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Variational Crimes and L00 Error Estimates

in the Finite Element Method*

By Charles I. Goldstein

Abstract.   In order to numerically solve a second-order linear elliptic boundary value

problem in a bounded domain, using the finite element method, it is often necessary in

practice to violate certain assumptions of the standard variational formulation.   Two of

these "variational crimes" will be emphasized here and it will be shown that optimal L

error estimates still hold.   The first "crime" occurs when a nonconforming finite element

method is employed, so that smoothness requirements are violated at interelement bound-

aries.   The second "crime" occurs when numerical integration is employed, so that the

bilinear form is perturbed.   In both cases, the "patch test" is crucial to the proof of L°°

estimates, just as it was in the case of mean-square estimates.

1.   Introduction.   The proof of optimal pointwise error estimates for the finite

element method has been the subject of intensive research in recent years. For example,

see [1] — [9], where optimal (or nearly optimal) L°° error estimates were established

for second-order linear elliptic boundary value problems.   For a more comprehensive

survey of the literature concerning this subject, see [10] or [11].

For practical implementation of the finite element method it is often useful, or

even necessary, to violate some of the basic assumptions of the underlying Galerkin

method.  These violations were referred to as variational crimes in [12].  It is the

purpose of this paper to establish optimal L°° error estimates for finite element meth-

ods when variational crimes are committed.

The first crime discussed in [12] occurs when a nonconforming finite element

method is employed.  (This means that the trial functions fail to satisfy required

smoothness conditions on interelement boundaries.)  The second occurs when numerical

quadrature is employed.   The third variational crime deals with the case in which the

trial functions fail to satisfy essential boundary conditions.  (This usually occurs in the

presence of curved boundaries.)  A number of methods for treating the last situation

were considered in [1], where optimal L°° error estimates were established.   In this

paper the first two variational crimes are emphasized, although one method for treating

the Dirichlet boundary condition based on polygonal approximation of the domain is

also considered.

The present paper may now be outlined as follows.  In Section 2, a description is

given of the second-order linear elliptic boundary value problem under consideration, as
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well as certain fundamental properties of the finite element spaces.  Both the Dirichlet

and Neumann boundary conditions are considered.  Some of the basic results proved in

[1 ] and [2] are recalled. These results are then employed to prove an additional useful

result (Corollary 2.1).

In Section 3, the finite element method described in Section 2 is generalized in

two ways. The first generalization occurs when the finite element spaces are noncon-

forming. The second occurs when the finite element equations are perturbed, e.g., due

to a perturbation of the bilinear form. In both cases, certain results of Section 2 em-

ployed in the proof of L°° error estimates are generalized in a manner suitable for ap-

plication in Sections 4 and 5.

In Section 4, it is demonstrated how to obtain L°° error estimates when noncon-

forming finite element methods are employed.  In the specific finite element method

treated here, the finite element spaces consist of piecewise linear functions defined on a

triangulation of a two-dimensional domain.  These functions need not be continuous

across interelement boundaries but only at the midpoints of these sides.  The error

estimate is obtained by combining the results of Sections 2 and 3 with certain poly-

nomial invariances.

In Section 5, L°° error estimates are obtained for both the Dirichlet and Neumann

problem when numerical quadrature is employed.  Again, the results are obtained by

combining results of Sections 2 and 3 with certain polynomial invariances. L°° estimates

were obtained for the Dirichlet problem by Wahlbin in [13] using quadratic triangular

isoparametric elements and numerical quadrature.

2.   Preliminaries.   In this section we shall describe some of the results proved in

[1] and [2] that will be relevant in the remainder of the paper.  The main results are

embodied in Theorems 2.1—2.4.   A useful consequence of Theorem 2.1 is Corollary 2.1,

to be proved later in this section.   In order to simplify the statement of our results, we

shall impose more restrictive assumptions on both the boundary value problem and

finite element spaces than necessary.  (See Remark 2.2 below for an indication of some

extensions of these results.)

Let £2 denote a bounded open set in RN ,N = 2 or 3, with smooth boundary

9Í2. We shall consider the following boundary value problems:

(2.1)(D) Au =/   in Í2,       u = 0    on 9Í2,

and
N -,

(2.1 )(N) Au=f   ini2,       Tu =  £ a,¡ ^-cosfyi,) = 0    on 3fi,
i,/-1 /

where cos(n.) denotes the directional cosine of the outer normal with respect to the

x(-direction, and A is the selfadjoint, uniformly elliptic differential operator given by

(2-2) Au = -i     *(a,¡^)+cu,
i,i=t      i   x        i '

where c > 0 on Í2 (c > 0 in (2.1 )(N)).  For simplicity we assume that 9Í2 is of class

C°° and that c(x) G C°°(Í2) and aJx) G C°°(S2), i, j = 1, . . . , N.  The smoothness of
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/will be specified implicitly later in terms of u. We shall refer to either of the prob-

lems, (2.1)(D) or (2.1)(N), as (2.1) when it is not necessary to specify the boundary

condition.

Note that the Dirichlet problem (2.1)(D) has a unique solution under the above

assumptions. To ensure unique solvability for the Neumann problem (2.1)(N), we as-

sume that c > 0 on S2 in this case. We observe that the results and arguments of this

paper hold if the differential operator and the boundary condition are generalized, al-

though some of the technical details become a bit more complicated. In addition, the

smoothness assumptions can be considerably relaxed.

We shall employ conventional notation for Sobolev spaces. Suppose that p G [1, °°)

and M is a nonnegative integer.   Set

!"!<(_) = ( E   l^<P(_)V/P'
\a\=M

and

__     „       \Vp/  M

M<(_)=  E \<i(n)
y \i=0 p      ,

where a = (atj, . . . , ctN), each a- denotes a nonnegative integer, and |a| —■ I,^=xa..

