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A Finite Element Method for First-Order

Hyperbolic Systems

By Mitchell Luskin*

Abstract.   A new finite element method is proposed for the numerical solution of a

class of initial-boundary value problems for first-order hyperbolic systems in one space

dimension.   An application of our procedure to a system modeling gas flow in a pipe

is discussed.   Asymptotic error estimates are derived in the L   norm in space.

1.  Introduction.  We propose and analyze a new finite element method for the

numerical solution of a class of initial-boundary value problems for first-order hyper-

bolic systems in one space dimension.  Our method is based on a procedure given by

Platzman [9].  A generalization of our procedure for problems in two space dimen-

sions will be treated in a later paper [8].

We consider problems in one space dimension of the form

ut + {ax2{x, t)v)x = fx(x, t, u, v),      (x, t)G[0,l] x [0, T],

vt + a2l(x, t, u, v)ux + a22(x, t, u, v)vx = f2(x, t, u, v),

(1.1) (x, t)G[0, 1] x [0,7/],

u(x, 0) = u0(x),      v(x, 0) = v0(x),      x G [0, 1],

t;(0, t) = g0(t),        v(l,t)=gx(t),       t G [0, T].

We assume that (u(x, t), v(x, t)) is a smooth solution of (1.1).  Let A be a com-

pact neighborhood in [0, 1] x [0, T] x R x R of the set

{{x, t, u{x, t), v(x, t))\(x, t) G [0, 1]  x [0, T]},

and assume that there exists a positive constant, a, such that

(1.2) al2(x, t) > a,      a21(x, t, sx, s2) > a,

for all (x, t, sx, s2) G A.  We assume also that aJx, t, sx, s2) and ft(x, t, sv s2) are

Lipschitz continuous functions of their arguments for (x, t, s,, s2) G A.

Initial-boundary value problems of the form (1.1) occur, for example, by scaling

the space variable, x, of the following first-order system modeling the transient be-

havior of isothermal gas flowing in a pipe:
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pt + GX =0, {X, t)G [0,L]   X   [0, T],

Gt + {a2 - G2p'2)px + 2Gp~1Gx = -f\G\Gp-\

°'3) {x,t)G[0,L] x [0,T],

p{x, 0) = p0{x),      G(x, 0) = G0(x),      x G [0, L],

G(0, t) = g0(t),       G(L, t) = gx(t),        t G [0, T],

where p is mass density, G is momentum density (averaged through the pipe cross-

section), a = a(p) is the isothermal speed of sound, L is pipe length, and / = /(|G|)

> 0 is a friction factor.  We assume that the friction factor is described by the Moody

diagram; see [12, pp. 288-289].   In this case there exist positive constants Gc and f0

such that /(|G|) = /0|G|-1 for \G\ < Gc.  There also exists a positive constant fx such

that

lim  f{\G\)=fl.

The boundary conditions above correspond to supplying the mass rate of flow at x =

0, L.   Conditions on the data and the friction factor guaranteeing the existence of

global smooth solutions to (1.3) have been given by the author in [7].

We now describe the finite element spaces used for our procedure for (1.1).  Set

/ = [0, 1 ] and for E C / define

Pk{E) = {z: I —► R zfg. is a polynomial of degree < k}.

For the partition ô = {0 = x0 < xx <■• <xN = 1}, we define I¡ = [x¡_x, x¡], h¡

= x¡ - x¿_y, and h = max h¡.  Set

(1.4) Uk(r, o)={zG Ck(I) I z G />,.(/,.), i = 1, 2.N}.

We shall often write M for Mk(r, 6).   We also set

|M=|Mk(r,ô)={||zEMfc(r,ô)}.

We shall assume that the families of spaces Uk(r, 5) considered in this paper are based

on meshes S that are quasi-uniform, i.e., there exists Cx > 0 independent of h such

that

K
(1.5) min-p>C,.

n *

Iff, g G L2(I), denote

</, g> = P/gdx-

We propose the following method to approximate (1.1):
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Find U: [0, T] —* M and V: [0, T] —» dM/dx such that (suppressing explicit

dependence on x, t)

(Ut,x>-(äx2V,xx) + a12(l,t)gl(t)x(l)

-al2(0, t)go(t)X(0) = </,(£/, F), x>,      X e M,

<Kf + «21(£/, K)f/x+a22(t/, V)VX, x)

+ ß[V(l, t) -gl(t)]X(l) + ß[V(0, t) -go(t)]X(0)

(L6b) =(f2{u,v),x>,    xe¿M,

U(0) *u0,      V(0)~vQ.

The terms multiplied by the constant ß in (1.6b) represent penalty terms to

impose the boundary conditions.  Let

,    . y = max \a22(x, t, u(x, t), v(x, t))\.
\iJ) (jc,f)=[o,i 1 x[o,r]

We show that the scheme (1.6) is convergent if ß > y/2. If a22 = 0, it follows that

the scheme (1.6) is convergent for ß = 0. We must also require that M C Cl(I), i.e.,

k > 1, if a22 #0.  Otherwise the term

will not be defined.

