set of all psp(2)'s.

8.   Bases a Other Than 2.  In addition to the primary calculation of the psp(2)'s

to 25 • IO9, we found the psp(a)'s below IO7 for a = 3, 5, and 7.  The results are

summarized in Table 6.  The data suggest that Pa(x) and ^(x) have roughly the same

growth rate as x —► °°. However, the fact that a number is a psp(a) appears to enhance its

chances for being a psp(Z>).  This observation may be explained by a heuristic argument

(given elsewhere [26] ) which concludes that la(p) and lbip) have a large common

factor for a substantial fraction of all primes p.  Hence, when /a(p)l « - 1 is known,

it is much easier to have lb{p)\n - 1 as well.

No one has ever proved that infinitely many numbers are simultaneously pseudo-

primes to two distinct given bases, except for the trivial case when both bases are

powers of the same integer. Our data supports the conjecture that for any given finite

set of bases, infinitely many numbers are a psp(a) for each a in the set. When a num-

ber is known to be a pseudoprime to several bases, it has a much improved chance of

being a Carmichael number. For example, while only 10% of the psp(2)'s below

25 • IO9 are Carmichael, 1572 or 89% of the 1770 pseudoprimes to bases 2, 3, 5, and

7 are Carmichaels.
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Shanks [22] has observed that (12m + 1) (24m + 1) is both a psp(2) and a

psp(3), whenever both factors are prime.  Thus, the strong form of the prime fc-tuples

conjecture implies that at least cx1'2/ln2x integers below x are simultaneously psp(2)

and psp(3).

Table 6

Number of pseudoprimes to bases 2, 3, 5, 7 below a limit
Limit

Bases First example 10 10J 10 10 25-10

341 = 11*31

91 = 7-13

217 = 7-31

25 = 5-5

3 78

5 76

3 66

5 69

750  5597

749

726

651

21853

2,3

2,5

2,7

3,5

3,7

5,7

1105 = 5-13-17

561 = 3-11-17

561 = 3-11-17

1541 = 23-67

703 = 19-37

561 = 3-11-17

23

16

11

14

13

9

187  1272

159  1086

125   970

137

141

112

4709

3897

3573

2,3,5

2,3,7

2,5,7

3,5,7

1729 = 7-13-19

1105 = 5-13-17

561 = 3-11-17

29341 = 13-37-61

0 11

0 7

1 4

0 4

95

90

73

69

685

688

576

2522

2499

2046

2,3,5,7 29341 = 13-37-61 63 501 1770

9.  A Fast Test for Primality.  We next consider another "test" for primality.

The one at the beginning of this paper would work infallibly, if we could tell somehow

when we are considering a pseudoprime.  Several lists of psp(2)'s were published ([18]

and [12]) for precisely this purpose. The defining of Euler and strong pseudoprimes

were attempts to formulate a quick test for primality which never fails, or, at least,

has a shorter list of special cases than the test (1).  In view of the rarity of pseudo-

primes, we are justified in defining a probable prime to base a (or prp(a))** to be any

** This terminology was suggested in a conversation with John Brillhart.
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odd n > 1 satisfying (1). It may be either a psp(a) or a prime not dividing a. We define

eprp(a) and sprp(a) similarly.  Note that we can determine very quickly whether a

large number is a prp(a), while it might be quite difficult to decide whether it is a

psp(a).

We propose the following criterion for the primality of an odd number n <

25 • 109.

Step 1.  Check whether n is an sprp(2).  If not, then n is composite.

Step 2. Check whether n is an sprp(3).  If not, then n is composite.

Step 3. Check whether « is an sprp(5).  If not, then n is composite.

Step 4.  If n is one of the 13 numbers listed in Table 7, then n is composite.

Otherwise n is prime.