Note that Dau denotes the weak derivative of the real-valued function u.  For p = °°,

set

I"ljv2f(_)=   E   ll^llL-ifi).
\a\=M

and

M

ll"lliv^(_) = E l"livi(„)-
i=0

Define W^{ü) = {u: \\u\\wM(n) < °°} and HM{Q) = w¥(£2).  For nonintegral s > 0,
" P o

we may define //S(Í2) in the sense of interpolation theory; see, e.g., [14].   //í(í2) is

defined as the closure of C¿"(Í2) under the norm given by ||   \\Hstn)-  The dual of

Hs{Çl) will be denoted by Z/~s(£2) and is defined as the closure of C°°(£2) under the

dual norm.  We shall denote the inner product on L2(£2) by ( ,   ).

A typical finite element method employed to approximately solve (2.1) consists

of a family of finite-dimensional spaces, Sh, and bilinear forms, d^i ,   ), where h G

(0, 1 ].  In order to define the spaces, Sh, we first define the notion of a quasi-uniform

family of triangulations of Í2.  By a triangulation, T", of Í2 we mean a finite number

of disjoint, open simplices, t*1, such that £2 = {JtheThtH-  The boundary "simplices"

have (possibly) one curved face, whereas all interior faces are flat.  We shall say that

{Th: h G (0, 1]} is a quasi-uniform family of triangulations of Í2 if each simplex t*1

contains a ball of radius c.h and is contained in a ball of radius c2h, with 0 < cx < c2

independent of h and t".

We shall assume that our family of finite element spaces, Sh, satisfies the following

condition with respect to a given quasi-uniform family of triangulations, {TH : h G

(0,1]}.



1134 CHARLES I. GOLDSTEIN

(A.l)   Each linear space, S", consists of functions, v, such that v restricted to t*1

is a polynomial of degree < K for some fixed integer K > 2. K is independent of

h G (0, 1 ], v G Sh, and t*1 G T".  Finally, S   is generated by a nodal basis of Lagrange

type.

For more detailed descriptions of nodal finite element spaces, see [11] or [12].

Note that Sh C _°°(S2).  However, functions in S" are not necessarily continuous in Í2,

nor need they satisfy any boundary condition.  The following inverse inequality is an

important consequence of (A.l):

(2.3) Nln^o*) < Ch^^lo-^WvW^hy

where p, q G [1, °°], s and t are integers such that 0<f<s<AT-l,?-s-

N(l/p-l/q)<0, and the constant C is independent of h G (0,1 ], t" G Th, and v G Sh.

(In this paper, we shall generally use the same letter C to denote different constants when

there is no danger of confusion.)  For a proof of (2.3) see, e.g., [2].

The finite element approximation, u , to the solution of (2.1) will be defined

using a family of symmetric bilinear forms, ah( ,   ), defined on S" x S".  Since 5* is

finite dimensional, a"( ,   ) is a continuous bilinear form for each h G (0, 1].  We shall

require the following condition in order to define uh.

(A.2)  If Uj G S" and ah(vx ,v) = 0, for each v G Sh, then u, = 0.

Condition (A.2) states that the bilinear form, ah( ,   ), is non degenerate.  Using

(A.2) and the finite dimensionality of SH, we may now define our finite element ap-

proximation, u", by means of the equation

(2.4) ah(un, v) = (/, v),    for each v G Sh.

Observe that neither of the above conditions implies a relationship between the bilinear

forms, a"( , ), and problem (2.1). The following condition states that optimal mean

square error estimates hold for the solutions, u and uh, of (2.1) and (2.4), respectively.

(A.3)  If s is an integer such that 0 < s < K - 2 and u G //2(£2), then there exists

a constant C independent of h G (0, 1] and u such that

\\u-u"\\H-s{n)<Chs+2\\u\\H2w.

We shall require certain estimates for the Green's function for problem (2.1) and

its finite element approximation.   Let Gx   denote the Green's function for (2.1) with

singularity at the point x0 = (x0 , . . . , x0  ) in £2.   The following estímate was

proved in [15] :

(2.5) \D"xGXQ(x)\<

C|ln|x-x0||,    for N = 2, |a| = 0,

C|x-x0|2_JV_|a|,    for N > 3 or N = 2, |a| > 0,

where Dx denotes a derivative of order a with respect to x, x ¥= x0, and C is indepen-

dent of the points x and xQ in £2 (up to the boundary). From now on we shall delete

the subscript, x0, when referring to G = G.
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Lemma 2.1.  Consider problem (2.1)(N) ((2.1)(D)). Suppose that s is an integer

such that 0 < s < K - 2, N = 2 or 3, h G (0, 1], x0 G /£ for some t^ G T",and con-

ditions (A.l) and (A.2) hold.   Then there exist functions G G C°°(Í2), G" G S", and

S G Cq(£1), satisfying the following conditions:

(i) AG = 5, TG = 0 on 9Í2 (G = 0 on 9Í2),

(ii) a*(G*, v) = (6, u) = u(x0), /or eac^ u G S*,

(ni) m_xxen|_Ç6(x)| < Cah-N-™, where \a\ > 0,

and

(iv) ||G - G*||tf_î(n) < Chs+2"N'2, provided that (A.3) also holds.

In addition, the support of 8{x) is contained in a sphere of radius Clh centered at xQ.

The constants Ca, C1, and C are independent of h and xQ.

The proof of Lemma 2.1 follows from the same arguments as in [1] or [2] and

is based on the Bramble-Hilbert lemma (see, e.g., [11]) and elliptic regularity theory.

Observe that Lemma 2.1 holds for nonconforming finite element spaces, 5*.  We shall

also require the following approximation assumption.

(A.4)  Suppose that p G [1, °°] and that s is an integer greater than 1 satisfying

the condition N/p < s < A' if p > 1 and Ar<s<A'ifp= 1.  Also, suppose that

u G Wpit*1) for each rH G Th. Then there exists a function uA in S" and a constant C,

independent of u, h G (0, 1] and th G T", such that

2

Y^H\u -uA\wj(ffc) <Chs\u\wsithy

and
W^WfV^t") < C\\U\\WS {thy

Furthermore, we have

E hNfP+i\U - UA \wj (th) < ChS\u\ws(thy

;=0 p

provided N/p + 1 < s < K if p > 1 and N + 1 < s < K if p = 1.