We denote by H', for / a positive integer, the Sobolev space of functions on /

with / derivatives in L2(I) and norm

{a22(U, V)VX, x>,      XG

;'    r\ dkz dkz

'      k=oJodxkdxk

We shall prove the following theorem in Section 5 :

Theorem 1. Let (u, v) be the solution to (1.1) and assume that there exists

C2 < °° such that

sup   ( II« II, + llu II,) < C2,      JfT [ II«, II2 + ht II2 ] dt < C2.

Assume that U(0) G M, V(0) G dU/dx satisfy, for some C3 < °°,

(1.8) 11/7(0) - u0 II + ||K(0) - v0 II < C3hr.

Suppose that ß > 7/2, that k > 1 if a22 ^ 0, and that r>2 if the system (1.1) is

nonlinear. Then there exists h0 > 0 and C such that the solution (U, V) of (1.6)

exists on [0, T] for h <hQ and such that

(1.9) \\U(t) - u(t) II + II n0 - vit) II < Chr   for t G [0, T], h < h0.
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We note that the estimate (1.9) is of optimal order for v.  It has not yet been

determined whether the order of this estimate for the approximation of u can be im-

proved in general.  The optimality of the result (1.9) is discussed in more detail in

Section 5.

Our procedure should be compared to the standard finite element procedure

[2], to be discussed in Section 2, for approximating the solution of first-order hyper-

bolic systems.   Although high convergence rates can be proven for both the standard

finite element procedure and our alternative procedure, there are important qualitative

differences in the solutions they produce.  It is shown in Section 2 that the numerical

solution produced by the standard finite element procedure has dispersion properties

unlike those of the exact solution of the differential equations.  This behavior has

been noted by, among others, Hedstrom [5] and Platzman [9].  We show in Section

2 that for a model problem which is a linearization of (1.3) our proposed procedure

yields a solution with dispersion properties similar to those of the solution of the

differential equations.

In Section 3 we discuss the qualitative nature of the solution of (1.3).  We show

that for short pipes (L small) or rough disturbances the dissipative term -f\G\Gp~1 is

relatively unimportant and the solution to (1.3) is approximated by the solution to

a wave equation.   However, for long pipes and mild disturbances the dissipative term

-f\G\Gp~x is shown to be very important and the solution to (1.3) is approximated

by the solution to a diffusion equation.  Our numerical solution is shown to be close

to that of the solution of the standard finite element method for the wave equation or

the diffusion equation under the appropriate conditions.

Section 4 gives a result which indicates that accurate long-time integration of

systems such as (1.3) is possible with our procedure.  We note that accurate long-time

integration of (1.3) is not possible with the standard finite element method due to

the accumulation of round-off and truncation error.

2.   Dispersion Analysis of an Example.   Consider the hyperbolic system

ut + vx =0,      (x, t)G [0, 1] x [0, T],

vt + ux =0,      (x, t)G [0, 1]  x [0, T],

(2.1)
v{o, t) = v{i,t) = o,    fG[o,r],

u(x, 0) = u0(x),      v(x, 0) = v0(x),      x G [0, 1].

The solution of (2.1) is easily constructed through Fourier analysis.   If

OO OO

"o(*) = S a7i C0S mx> vo(X) =  Hbn sin mx>
0 1

then

OO

u(x, t) = "Y*An cos(nnt + 0„)cos mrx,
o
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OO

v(x, t) = "Y¿An sin(/i7rí + 0w)sin mix,
i

where A0 = a0, d0 = 0, An cos 0„ = an, and An sin 0„ = bn.

Now consider two approximation procedures for (2.1).   Let

Hl0={zG Hl |z(0) = z(l) = 0},      M° = Mk{r, 5) n ff¿,

and define the standard finite element approximation [2] to be the functions U:

[0, T] —► M and F: [0, r] —> M° such that

tt/p IV) + (Vx, W) = 0,      iceM,

(2.2) <VP W) + (Ux, W) = 0,      WGM°,

U{0)~u0,      V(0)*v0.

It is instructive to study an explicit solution of (2.2) in the case k = 0, r = 1,

and ô is a uniform partition. For TV a positive integer, set h = 1/N and x¡ = ih, i =

0, . . . , N.   Define the interpolation operator P: C(I) —* M = M0(l, ô) by the relations

If

then

(2.3)

Pz(x¡) = z(x¡)   for i = 0, ... , TV.

N N

U(0) =T,anP (cos mrx),       V(0) = £ bn ? (sin mix),
o i

N

^(0 = LAn cosO1,,? + Ö„)P(cos mix),
0

AT

K0 = ZAn sin(r„i + Ön)P(sin /itoc),
i

where A0 = a0, An cos 9n = aw, An sin ô„ = fcn, for n = 1, . . . , N, and

3 sin nhir

^2A' r" = h(2 + cos matt) '

Note that T^ = 0. Thus, we see that

U(t) = P(cos Nnx),      V(t) = P(sin Ntix) = 0

is a nonconstant steady-state solution to (2.2).   Furthermore, we see from Graph #1

that the most spatially oscillatory components of the solution of (2.2) have a low

frequency in time even though the spatially oscillatory components of the solution of

(2.1) have high frequency in time.