Table 7

List of strong pseudoprimes to all of the bases 2, 3, and 5

pep? to base:

number 7 11 13

25 326001 no no no

161 304001 no spsp no

960 946321 nc no no

1157 839381 no no no

3215 031751 spsp psp psp

3697 278427

5764 643587

6770 862367

14386 156093

15579 919981

K 18459 366157

L 19887 974881

M  21276 028621

no   no

psp  psp

psp spsp

spsp  no

psp  yes

no no

psp  no   no

no   psp  spsp

carm?  factorization

no   2251-11251

no   7333-21997

no   11717-82013

no   24061-48121

yes  151-751-28351

no   30403-121609

37963-151849

41143-164569

397-4357-8317

88261-176521

67933-271729

81421-244261

103141-206281

form

(k+l)(5k+l)

(k+l)(3k+l)

(k+l)(7k+l)

(k+1)(2k+l)

0
(k+l)(4k+l)

(k+l)(4k+l)

(k+l)(4k+l)

©

(k+l)(2k+l)

(k+l)(4k+l)

(k+l)(3k+l)

(k+l)(2k+l)

(T) (k+l)(4k+l), where 4k + 1 = (m+l)(5m+l).  Here k = 28350, m = 150.

(2)  (k+l)(208k+l), where 208k + 1 = (m+1)(llm+1).  Here k = 8316, m = 396.

Since Table 7 lists the numbers below 25 • IO9 which are strong pseudoprimes

to all three of the bases 2, 3, and 5, this algorithm correctly decides the primality of

any number n < 25 • 109.  Note that virtually all composite numbers are discovered in

Step 1.  On the other hand, if we reach Step 2, then n is almost certainly prime, and

we must continue to Step 4.  Only very rarely does the algorithm terminate in Step 2

or Step 3.
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Several obvious modifications of this algorithm are possible.  If one were willing

to use a longer list, one could follow the first two steps by looking up « in a table of

the 184 spsp(2)'s below 25 • IO9 which are also spsp(3)'s.  (It would be slightly better

to drop the second step instead of the third, since there are only 157 spsp(2)'s which

are also spsp(5)'s and < 25 • IO9.)  If one preferred to have no table look-up at all,

e.g., on a small programmable calculator, then one could simply use strong probable

prime tests to bases 2, 3, 5, 7, and 11.  No number below 25 • IO9 is a strong pseudo-

prime to all five of those bases (and only 3215031751 to the first four).  Since most

numbers are composite and most composites have a small prime factor, it is faster on

the average to test « for divisibility by the first few primes, say, those < 100, before

embarking on the above algorithm.

Let us now consider the numbers which are spsp(a)'s to several bases a.  The

first spsp(2) is 2047 = 23 • 89. The first number which is both an spsp(2) and an

spsp(3) is 1373653 = 829 • 1657.  The corresponding first numbers for bases 2, 3, 5,

and bases 2, 3, 5, 7 are given in Table 7 (numbers A and E).

Notice that the 13 numbers in Table 7 are of the form (k + I) irk + 1), where

r is a small positive integer and k + 1 is prime.  This suggests that there might be a

divisibility condition (like Proposition 3, but stronger) for strong pseudoprimes.  If

one has to factor a large number known to be a strong pseudoprime to several bases,

one should probably first try for a factorization of the form (k + 1) (rk + 1) with

small positive r.  Actually, many pseudoprimes have the form (k + 1) (rk + 1), but

the tendency to have this form is more marked for the strong ones.

10.   Lucas Pseudoprimes.  When P and Q are integers such that D = P2 - 4Q

=£ 0, we define the Lucas sequence {Uk} with parameters D, P, Q by

Uk = (ak - ßk)/(a - ß),      k>0,

where a and ß are the two roots of x2 - Px + Q = 0.  (See Section 4 of [3] for a

discussion of Lucas sequences from our point of view.)   Fermat's "Little Theorem"

has an analog for Lucas sequences:   If p is an odd prime, p T Q, and (D/p) = — 1,

then p I U + x.  An odd composite number n such that n \ Q, iD/ri) = -1, and

n | Un + j is called a Lucas pseudoprime (lpsp) with parameters D, P, Q.   One can com-

pute a particular term, say Un + X, of a Lucas sequence by means of recursion formulas

at a cost of about three times the arithmetic labor of the exponentiation in (1).

By analogy to pseudoprimes, one might guess that the number of Lucas pseudo-

primes below x would be about P2ix). The data we have indicates that this is approxi-

mately true.