Conditions (A.1)-(A.4) may be employed to establish L°° error estimates for a

variety of finite element methods, as shown in [1] and [2].  We first describe a speci-

fic finite element method for solving the Neumann problem, (2.1 )(N), and present the

main results obtained from [1] and [2] that will be of use in Section 5 below. We

shall then do the same thing with regard to the Dirichlet problem.

A natural finite element method for treating problem (2.1 )(N) was employed in

[2] and consists of a family of bilinear forms given by

(2.6)      fl*(_, v) = J     E   (aii 9Y 9T + CUl) dx'   f°r each "' V E Hl(n)'

and a family of finite element spaces, S^, satisfying condition (A.l) with K > 2.  We

assume that functions in S^ are continuous in £2, so that S1^ C //'(Í2).  Observe that

for the Neumann problem, it is not necessary to impose any boundary condition on

functions in _^.  We see that the bilinear form, ah( , ), given by (2.6), is coercive over

//'(Œ) x ffl(tt) since c > 0. Hence, we have a"{v, v) > C\\v\\2Hi(ny for each vGH^Ü).
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Since a"{ , ) is coercive over Hx (£2) x H1 (£2), it is readily seen that condition (A.2)

holds. The approximation assumption, (A.4), follows from the Bramble-Hubert lemma as

in [2]. Furthermore, condition (A.3) follows using a standard duality argument; see, e.g.,

[16]. It thus follows that Lemma 2.1 holds for this finite element method, where x0 may

now be an arbitrary point in £2.

The next result is a key ingredient in the proof of L°° error estimates. The proof of

this result follows from the same arguments as employed in [1] or [2] and hence will

not be repeated here.

Theorem 2.1. Consider the finite element method for solving problem (2.1 )(N)

with the bilinear form, ah{ ), defined by (2.6), and the finite element space given by ShN

for each h G (0,1 ]. Then there exists a constant C, independent of h and x0 G £2, such

that the following estimates hold:

(a) ffK> 3 andN = 2 or 3, we have

and

\\G-G»\\wim<Ch,

(b) tfK = N= 2, we have

\\G-Gn\\wtiW<Ch\\ogh\.

Before proceeding further, let us introduce some additional notation.   For each

subset,/) = £2, set

Wlph{D) = {uG _"(_>): \\u\\hw,p(D) < -},

where / is a positive integer and

. i/p
E H-CV))      '       !<P<

th(=Th.ahnD^0 P

M\Wlp(D)

max \\u\\wi(th),
theThithnD^0        wp(t >

Denote Wl2 {D) by H1 {D).  We next state and prove the following useful corollary.

Corollary 2.1.  Suppose that the hypotheses of Theorem 2.1(a) hold and I is

an integer such that 2 < / < K - 1. Then there exists a constant C, independent of

h G (0, 1] and x0 G £2, such that the following estimate holds:

L-C-2)   for I > 2,
WGn\\w'x(ii)<C{

'llog/zl     for I = 2.

Proof.   Set Cn = {x: |x -x0| < h}, £2„ = {\JtheTh: t" n Ch # 0},and ü'H =

£2 - £2^.  (It may be seen from the quasi-uniformity of the family of triangulations

that the number of simplices, f*1, contained in £2^ is bounded by a constant indepen-

dent of h.) Note that

(2.7) HG*lfy(0) < IK^lfyffV + WGh\\hw\(ii'ny
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and

(2.8) WGh\\Hw'i(a-h) < "G - Gh\\Hw'i(n'h) + llÖlfy^.

In view of (2.5), we have

h-V'^    for / > 2,

(2.9) HGCi(ny<C
[log /¡|     for / = 2.

We next consider ||G - Gn\\hwi ,n* y  Let G' denote a smooth function equal to G

in ü!n and let GA GS*1 denote the function obtained from (A.4) with u given by G'.

We may now apply (2.3) and (A.4) to obtain the following estimates for each fH C £2^:

IIC - Gn\\wij(th) < HG - GA\\wii(th) + \\GA - Gh\\w,i(tn)

(2.10) < CIIGH^^ + Ch-«-»\\GA - G%i((A)

<C||G||„,/(fh) + Œ-C-^HG - G*ll^i^j.

We now sum over each i71 C Çl'n and apply (2.9), (2.10), and Theorem 2.1 to obtain

Ih^'~2)    for / > 2,

Hog h\    for / = 2.

Finally, we consider

(2.12) IIG*llfy(nÄ) < "C - £%/(_„) + I|5||h>*>'

where G is defined by Lemma 2.1(i).  Employing Lemma 2.1 and elliptic regularity

theory, we see that

(2.13) IIClV^ < ChN/2\\G\y{nh) < Ch»'21|5\\Hi-Hilh) < CTz-C"2).

Suppose that th G £2ft and let GA G Sh denote the approximation to G given by (A.4).

It follows from Lemma 2.1 (i) and (ii) that Gn = Gh, the finite element approximation

of G.  Hence we may apply (2.3), (A.3), and (A.4) to deduce

IIG - Gh\\wii{th) < ChN'2{\\G - GA\\H,(th) + \\GA - G"\\H,(th))

< C^^dlGH^ft) + h-'\\GA - G*||L2((Ji))
(2.14)

< C^^dlGH^/,) + fc-'HG - GA\\L2{th) + h-'\\G - Gh\\L2(th))

< C^^iWGW^hy + A-C-^IIGÏl^fy,)).
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We now sum over the finite number of simplices, t* C £2^, and apply elliptic regularity

theory and Lemma 2.1 to conclude that

"S - ^Ctoo < C^/2(IIG||///(n/i) + fc-(/-2)IIG|!//2(nV
(2.15)

< aPi2mHl-2(ntd + ^-(,-2)ii5ii/,2(iift)) < ch-«~2\

with C again independent of h and x0.  Combining (2.7)-(2.9), (2.11)—(2.13), and

(2.15), we have proved the corollary.  Q.E.D.