We can also see this phenomena for (2.2) and general spaces M = Mk(r, 5) as
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follows.  Since

d    n
dim — M° + 1 < dim M,

dx

there exists a nonconstant z G M such that

(2.5) <Xx,z> = -<X,zx) = 0,      XeM°.

Hence

(2.6) U(t) = z,       F(0 = 0

is a nonconstant steady-state solution of (2.2).  We note by (2.5) that z must be a

highly spatially oscillatory function.

Our new procedure to solve (2.1) is the following.   Find U: [0, T] —► M =

Hk(r, 8) and V: [0, T] —> dH/dx such that

(Ut, W) - (V, Wx) = 0,      W G M,

(2-7) (Vp W) + (Ux, W) = 0,       WG-^-U,r x fa

U(0)*u0,       V(0)*vo.

We note that by elimination of Fin (2.7) we see that Usatisfies

(Utt, W) + (Ux, Wx) = 0,      WGM.

Hence, our procedure reduces in this special case to the standard method for the

wave equation.

An explicit solution to (2.7) can be constructed as follows.   Let Xfc be the ktb.

positive Rayleigh-Ritz approximate eigenvalue with eigenfunction Uk G M for the

problem

(2.8) -h"=Xm,      xG[0, 1],      u'(0) = u'(\) = 0.

Thus, 0 < Xj < X2 < • • _< XM and Xk(Uk, W) = <Ukx> Wx), W G M, where M =

dim M ~ 1.   Let cofc = V^-  Also, set co0 = 0 and UQ = 1.   If

M M

u(0) = Z °kUk,  HO) = Z hi-^k1 uk)x,
o i

then
M

U(t)= £Akcos(a>kt + 6k)Uk,
o

M

V(t) = l>fcsin(a;kr + 0fc)(-^1i/k)x,
l

where A0 = a0, 0O = 0, Ak cos 0k = afc, and >lfc sin 8k = bk.  It is well known [11,

p. 223] that iok > kit for k = 1, . . . , M.   Hence, we do not obtain nonconstant

steady states for (2.7), and states which are spatially oscillatory have high frequency

in time.
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In the case M = M0(l, S), where S is a uniform mesh of size 1/N, N a positive

integer, we can take Uk = P(cos knx) and

na\ i •  (klTh\(i    2 • 2 kith\~if2u-i
(2.9) œk = 2 sin ̂ —j (1 - jsin2 — J        h    .

A comparison of the graph of cok and Vk with the graph of vk = kn (see Graph #1)

shows the superior dispersion relation given by scheme (2.7).   Intuitively, the graph

shows that only about one-half of the degrees of freedom in the standard method are

useful in approximating the solution, whereas for the proposed method all of the de-

grees of freedom are useful.

Graph #1 (from Platzman, [9])

u 0.5 1.0

kh

3.  Application to the Modeling of Gas Flow in a Pipe.   For high frequency

disturbances, solutions of Eq. (1.3) behave very much like solutions of the usual

second-order wave equation, and for low frequency disturbances they behave very

much like solutions of a heat equation.   In this section we indicate the sense in which

this is true for a linearized version of (1.3) and examine the behavior of our numeri-

cal method in these two limiting situations.

If we linearize (1.3) about constant mass density p > 0 and momentum density

G = 0, we obtain the system (after scaling the length)

(3.1) Pt + L~iGx = 0,      (x, t) G [0, 1] x [0, n,

(3.2) Gt + L-1a2px=-fG,

(3.3) p(x, 0) = p0(x),      G(x, 0) = G0(x),      x G [0, 1],
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for positive constants L, d, and /where L is pipe length, a = o(ß) is the isothermal

speed of sound, and /is a constant friction factor. We consider, for simplicity, the

case of homogeneous boundary conditions

(3.4) G(0,t) = G(l,t) = 0,      tG[0,T}.

We obtain, by eliminating the variable G from (3.1)—(3.2), the damped wave

equation

ptt - L~2è2pxx = -fpt,      (x, 0 G [0, 1]  x [0, T],

(3.5) p(x, 0) = p0(x),      pt(x,0) = -L-lGOx(x),      x e [0, 1],

Pxi0,t) = px{l,t) = 0,      tG[0, T].

Now suppose that the initial data is such that for m a positive integer

(3.5a) p{x, 0) = am cos(wrrx)   and   pt{x, 0) = ßm cos{m-nx).

Then it is easily checked that the solution to (3.5) is given by

(3.6) p(x, 0 = [cmeymt + cmeymt]cos(mnx),

where

ym=-{[l±s/l-4m2«2L-2o2r*),    cmJm~1>m.
-r -yt
'771 '771

If 7~ = ym for some m, then small modifications of the following arguments are

necessary.  Let

p j (x, i) = cm e7m t cos(mirx),      p2 (x, t) = cm e7™ cos(wttx).