R. Baillie [2] noticed that if one chooses the parameters D, P, Q as in B below,

the first 50 Carmichael numbers and several other psp(2)'s were never Lucas pseudo-

primes.  His discovery led to the belief that a combination of a probable prime test

and a Lucas probable prime test might be an infallible test for primality. (An lprp is a

prime or lpsp.)

Numerous papers [33], [11], [17], [27], [28], [29], [31], [32] concerning

Lucas pseudoprimes have appeared.  Malm [14] used Lucas sequences in a practical
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pseudoprime test, but his test was quite different from ours.  He discusses the compu-

tational cost of finding the Jacobi nonresidue D.

If one wishes to perform an ordinary prp test on an odd number n, one may

select almost any number a for the base.  In contrast, only about half of the parameter

triples D, P, Q satisfying D = P2 - 4Q ¥= 0 may be used in constructing an lprp test

because of the Jacobi symbol condition.  Various methods of choosing the parameters

are discussed in [2].  We mention two possibilities here.  Baillie uses B while Selfridge

prefers A.

A. Let D be the first element of the sequence 5, — 7, 9, —11, 13, . . .  for

which iD/ri) = -1.  Let P = 1 and Q = (1 - D)/4.

B. Let D be the least element of the sequence 5, 9, 13, ... for which (D/n) =

— 1.  Let P be the least odd number exceeding Dl¡2 and let Q = (P2 - D)/4.

If no such D exists, then « is a square and hence not an lpsp for any choice of param-

eters.   In the following, we  assume that a particular algorithm for selecting the param-

eters D, P, Q in terms of n is given, and that it detects and removes squares n. Write

L(x) for the number of lpsp's up to x with parameters so chosen.

The analog for Lucas pseudoprimes of Proposition 3 is this:

Proposition 5. // the prime p divides the lpsp n, then n = -1 (mod p(p)),

where p(p) is the least positive k such that p \ Uk. Hence, n = - (D/p)p (mod p •

p(p)), where D is the associated Jacobi nonresidue of n.

Proof.   The proposition follows immediately from Theorem 10 of [3].

For each of the algorithms A and B above, we have performed lpsp tests on the

odd nonsquare composites up to IO8 as well as on the nonsquare psp(2)'s below

25 • IO9.  We found that L(x) has roughly the same growth rate as P2(x) for x < IO8.

We noticed several differences between the lpsp's and the psp(2)'s.  While the pseudo-

primes tend to be — 1 (mod m) for most m, the lpsp's preferred the class —1 (mod m).

Just as many pseudoprimes have the form (k + 1) (rk + 1), many lpsp's have one of

the forms (k + 1) (rk - 1) or (k — 1) (rk + 1), where r is a small positive integer.

Perhaps these phenomena are related to the minus sign which distinguishes Propositions

3 and 5.  The numerical data suggest that an lpsp with respect to a given parameter

selection algorithm has an improved chance of being an lpsp for other algorithms, but

that it is very unlikely to be a psp(a) for any base a specified in advance.  In short,

the lpsp's are different kinds of numbers than psp's.  Not a single one of the first

21853 psp(2)'s is an lpsp for either algorithm A or B.  Thus we have another test for

primality for odd « below 25 • IO9:

Step 1.  Check whether « is an sprp(2).  If not, then n is composite.

Step 2.  Check whether n is an lprp for algorithm A (or B).  If not, then n is

composite.  Otherwise n is prime.

We have explained why numbers which are both an spsp (2) and an lpsp should

be rare.  We challenge the reader to exhibit one.  If there are none, then we have a

primality test which is faster than that of Gary Miller [15] by a factor of In n on the
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average when n is prime.  For composite n which are not spsp(2)'s (and these are most

of the composite numbers), Miller's test and ours are nearly equally swift.

The authors offer a prize of $30 to the first person who communicates to us

either (i) a number which is both an spsp(2) and an lpsp for either algorithm A or

algorithm B, or (ii) a proof that no such number exists (for one of the algorithms).

Claimants must state the prime factorization of any numbers submitted.
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