We now apply Theorem 2.1 to obtain the following L°° error estimates.

Theorem 2.2. Suppose the hypotheses of Theorem 2.1 hold, u satisfies (2.1)(N),

and u G W%(£2).   Then there exists a constant C independent of h G {0,1], such that

the following results hold.

(a) // A: > 3 and N = 2 or 3, we have

\\U-Uhh~(ß)<ChK\\u\\wKm

(b) //K = N = 2, we have

\\u-u"\\L~m<Ch2 \\oE WWuU^y

Proof,   (a)  Suppose that x0 G £2.  Employing the properties of the Green's func-

tion for problem (2.1)(N), as well as (2.1XN), (2.4), (2.6), and Lemma 2.1, we obtain

(2.16) u{x0) - uh{x0) = <P{u - un, G) = a"{u -un,G- G") = an{u - uA, G - Gn),

with uA obtained from (A.4).

We now combine (2.16), (A.4), and Theorem 2.1(a) to deduce

|_(*0) - «*(*0)| < C\\u - uA \\wiia)\\G - G"\\wt(n)

< ChK~l ll«ll^(n)IIG - G%i(n) < ChK\\u\\wK(n).

This proves (a).

(b)  The proof is almost the same as that of (a) except that Theorem 2.1(b) is

employed instead of Theorem 2.1(a).   Q.E.D.

We next consider the Dirichlet problem, (2.1)(D), and observe that in order to

employ the bilinear forms given by (2.6), it would be necessary to assume that func-

tions in Sh vanish on 9£2.  Since this is generally not practical for curved boundaries,

various alternative finite element methods have been developed to circumvent this dif-

ficulty.   A few of these methods were analyzed in [1 ], where optimal L°° error esti-

mates were proved.

In this paper, we shall treat problem (2.1 )(D) by approximating £2 by a family of

polygons, £2^, with h G {0, 1 ].   For simplicity, we assume that £2 is a convex open set

in R2 and each £2ft is an inscribed convex (open) polygon in £2.  Let SD denote a fami-

ly of spaces satisfying condition (A.l) with respect to a given quasi-uniform family of

triangulations of £2^ for each h G (0, 1].  Thus, each t" G T" is a triangle with straight
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edges.  We assume that K = 2, so that each function in SD is piecewise linear.   Further-

more, suppose that functions in SD are continuous in £2 and vanish in £2 - £2ft.  The

bilinear form, a"( ,   ), is now defined by

^'>-/»..£, (*_;_:+«")-•

(2.17) ''' '

for each u,vGHl (£2) and h G (0, 1 ].

Remark 2.1.  It is not necessary to assume that the polygonal approximations,

£2'', are as restrictive as given here.  See, e.g., the arguments in [13], where the ap-

proximating domains, £2^, are not assumed to be contained in £2.  However, our present

assumptions suffice for the purposes of this paper.  We also observe that the present

method for treating the Dirichlet problem yields an error of order 0{h2), even if K is

greater than 2 in assumption (A.l).  This is due to estimate (2.20) below (see the proof

of (2.28)).  The use of isoparametric elements as in [13] or of nonstandard finite ele-

ment methods as in [1] yield errors of order 0{hK) with K > 2.

It follows as before that assumptions (A.l)—(A.4) again hold with £2 replaced by

£2^ and K = 2.  Furthermore, Lemma 2.1 holds in this case where xn may now be an

arbitrary point in £2ft.  We shall next state results analogous to Theorems 2.1 and 2.2

with K = N = 2.  These results will be applied in Section 5 below.  In Section 4, we

shall treat a nonconforming finite element method closely related to the conforming

method under consideration here.

Theorem 2.3. Suppose that £2 is a convex open set in R2.   Consider the finite

element method for solving problem (2.1 )(D) with an{ ,   ) defined by (2.17) and the

finite element spaces given by SD for each h G (0, 1].   Then there exists a constant C,

independent of h G (0, I] and x0 G £2ft, such that the following estimate holds:

(2.18) ||G - GX}(n*) < C&Kog *!•

The proof of Theorem 2.3 follows from the arguments of [1] or [2].  Further-

more, we have the following stronger estimate:

(2.19) ||G-G%i(n)<a!|log/z|.

To see this, note that it follows from the definition of £2ft and SD that

(2.20) dist(9£2^,9£2) = 0(/z2),

and

(2.21) W^WwUa-af) = °>   for each v" G &•

Employing (2.5) and (2.20), we obtain

(2.22) llClln^-n*)^2-

We may now combine (2.21) and (2.22) with (2.18) to obtain (2.19).
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Theorem 2.4. Suppose that the hypotheses of Theorem 2.3 hold, u satisfies

(2.1)(D), and u G ^¿(£2).  Then there exists a constant C independent of h G (0, 1],

such that the following estimate holds:

II" - M*H_-(n) < Gh2\log h\ H-11^2 (n).

Proof.   Employing the properties of the Green's function for problem (2.1)(D), as

well as (2.1)(D), (2.4), (2.17), and Lemma 2.1, we obtain the following equation for

each point x0 G £2ft :

u(x0) - u"(x0) = ¿(u -uA,G- G")

(2-23) + f f   (a . ^ ¿G + cuG)d
Ja-a« tjtx \ " 9x,. bXj J     '

with uA obtained from (A.4).  We see from (A.4) and Theorem 2.3 that

(2.24) !_*(« - uA, G - Gh)\ < epilog h\ WuW^hy

Furthermore, we may apply (2.22) to deduce

(2.25)
i».»* h (',,%£,+"4*< CII"llM7ií(n)llGlln'J(n-n'')

<Ch2\\u\\wl(n).

Combining (2.23)-(2.25), we obtain

(2.26) ||_ -_*||L_(nfc) < CTi2|log h\ IlKll^n).

It follows from (2.20) that

(2.27) llull_-(„-n*) < <^2llVy|li-(„),    for each v G If1 (£2) n W¿(Í2).