Note that p = px + p2.

We first consider the case when

(3.7) m2it2LT2a2r2 » 1.

A simple calculation shows that under the condition (3.7) we have that

(3.8) \fpit\«\L-2Ô2pixx\,\pitt\,

for (x, 0 € [0, 1] x [0, T], i - 1, 2.  (For functions <p, i|/ e C([0, 1] x [0, T])

we say |0| « |0| for (x, t) G [0, 1] x [0, T] if and only if \</>\/\\p\ « 1 for (x, 0

G [0, 1] x [0, T].)  Hence, it follows that the solution to (3.5) is approximated by

the solution to the wave equation

ptt - L~2d2pxx = 0,      (x, t) G [0, 1]  x [0, T],

(3.9) px(0,0 = P3C0,0 = 0,       tG[0, T],

p(x, 0) = am cos(/7i7rx),      pt(x, 0) = ßm cos(mirx),      x G [0, 1].
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Next, we consider the case when

(3.10) m27r2I-2â2/-2«l,       I0j«k*m/l.

Then it is easily verified that

(3.11) \p2n\ « \L-2d2p2J, \fp2f\    for (x, t) G [0, 1) x [0, T].

It also follows from (3.10) that \cm\ « \c~\ so that

(3.12)
for(x, i)e[0,l] x [0, T).

Hence, we see from (3.11) and (3.12) that under the conditions (3.10) we have that

the solution of (3.5) is approximated by the solution of the diffusion equation

-L~2Ô2pxx = -fpt,      (x, 0 G [0, 1] x [0, r],

(3.13) px(0,t) = px(l,t) = 0,      tG[0,T],

p(x, 0) = am cos(mnx),      x G [0, 1].

We shall now show that under the conditions (3.7) our numerical solution to

(3.1)—(3.3) is close to the standard finite element method for the wave equation

(3.9) and that under the conditions (3.10) our numerical solution to (3.1)—(3.3) is

close to the standard finite element method for the diffusion equation (3.13).

Our finite element solution to (3.1)—(3.3) is p: [0, T] —* M, G: [0, T] —*■

dM/dx, such that

(3.14a) (pt,x)-<L-1G,Xx) = 0,      X^M,

(3.14b) <Gí,X> + <¿"1a2px,X> = -</G,X>,      xe^M,

(3.14c) p(0)*po,       G(0)~Go.

We can eliminate G from (3.14) to obtain the following finite element equation

for p: [0, T] —► M

(3.15) <ptt,X) + (L-2Ó2px,xx> = -(fpvX>,      XGM,

where p(0) is as in (3.14c) and pt(0) G M satisfies by (3.14a)

(3.16) ^(0), x> = <£"'G(0), Xx),       X G M.

As in our discussion of the differential problem, we assume that

p(o) = «mtfM, Pt(0) = ßmUm

(we use here the notation for the eigenproblem (2.8) introduced in Section 2).  The

solution to (3.15) is then given by

(3.17) Pit)=[c+meT™i+ cmeV™t\Um,
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where

ri [i±Vi-4xkL-2í2/-2],   Cm
"m m   n

ri -ri

An analysis similar to that given for the differential problem then establishes

that if

(3.18) U'Vr1»!,

we have that the solution to (3.15) is approximated by the solution p: [0, T]

to the standard finite element approximation for the wave equation

(3.19)

Similarly, if

(3.20)

(ptt,X) + <L-¿dzpx,xx) = 0, M.

\mL-io2r¿«i,   \ßm\«\amf\,

it can be verified that the solution to (3.15) is approximated by the solution p:

[0, T] —► M of the standard finite element approximation for the diffusion equation

(3.21) (L-2d2px,xx) = -M, X>,       XGM,      p(0) = amUn

4.   Long-Time Integration.   We shall prove the following result:

Lemma 1.  Let (p, G) be the solution to the continuous problem (3.1)—(3.4).

There exist positive constants C and D (depending on ô, L, and / but independent of

T, p0, and G0) such that

(4.1) Pit) -flp0dx    + \\G(t)\\ < Ce-Dt(\\p0 - jl0P0dx\\ + IIC0n).

Also, if p: [0, T] —► M and G: [0, T] —► dM/dx is the numerical approximation of

(3.1)-(3.4) defined by (3.14), then

(4.2) p{t)-Pop{0)dx + \\G(t)\\ < Ce »-(IK/:p{0)dx + IIG(0)II
)■

Remark. This result implies that the dependence of the solution p, G of (3.1)—

(3.4) at tx > t0 on p0, G0, and the boundary conditions for t G [0, t0] decays ex-

ponentially (except for the dependence on J¿ p(x, t0) dx, of course). It is essential

that a numerical procedure for (3.1)—(3.4) have the property (4.2) if the accumula-

tion of round-off error and truncation error is to be prevented from destroying the

accuracy of the numerical solution after a finite interval of time.

Proof of Lemma 1.  We shall prove the estimate (4.2) for the numerical solu-

tion given by (3.14).   The proof that (4.1) holds for the differential problem is

analogous.  Suppose that the solution p(t) = ~LMcm(t)Um G M to (3.14) has initial

conditions

M m

Pi0)=Z<*mVm,      Pti0)=£ßmUm.
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We  assume in this section that the eigenfunctions {Um} have been normalized. Again,

if ym = ym for some m, then small modifications of the following arguments are

necessary.

It follows from (3.17) that

Cm(0*[c+er*, + c-er**].

By the orthonormality of the set {Um}, we have that

(4.3)

It follows from (3.14a) that

(4.4)

so

(4.5)

p{t)-fl0p{0)dx
M

Zcmit)2.
1

M

Git) = Hcm{t)LX-m'Un
i

ivt

WG{t)P = Y,c'm{t?L2\m\

It is easily checked that there exists a positive constant C, which is independent

of m and 5, such that

(4.6) ^m\2+\Cm\2<C[a2m+ß2L2\m1]

We also note that since \n>\l> it2 for all partitions 6 and for m = 1, . . . , M it

follows that

(4.7) ReT^ <Re \-f- [1 - \0 - 47r2a22r2/-2]    = D,

for m = 1, . . . , M.

Hence, we have that

(4.8) c2m{t) < 2e~2D'[\cm\2 + le" I2] < Ce~2D\a2m + ß2mL2\m>]

Since cm(0) = am and c'mi0) = ßm, it follows from (4.3) and (4.5) that

n 2 M
p(0)-flp(0)dx   ,     Zß2mL2K! = ^(o)f.(4.9)

M

Ta2
1

Thus, if we sum (4.8) for m = 1, . . . , M, we obtain

(4.10) p(t)-pQp(0)dx <Ce -2Dt p(0)-flop(0)dx + \\G(0)\\2   .

Next, it is easy to show that there exists a positive constant C, which is inde-

pendent of m and ô, such that

(4.11) lOt^KC



1104 MITCHELL LUSKIN

Hence, we have that

M M

TOI2 - Z c'jtftfK1 = I icmvmeT^ + cmr-/-f)2L2x-1

(4.12)

M

<Ce-2D<¿:[\cm\2+\cm\2]

<Ce -2Dt
p{0)-Pop{0)dx + IG(0)II:

We note that the estimate (4.2) is not valid for the standard finite element solu-

tion to (3.1)—(3.4).  The standard finite element solution to (3.1 )—(3.4) is obtained

from (2.2) by replacing U with p and V with G and by adding -f{G, W) to the right

side of the second equation.  Since (see (2.5))

p(0 = z,      G(f) = 0,

is a nonconstant steady-state solution, it is clear that (4.2) cannot be verified for the

standard finite element method.

5.   Proof of Theorem 1.   We shall fix r > k > 1 and derive error estimates for

the scheme (1.6) for the family of spaces

M = Mk{r, 8)

satisfying the quasi-uniformity assumption (1.5). We note in the statement of Theo-

rem 1 that we may allow k = 0 if a22 = 0 and r = 1 if (1.1) is linear. These special

cases can be proven by a variant of the following argument.

In what follows we denote by W1,00 the Sobolev space of functions with / weak

derivatives in L°°{I) and norm

H = t
k=0

dkZ

dx"
|z| = lz

¿~(/)

It is well known that there exists C4 < °°, depending only on Cx of (1.5) and r,

such that the following inverse hypothesis holds for x G M,

(5.1) A1/2lxl+AlM<C4 »x«,    Ä1/2lxxl + ÄlxxJI<C4llxxi.

It is also well known that the spaces M satisfy the following approximation

property:

There exists C- < °° such that for 2 < s < r + 1 and z G Hs,

(5.2) inf (llz-xll + ällz-xlli +/i2llz-xll2 +A3/2lz-xli)<C5/iíllzllí,
xeM

and for 1 < s < r and z G Hs,

(5.3) inf   (IIz-xH + AIz-xIIi +/i1/2|z-xl0)<C5^llzlli.
d

Xe--M
dx
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We also use the fact that there exists C6 < °° so that if z G H2 and zx{0) = zx{l)

= 0, then we can choose x G M such that Xx(0) = X^(0 = 0 and

(5.4) llz-xlli +Allxl2 <C6h\\z\\2.

In what follows, C will denote a constant which depends on the Lipschitz con-

stants for a¡• and /•, a, and Cx through C6, but which is independent of 5.  It will be

allowed to vary from estimate to estimate.  When the arguments for a(/-, f¡ are omitted

we assume that the functions are evaluated at (x, t, w(x, 0> <Xx 0)-

We wish to define the weighted L2 projection of v, R = R{v) G dM/dx, by rela-

tions

(5.5) <ai2{v-R{v)),W) = 0,      WG-^M-

It follows by the approximation property (5.3) and (1.2) that t?2 = v - R{v) satisfies

(5.6) IIt?2 II < CUIr/V-

It then follows by the approximation property (5.3) and the inverse hypothesis (5.1)

that

(5.7) /tlrrjjll, +¿1/2|T?2|<c7z'iI;llr

We obtain an estimate for T72   by differentiating (5.5).  We then obtain

(5.8) iax2v2f W)+ nj-a12)r?2> w) = 0,      ^G^M;

it follows that

IIt?2 t II < CIIt?2 II + C    inf    ht - x » < Chr{ \\v S, + \\vt II,).
(5.9) d

xe—M
dx

As before, by (5.3) and (5.1) we can then obtain

(5.10) h \\t)2 f H, + h112 |t?2 f | < Chr( \\v \\r + ht \\r).