We now conclude from (2.21) and (2.27) that

(2.28) ||« - uh\\L^-ii*) < a»2ll"Hwi„(n)-

Estimates (2.26) and (2.28) together imply the theorem.  Q.E.D.

Remark 2.2.  The results of this section may be stated in greater generality than

given here.  For example, analogous results were proved in [1] for nonselfadjoint dif-

ferential operators, >1, under more general assumptions on the finite element spaces

than given in (A.l).  However, our assumptions suffice for the purposes of this paper.

3.  Variational Crimes.   In the remainder of this paper, we shall be concerned

with proving results analogous to Theorems 2.2 and 2.4 when the finite element meth-

od is altered in either of two ways.  The first case we treat may be considered as a

perturbation of the finite element subspaces, Sn, and the second as a perturbation of

the coefficients of the finite element equations.  In order to apply the method of proof

described in Section 2, we shall derive, in this section, an extension of Eq. (2.16)
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under much weaker assumptions than in Section 2.   In both cases, the right-hand

side will contain additional terms.   It will be seen in Sections 4 and 5 how each of

these terms may be estimated in specific examples.   We again consider the boundary

value problem (2.1) ((D) or (N)) with the same assumptions on the coefficients and

boundary as in Section 2.

Case I—Nonconforming Subspaces.   We shall consider the finite element method

as described in Section 2, with the exception that functions in Sh need not be con-

tinuous across interelement boundaries.   Hence, we shall weaken the assumptions of

Section 2 as follows.   To begin with, suppose that £2 is replaced by an open set,

£2ft £ £2, for each h G (0, 1].  Let Sn denote a family of finite-dimensional spaces sat-

isfying condition (A.l) with respect to a given quasi-uniform family of triangulations,

{Tn:hG (0, 1]}, of nh. We thus assume that £2ft = \Jth£Th t" and observe that £2''

does not include interior faces.

It is readily seen that SH C L°°(£lh) Pi w£(£ln) for each positive integer /, em-

ploying the notation of Section 2 for the piecewise Sobolev spaces Wp (D).  Note that

functions in Sh are only defined on £2^, not £2.  We next define a family of bilinear

forms, ah( ,   ), acting on A*"(fi*) x Hlh(D,h), by

(3.1) ->,»)=   E   L E («,/| | +«")<**.

where N = 2 or 3, u, v G H1 {£1"), and h G (0, 1 ].  We assume that condition (A.2)

holds.  Hence there exists a unique function, un G S", satisfying

(3.2) ah(u", v) = (/ u),    for each v G Sh.

We now assume that x0 G Çt", so that x0 G rß for some t^ GTh.  We observe

that Lemma 2.1(i)-(iii) again holds as in Section 2.  (Lemma 2.1(iv) would require an

additional assumption such as (A.3).)   Hence there exists a unique function, Gh G S",

satisfying

(3.3) a*(G*, v) = v{x0),    for each v G Sn.

As before, we denote the Green's function for (2.1) with singularity at xQ by G = G.

Theorem 3.1. Suppose that u G Wi(£2) and satisfies (2.1) ((D) or (N)),

x0 G Slh, (A.l) and (A.2) hold, ah{ ,   ) is defined by (3.1), uh satisfies (3.2) and Gh

satisfies (3.3).   Then we have

u{x0) - «"(*„) = a"(G -G\u-x) + ch(Gh,u - _*)

(3.4)
+ a"(G - G", x) + iu{x0) - a"{G, „)),   for each x^Sn.

Proof.   We first express the left side of (3.4) as follows:

(3.5)       u{x0) - uH{x0) = _*(G, u-un) + {u{x0) - uh{xQ) - a"{G, u - u")}.
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It is easily seen that, for each x G Sr, we have

ah{G, u-uh) = c/'iG -Gn,u- un) + ah{Gh, u - un)

= ah(G -G",u-x) + a"(G\ u - un) + ah(G - Gn,x~ "*)•

We now employ (3.3) to obtain

h(x0) - un(x0) - ah(G, u-u") = u(x0) - ah(G, u) + a"(G, un) - u"(x0)

(3.7) = u(x0) - ah(G, u) + a"(G - Gh, un) = u(x0) - ah(G, u)

+ ^(G -Gn,x) + AC - Gh, uh - x),   for each X G S*.

Finally, we add (3.6) and (3.7) and then substitute in (3.5) to obtain (3.4).  Q.E.D.

Remark 3.1.  An analogue of Theorem 3.1 remains valid even if the spaces, Sh,

and the boundary value problem, (2.1), are generalized as in Remark 2.2.  We also ob-

serve that the specific form of a"( ,   ), given by Eq. (3.1), was not necessary for the

proof of Theorem 3.1.  The main requirements on ah( ,   ) are that condition (A.2)

holds and all terms in (3.4) are defined.

In Section 4, we shall apply (3.4) to obtain an L°° error estimate for a specific

nonconforming finite element method for solving the Dirichlet problem.  In addition to

the two conditions, (A.l) and (A.2), required here, it will be necessary to apply (A.3)

and (A.4), as well as certain polynomial invariances (related to the "patch test"), in

order to choose x appropriately and suitably estimate each term on the right side of

(3.4).  Note that if £2 = £2h, the last term in (3.4) is zero.  Finally we observe that if

£2 = £2^ and the finite element method is conforming (so that the required continuity

and boundary conditions are satisfied by functions in Sh), then the last three terms in

(3.4) are zero and (3.4) reduces to (2.16) (with x = uA).

Case II-Perturbation of the Coefficients.   We next consider a conforming finite

element method for solving problem (2.1) when one or both sides of Eq. (2.4) are per-

turbed. Again, suppose that £2 is replaced by an open set, Q." _^ £2, for each h G (0,1].

Let S" denote a family of finite-dimensional spaces contained in W^Sl" ) and satisfying

condition (A.l ) with respect to a quasi-uniform family of triangulations, {Th : h G (0,1 ]},

of £2/1.  We define £2ft as the interior of £2^ = iJth^xh **• (Hence &h now includes

interior faces.)