We also wish to define the following approximation of u, Q = Q(u, v) G M, by

the relations

<«2l(" ~ ß("' ü))x> Xx> + <û22r?2x' Xx>

(5.11) + j3t?2(1, 0X^(1) + t3t?2(0, 0X^(0) = 0,      XGM,

¡lo(u-Q(u,v))dx = 0.

Set t?, = u - Q(u, v).  It follows from (5.1) and (5.7) that

\n2{i,t)xx{i)\<ch'-l\\xjh\\r,     XGM,

(5.12)
\v2(0, 0XX(0)I < OTl \\Xx II K,      X G M.
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Hence, it follows that

(5.13)        \\Vl\\ < CÜTÍ2», + Or1 \\v\\r + C inf II« - x», < Chr-l(h\\r + Hull,).
xeM

We can derive an L2 estimate for t?j by a variant of a frequently used duality

argument.   Let /G L2(I), S^fdx = 0, and determine <p by

-(*2i0A=¿      *G[0, 1],      <t>xi0) = 4>xil) = 0,      P04>dx = 0.

Note that

1

"2 1      "

Then it follows that Il0ll2 < Cll/ll.   Also, for x G M, such that xx(0) = xx(l) = 0,

by (5.11)

<t?p /> = <i?x - («2i*A> = ^l7?^' *«>

(5.14)

= ^l1?!*' (* ~ X)x> + ^22^2^' (* - X)x> + <T?2> (fl2 2*A>-

Now, if we choose x to approximate 0 as in (5.4) so that 110 — x"i < CAll0ll2, it fol-

lows that

(5.15) Krii, f)\ < C[AIt?,II, + Ahfel, + IIt72II] ll/ll.

Hence, since /¿ rjj dx = 0, we can conclude that

(5.16) It?, IK Cft'[«««,.+■ MJ.

We can derive an estimate for t?j   by differentiating (5.11) with respect to t

to obtain, as in the estimate for IItî1 IIj,

(5.17) IItj^IIj < Chr-\\\u\\r + fci^l, + H + Mr)-

A duality argument similar to the previous such argument establishes that

(5.18) hj   | < Cftr[llMlr + Mr + Wut\\r + \\vt\\r].

Set |j = U-Q(u, v), %2 = V-R(v).  Then from (1.1), (1.6a), and (5.5) we

see that

(5.19) <£lf, x> - (a13€2, xx> = <r?lf, X> +</,(« *0-/i(". «). X>,       X G M-

It also follows from (1.1), (1.6b), and (5.11) that

<£2i + a21iu, v)Zlx + a22(u, v%x, x> + fé2(l, 0x0) + fé2(0, 0x(0)

(5 20) = <t?2 f, X> + < [a2 j («. v)-a21 ill, V)] Ux, X>

+ {[a22(u,v)-a22(U, V)]Vx,x>

+ (f2(U, V)-f2(u, v), x>,      XG^M-
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We prove the theorem by a variant of an argument used in [2], [6], [10], [13]

by showing that there exists a positive constant C1 such that for any i€ [0, T], if

(5.21) (U, V)    exists on [0, t]

such that

{(x, s, U(x, s), V(x, s))\(x, s) G [0, 1] x [0, i]}çA,

and

\(u - £0,(1)1 + K» - V)x(s)\ < 1    for 0 < s < /,

then

(5.22) \\(u - t/)(s)H + ll(u - V)(s)\\ < Cnhr,      0 < s < t.

Let 8 be a compact neighborhood of

{(x, s, u(x, s), v(x, s))\{x, 0 G [0, 1] x [0, T]}

such that 8 Ç interior of A.

It follows from the "inverse" hypothesis (5.1) that (5.22) implies the existence

of a positive constant C so that

|(k - Í/X0I + l(w - VM\ <Chr-112,      0 < s < t.

Hence, there exists a positive constant hx such that if A G (0, A, ], then (5.22)

guarantees that

{{x, s, Uix, s), V{x, s))\(x, 0 G [0, 1] x [0, f]} Ç 8-

Similarly, it follows from the "inverse" hypothesis (5.1) that (5.22) implies the

existence of a positive constant C such that

\(u - U)x(s)\ + \{v - V)x{s)\ < Ch1"3'2,      0 < s < t.

Hence, since r> 2, there exists a positive constant h2 such that if h G (0, h2], then

(5.22) guarantees that

|(n - U)x(s)\ + \(v - V)x{s)\ < Vz    for 0 < s < t.

Now, U{x, t), V{x, t), \(u - U)x(t)\, and \(v - V)x(t)\ are continuous functions

of /.   Also, by the assumption (1.8) on the choice of U(x, 0), V(x, 0) and the above

discussion it follows that for h < min(Aj, A2) we have (assuming without loss of

generality that C7 < C3)

{(x, 0, Uix, 0), V{x, 0)) | x G /} C B    and    \{u - U)x{0)\ + \{v - V)x(0)\ < JS.

Suppose we have proven that (5.21) implies (5.22).  We can thus conclude

from the existence theory for ordinary differential equations that if h < h0 =

min(hx, h2), then (U, V) exists on [0, 7"],
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and

{(x, s, Uix, s), V{x, s)) | (x, s) G [0,1 ] x [0, T]} ç B,

\{u - U)x{s)\ + \{v - V)x{s)\ <Vi,      0 < s < T,

\\{u - l/Xs)Il + Ifr - *0(s)H < Cnhr,      0 < s < T.

So, we assume that (5.21) is valid.  We shall proceed to prove the estimate

(5.22).   Since

{(x, s, Uix, s), V(x, s)) | (x, s)G [0, 1]   x [0, f]} Ç A,

we can assume (1.2) and the Lipschitz bounds on the coefficients where needed.  We

also note that it follows from (5.21) and Sobolev's inequality that

(5.23)

\Ux(s)\ + \Vxis)\<]ftxis)\ + \vx(s)\ + l

<C{IIh(s)II2 + llu(s)H2} + 1 < CC2 + 1,

for 0 < s < t.

We set a|, G M to be the L2 projection of a2]^x/a12 onto M, i.e.,

{fkx,x) = Wx,x),     XGM.

We use the following variant of a lemma of Dupont and Wahlbin [4] to estimate the

error a?! ~ a2x%x¡aX2.

Lemma 2.   There is a constant C such that ifb is a continuously differentiable

function on [0, 1], 0 G M, and 0 is the L2 projection of b<p onto M, then

\\{b<l>-ip)x\\<C\bx\\\(t>\\.

Proof of Lemma   For x G M, we have by (5.1)

\\{b<t> - *)J < \\{b<p - x)J + Hx-4>)J

(5.25) < \\{bcp - x)x II + ChT1 Wx - 1/ II

< \\{b<p - x)x II + Ch-l{\\b<t> - xll + II&0 - 011).

It follows directly from [4] that IIA0 - 011 < Ch\bx\ Il0ll.  The argument in [4] also

shows that one can construct x G Mr_i(r, 8) such that 1160 - xll + h\\{b(¡> - x)xII <

Ch\bx\ Il0ll.  The result follows by substituting the above two estimates in (5.25).

Q.E.D.
We apply the lemma to obtain

(5.26) («U*-L-s
'2 1

\2
<c

'2 1

1 2

HI,".
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We note that from (1.2) it follows that there exists a constant C> 1 such that

C-1 .$! II <

'21

1 2

<Cll|,ll.

We now take x = ß|, G M as our test function in (5.19). We obtain, since %x

G M, that

<?,„«*,> =\*
— *

Also,

(5.27)

and by (5.26)

'21

*12\S)      2 dJ't^s

'2 1

2\?"U ax\ñ

<«i2«2.(«?iy = («i2*2. i^Si )x; + 0(11*2 n2 + ^i"2)

(5.28)

= <«12*2'*1X> + 0(II?2II2   +   HI, II2)-

Hence, we can obtain from (5.19), (5.27) and (5.6), (5.16), and (5.18) that

1  d /    a
(5.29)

*21

2dt
ifer?,  - <«2i*2>s, ><c[ii?1n2 + m2u2] +ch lr

'12

If we set x = É2 G d\k/dx in (5.20) and use (5.6), (5.9), (5.16) and (5.23), we

obtain

(5.30)

However,

(5.31)

%> *2> + <a21?l,' ?2> + <fl22*2x' *2> + PM1' S)'  + #2(°» ^

<Ch2r + C[ ll|, II2 + ll|2ll2].

<fl22*2x> *2> = 2/0 (fl2 2*2)xi& -2<(fl22)**2' *2>

<^7(l2(l,02 +|2(0,s)2) + Cll|2ll2.

Thus, if we add (5.29) to (5.30) and use (5.31), we obtain

(5.32)

]_d_
2dt 1^*1/+  11*2 I

+ (0-2lt)(!2(i,O2 +I2(o,02)

<C[II|1II2 + l!?2ll2] +Ch2r.

We now obtain from Gronwall's lemma the result

(5.33)

^(s)!!2 + ll|2(s)ll2 +(ß-\y)fQ [|30, o)2 + |2(0, a)2] do

<Ch2r    for0<s<?.

Since it follows from (5.6) and (5.16) that IIt?, II2 + IIt?2 II2 < Ch2r, we have shown
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that

ll(« - í/XOll + K» - *00)ll < Chr,     0 < s < t.