We next define a family of bilinear forms, a ( ,   ), as follows:

(3.8) _>, v) = fnn   Ç   h, ¡^ ¡~ + cuù dx,    for each u, v G Hl(SlH),

where N = 2 or 3 and h G (0, 1].  We assume that condition (A.2) holds.  As a con-

sequence of (A.l) and (A.2), it follows that Lemma 2.1(i)-(iii) holds for each x0 in £1".

We now assume that the bilinear form a" ( ,   ) and the linear functional /( )

(given by f(v) = (/, v), for each v G L2(£2)) are perturbed.   Let ah{ ,   ) denote the

perturbed symmetric bilinear form defined on S" x 5", and let fh denote the perturbed

linear functional defined on Sn.   In addition to the solution, u" G S" of (3.2), suppose

that there exists a solution, uH G S", of the equation
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(3.9) an(uh,v)=Jh{v),   for each u G 5*.

(We shall see in Section 5 that the existence and uniqueness of uh may be proved under

suitable assumptions in the case of numerical quadrature.)

Theorem 3.2. Suppose that u G 1V¿,(£2), xnGÇl", (A.l) and (A.2) hold,

S" C Wl(nh),a"( ,   ) is defined by (3.8), un satisfies (3.2), G* satisfies (3.3), and

uh satisfies (3.9). Furthermore, suppose that either u satisfies (2.1 )(N) and £2 = Slh,

or u satisfies (2.1)(D) and S" C H1 {SI").  Then we have

u{x0) - un{x0) = ah{G -G\u-x) + iah- ah) {G" ,uh)

(3.10)
+ (/- /") {GH) + {u{x0) - a"{G, «)),    for each x G Sh.

Proof.   We first observe, using the properties of u, (3.2), and the properties of the

Green's function, G = G^ , that
xo

u{x0) - uh{x0) = u(x0) - (^{G, u) + a"{G, u - uh)

(3.11) =u{x0)-ah{G, u) + ah{G, _-„*) + fl*(G, uH -«*)

= u{x0) - ah{G, u) + _*(G -Gn,u- uh) + ^{G, uH - un).

We next apply Eq. (3.3) to each of the last two terms in (3.11) to obtain

u{x0) - uh{x0) = ah{G-Gh,u-x) + ^{G", uh - u")

(3'12) + („(x0) - _*(G, u)),        for each x G Sh.

Employing (3.2), (3.9), and the symmetry of a"{ ,   ) and an{ ,   ), we deduce

(3.13) ah{Gh, uh) = ah{uh, G") = f{G"),

and

(3.14) a*{G", Ù") = ànÇih, G") = fn{Gn).

Finally, we combine (3.12)—(3.14) to obtain (3.10).  Q.E.D.

Observe that when no perturbation is present and £2 = £2^, Eq. (3.10) reduces to

(2.16) (with x = W4). In Section 5, we shall apply (3.10) to prove the existence of a

function, un, satisfying (3.9), and also establish L°° estimates for u -u" when the per-

turbation is due to a sufficiently accurate numerical quadrature scheme. In addition to

the assumptions (A.l) and (A.2) required here, it will be necessary in Section 5 to ap-

ply conditions (A.3) and (A.4), as well as certain polynomial invariances in order to

estimate the right side of (3.10).

4.   A Nonconforming Finite Element Method.   In this section we consider a

specific nonconforming finite element method for solving a boundary value problem in

R2. We shall derive L°° error estimates using Theorem 3.1. We begin by describing our

boundary value problem and finite element method. Consider the following model prob-

lem:

(4.1) -A«=/   in £2,      « = 0    on 9£2,
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where £2 is a bounded, convex two-dimensional domain and 9£2 is of class C°°.

We shall approximately solve (4.1) using the following nonconforming finite ele-

ment method.  Suppose that for each h G (0, 1 ], £2 is replaced by a convex (open)

inscribed polygon, Slh. Consider a quasi-uniform family of triangulations, T", of £2^

into disjoint open triangles, tn, of diameter 0{h).  Thus, we have Slh = UtheTh tH. We

assume that two neighboring triangles may only intersect at a vertex or along an entire

side.

We construct a family of spaces, S", as follows.  Suppose first of all that each

v" in 5* vanishes in £2 - SI".  Assume that the restriction of vh to each i1 is linear

and that v" is continuous at the midpoint of each side of i*.  Also suppose that v" = 0

at the midpoint of each side of t" contained in dSl".  It is clear that condition (A.l)

holds for this family of spaces, Sh.

Observe that in general, functions in Sh are discontinuous and fail to vanish on

BS1".  However, S" C _°°(£2), and S*1 contains the conforming subspace, SHD, described

in Section 2 and consisting of continuous piecewise linear functions vanishing on dSl".

It is readily seen using the Bramble-Hilbert lemma, as in [11], that condition (A.4)

holds with K = 2.  Furthermore, uA may be taken to be the interpolate, u1, of u with

respect to the nodal basis for SD.

The nonconforming space, Sh, was constructed and applied in solving the Stokes

problem in [17] and [18], where this space was employed to impose the incompres-

sibiUty condition, div v" = 0,on functions in S".  The fact that Sh is roughly three

times as large as SD made it possible to impose this additional constraint.

We shall require the piecewise Sobolev spaces, Wl (_>) and Hl (£>), defined in

Section 2.   Furthermore, we define our bilinear form, a"{ ,   ), as in Eq. (3.1):

(4.2) cfiv, w) =    E    f u Vu • Vwdx,    for each v, w G Hih{Sl") and h G (0, 1 ].
th<=ThJt"

It may be seen, using the argument of [11] (Section 4.2) or [17], that condition (A.2)

holds.  As a consequence there exists a unique function, uh G Sh, satisfying the equa-

tion

(4.3) a"{u", v) = if, v),    for each v G Sh.

We next consider mean-square error estimates.  It may be seen, using the argu-

ments of [17] and [18], that condition (A.3) holds with £2 replaced by Slh and K = 2.

Furthermore, it follows from these arguments that

(4.4) ||W - w%i(n7t) < Ch\\u\\H2{ny   for each h G (0, 1].

We are now ready to prove the main result of this section.

Theorem 4.1. Suppose that u G W^iSl), u satisfies (4.1), and uh satisfies (4.3).

Then there exists a constant C, independent of h G (0, 1], such that the following

estimate holds:

,hu-uh\\Loo(n)<Ch2\logh\ 111111^2 (n).
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Proof.   We first note that it follows from (2.21) and (2.27) that

(4.5) ll«-«*llx-(p-n*)<í*all''llity¡,w

In view of (4.5), it suffices to prove

(4.6) II" - «*ll_~(n*i) < epilog h\ IMI^n).

Suppose that x0 G /^ for some triangle t^GT".  Since conditions (A.l)—(A.3) hold,

we observe that Lemma 2.1 holds in the present case.   Applying Eq. (3.4) with x = uA,

we thus obtain

u{x0) - u"{x0) = a"{G -G",u-uA) + ah{Gh, u - uh)

(4.7)
+ a"{G - Gh, uA) + {u{x0) - ah{G, «)).

Consider the last term in (4.7) and employ (4.2) and the properties of the Green's

function, G = Gv , to deduce
*o

u{x0) - a"{G, u) = fn_nh^G- vWx.

We may now combine (2.5) and (2.22) to obtain

(4.8) |«(x0) - a"{G, u)\ < C|V«|_-(n)/n__Ä \VG\dx < Ch2 \u\wi(a).

We now consider the third term on the right side of (4.7) and note that uA =

u  G H {SI) and is continuous in £2.  Employing integration by parts and the properties

of the Green's function, we see that ah{G, uA) = uA{x0).  Furthermore we see from

(3.3) that aH{GH, uA) = uA{x0).  Hence we conclude that

(4.9) a"{G-G", uA) = 0.

We next estimate the first term on the right side of (4.7).  Since uA G Wl{Slh),

we may employ (4.2) and (A.4) to deduce

\a"{G-Gh,u-uA)\<C\\G-G"\\hwi{nh)\\u-uA\\wi(nh)

<Ch\\u\\w2oa(n)\\G~G"\\fwi(nny

In view of this, we thus require the following estimate:

(4.10) IIG-GXi^^CTillogfcl.

Estimate (4.10) is analogous to the estimate in Theorem 2.3 and follows from the same

arguments as in [1] or [2]. It now follows that

(4.11) |«*(G - Gh, u - uA)\ < epilog h\ \M\wi(a).

We are left with estimating the second term on the right side of (4.7).  Hence we

wish to prove

(4.12) \aH{Gh, u - u")\ < Ch2 flog h\ \\u\\w2w_(_V
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We shall establish (4.12) with the aid of certain polynomial invariances. We first note

that

(4 13) A" - uh, w*) =   E    D.h{u, wh),    for each w* G S",
V   '     ' th&Th

where

(4.14) Dth{v, w") = J] £,, ^ (w" - CV, e*))_j,    for each v G &£(/*), w" G S".
/=!     eí

Here, e?, / = 1, 2, 3, denote the sides of t*1 and C{w", ej1) denotes the value of w" at

the midpoint of e*. Equations (4.13) and (4.14) follow from (4.1), (4.3), integration

by parts, and the fact that functions in S" are continuous at the midpoint of ej1.

We next observe that the following polynomial invariances hold for each t*1 G T":

(4.15) Dth{v, p) = 0,    for each v G Wi{t") and p £?„(/*),

and

(4.16) Dth{q, w*) = 0,    for each q G P^t") and w*1 G Sh,

where P^t11) denotes the space of polynomials of degree < / defined on i* for each

integer / > 0.   The first invariance, (4.15), follows easily from (4.14).  The second in-

variance was proved in [17].   It follows from the fact that the integral of a linear func-

tion over an interval is zero provided the function vanishes at the midpoint of the inter-

val.   Equation (4.16) readily implies the "patch test"; see, e.g., [12].

We now define a function, GA, as the unique function in SD equal to G at all

vertices of the partition, Th, that do not intersect f% or any of its neighboring triangles,

and equal to zero at the remaining vertices of T .   Thus, GA is zero near x0 and is

equal to the interpolate of G with respect to the conforming subspace, SD, away from

x0.  Since GA is continuous, we readily see with the aid of (4.1), (4.3), and (4.13) that

(4.17) ah{u-u",Gh) = a"{u-uh,Gh-GA)=    E   Dth{u, G" - GA).
theTh

In order to estimate the right side of (4.17), we first observe that each ^ GTh

is affinely equivalent to a reference element, t.  For example, t may be taken to be the

triangle with vertices at (0, 0), (1, 0), and (1, 1).  Thus, t may be mapped onto each

t*1 by means of an invertible affine mapping, Ffh, given by

(4.18) x = Fth{x) = Bthx + bth,    for each Je G t,

where Bfn is a 2 x 2 matrix and bth is a 2-vector.  Furthermore, functions in WUt*1)

are mapped into functions in W'(t), with / > 0 and p G [1, <»], by means of the usual

correspondence:

(4.19) i/Hx) = ip(x),    for each x G t.

Finally, we define P" to be the restriction of S" to th and let P denote the image of

Ph with respect to the correspondence given by (4.19).
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It is readily seen, using (4.18) and (4.19), that the bilinear form given by (4.14)

yields a bilinear form, £>?( ,   ), acting on IV2 (?) x P and given by

(4.20) £>?(0, w") = Dth(v, w"),    for each D G Wl(t), w*£P.

Combining (4.20) with (4.15), (4.16), (4.18), and (4.19), we deduce

(4.21) D}(v, p) = 0,   for each D G U>l(t) and p G PQ(t),

and

(4.22) Df(q, w") = 0,   for each q G P, (?) and w* G P.