Thus, we have shown that (5.21) implies (5.22).  Hence, we can conclude (as our

theorem asserts) that there exists hQ > 0 such that if 0 < h < h0, then (£/, V) exist

on [0, T] and

(5.34) ||(u - 10(011 + Kv - »0(011 < Chr   for 0 < t < T.

Q.E.D.
We also note that the following estimate is valid [ 1 ] :

(5.35) \rj2\ < Chr\v\r.

We can use this estimate to conclude from (5.33) the following corollary.

Corollary 1.  If in addition to the conditions of Theorem 1 we have that

(5.36) jTo\v\2 dt<"o

and ß > 7/2, then the estimate

(5.37) fT0Mh t) - Vil, t)\2 + \v{0, t) - K(0, Ol2] dt < Ch2r

is valid.

We now consider the optimality of the estimate (1.9).   First, we consider the

problem

ut + vx =0,      (x, f)G [0, 1]  x [0, T],

vt + ux = -fv,

(5.38)
v(0, t) = g0(t),        uU,f)=gl(t),      t G [0, T],

u(x, 0) = u0(x),      v(x, 0) = v0(x),      x G [0, 1],

where /is a constant.  The next lemma shows that if the solution (u, v) to (5.38)

is smooth enough and if

(5.39) \\u0 - 1/(0)1 < Chr+1,      <u0 - FÍO), X> = 0,      X G £ M,

then the improved estimate

(5.40) A-1 llu(0 - U(t)\\ + Hf) - nOll <Chr,       t G [0, T],

can be obtained.  We note that the estimate (5.40) is of optimal order in h for both

u and u.

Lemma 3.   Let {u, v) be the solution to (5.38) and assume that there exists C8

such that

sup   ( \\u \\r+x + hII,) < C8,      Vfl llut l|2+1 * < C8.
o«f<r
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Let {U, V) be the solution to (1.6) with ai2 = 1, fx = 0, a2l = 1, a22 = 0, f2iu, v)

= -fv, ß = 0, k > 0, and r > 1. ¿sswwe fAai («7(0), V{0)) satisfies (5.39).  77ie« the

estimate (5.40) is va/i'í¿

Proof.   It is easily checked that (using the notation of Theorem 1 )

(5.41) <!lf,X>-<!2,Xx> = <r?lf,X>,       XGM,

and

(5.42) <?2f, x> + <!,x, X> = -f\, X>.      X G £ M-

We set x = I, in (5.41), x = l2 in (5.42), and add the resulting equations to obtain

(5.43) ± J- [lll.ll2 + ll|2ll2] <^IIt?1íII2 +^ll|1ll2 + \fm2\\2.

Now it follows from standard estimates that in this case

(5.44) llT?1ll<CA''+1iyir+1,       llplfll<c7ir+1llMfllr+1,       lln2ll<CArllullr.

Also, we can conclude from (5.39) and (5.44) that

(5.45) 111,(0)11 <Chr+l,      |2(0) = 0.

Hence, it follows from (5.43), (5.44), (5.45), and Gronwall's inequality that

(5.46) II^COH2 + H?2(0II2 <Ch2(-r+l),      te [0, T].

The result (5.40) now follows from (5.44) and (5.46). Q.E.D.

We conjecture that the estimate (5.40) is valid in general if the solution {u, v)

to (1.1) is smooth enough, if «22 = 0, and if

llu0 - Um < Chr+ ',     (ax 2(u0 - no)), X> = 0,     x G £ M.

Next, consider the system

ut + vx =/,(x),      (x, t)G [0, 1] x [0, r],

vt + ux + vx =/2(x),

(5.47)
v{0, t) = g0(t),        v(l,t)=gx(t),      t G [0, T],

u(x, 0) = h0(x),      v(x, 0) = u0(x),      x G [0, 1].

Let the space M = Mk(r, 8) where S is a uniform partition with mesh length h, i.e.,

h - 1 ¡N for N a positive integer and x¡ = /A.

Set t?j = u - Q(u, u) as before.  Let (U, V) be the solution of scheme (1.6) for

(5.47) with ß = 1 and initial conditions

(5.48) HO) = R(v0),      U{0) = Q{u0, v0).

Let M = M,(2, ô).   It can be shown that if («, v) is a smooth solution to (5.47),
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then there exists a constant C9 such that

(5.49) 1177,11+ llr?, \\<C9A5/2.

This result can be used in the analysis of Theorem 1 to show that if {u, v) is a smooth

solution to (5.47), then the result

(5.50) A"112 h(t) - U{t)\\ + \\v{t) - HOU < Ch2,       tG [0, 7"],

can be proven.   The estimate (5.50) cannot be improved since it can be proven by

techniques similar to those used in [3] that the estimate at t = 0,

A"1'2 ll«0 - Q{u0, v0)\\ + \\v0 - R{v0)\\ < CA2,

cannot be improved.

It can also be shown that if M = M2(4, 5) and if the initial conditions are deter-

mined by (5.48), then the estimate (1.9) cannot be improved.
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