We may now combine (4.21) and (4.22) with the Bramble-Hilbert lemma (as in [11,

Section 4.2]) to obtain

(4.23) ID^O, w*)| < C\v\w2^n \wh \wi(î),    for each v G Wl(t), w" G P.

It also follows, as in [11], that

(4.24) |0iV (?) < Ch'-2'p\v\wj (thy   for each ¿5 G W'p(t),

where / > 0 and p G [1, °°].  Finally, we combine (4.20), (4.23), and (4.24) to con-

clude that

(4.25) \Dth(u, Gh -GA)\< Oil«|„2^, |G* -GA\wi{tfl).

Substituting (4.25) into (4.17), we obtain

(4.26) \a"(u - u", Gh)\ < Ch\u\w2^n) \Gh - GA \hwi^hy

We next observe that

IG" - GA\hwi(iîh) < IG - G"\wUnh) + \G - GA \w\ta")

(4.27)
<Oz|logA2| + |G-G^|*,i(nÄ),

using (4.10).  It follows from the definition and approximation properties of GA and

(2.5) that

(4.28) \G-GA\hwi<Ch\\ogh\.

Combining (4.26)-(4.28), we thus conclude that (4.12) holds.  Combining (4.8), (4.9),

(4.11), and (4.12) with (4.7), we finally obtain

(4.29) \u(x0) - u"(x0)\ < Ch2 |log h\ llalla-,,

where Cis independent of xQ. We have thus proved (4.6) and hence Theorem 4.1. Q.E.D.

Remark 4.1.  The arguments employed above to prove L°° error estimates are ap-

plicable to other nonconforming finite element methods and other boundary value
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problems.   For a discussion of mean-square error estimates in connection with a variety

of nonconforming methods, see [11] and the references cited there.

5. Numerical Quadrature.  In this section we consider a conforming finite element

method for solving problem (2.1).  However, we assume that the integrations necessary

to obtain the finite element equations, (2.4), are replaced by numerical quadrature. We

shall derive _°° error estimates for both the Dirichlet and Neumann problems with the

aid of Theorem 3.2.  Let us observe that _°° estimates were established for the Dirichlet

problem in the presence of numerical quadrature by Wahlbin in [13].  (See Remark

5.1 below for a brief description of his results.)

We first consider the boundary value problem given by (2.1)(D), assuming that £2

is a bounded open subset of R2 and that the boundary of £2 and coefficients of A are

smooth.  For the sake of simplicity, we assume that c = 0 in (2.2).  As in Section 2,

we may treat this problem employing the family of finite element spaces, S" = SD,

and bilinear forms, a"{ ,   ), defined by (2.17).   To this end, assume for simplicity

that £2 is convex and is replaced by a convex (open) inscribed polygon, £2^, for each

h G {0, 1].   Recall that Sh satisfies assumption (A.l) with respect to a quasi-uniform

family of triangulations of SI" for each h G (0, 1].   Furthermore, Sh consists of con-

tinuous piecewise linear functions vanishing in SI - SI".  The bilinear forms are defined

by

(5.1) ah{u, v) = f       ¿ ait ¡± g dx,    for each u, v G H* {Slh), h G (0, 1].
',/'= i '      /

As we remarked in Section 2, it may be seen that conditions (A.2)—(A.4) hold,

as well as Lemma 2.1, Theorem 2.3, and Theorem 2.4 (with £2 replaced by £2^ when

necessary).  In particular, there exists a unique function, u" G S", satisfying the equa-

tion

(5.2) AiA v) = (/, v),    for each vGS".

In addition, it follows from the arguments of [11] that

(5.3) II«-«%!(„*) <<^|Mlff2(n).

We see from Lemma 2.1 that there exists a unique function, Gx   = Gh G S", such that

(5.4) a"{Gh,v) = v{x0),    for each v G Sh,

where xQ is a fixed point in £2^.

Before defining our perturbed bilinear forms, ah{ ,   ), and linear functionals,

f"{ ), we shall define our numerical quadrature scheme over each t" in the same way

as described in [11] (Section 4.1).  To this end, we first observe, as in the previous

section, that there is a reference element, ?, such that t may be mapped onto each t*1

by means of an invertible affine mapping, Ffy,, given by

(5.5) x = Fth{x) = B^x + bth,
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where Bth is a 2 x 2 matrix and bth is a 2-vector.  The determinant of Bth is denoted

by àet{Bth).  It is clear that, for any integrable function y{x) defined on /*, we have

(5.6) h^d* = det(_»J"?#„)_í,

where <p and ¡p are in the usual correspondence:

(5.7) <p{x) = (p{x),   for each x = Ft„{x), x Gt.

We define our quadrature scheme over the reference element, ?, by means of a

formula of the following form:

J

(5.8) 10) = E *M->-
/=i

We assume that the nodes, b-, belong to f.  In accordance with (5.6) and (5.7), we define

our quadrature scheme over each th by means of the formula:

(5.9) ft„i<p) = E wj,Mbj,tH),
/=i

where w- th = det(_,fft)w-, and i¿¡ is defined at each node b- tn = Fth{bX 1 </<./.

Set

(5.10) £>&>) = ithfix)dx - tth(p),

and define Ej{!p) similarly.  Note that Ethifi) = det{Bth)E¿{¡p).

We now define, ah{ ,   ), by replacing the integral on the right side of (5.1) by

numerical quadrature.  Hence we have

(5.11) a*«*.,)- E fth(i <„£&).
th<=Th \jj=x OXj   OXjJ

provided u, v G Cl(t"), for each r" G T".  Furthermore, we denote ¡nfv by f{v) and

set

(5.12) /»=    E   ̂ 0^).
th&rh

provided /, v G C0^), for each t1* GTh.  Let us assume for the time being that con-

dition (A.2) holds with respect to a"{ ,   ).  We may now define our approximate solu-

tion, uH, of (2.1)(D) as follows:

(5.13) ah{u", v) = fh{v),    for each v G S*.

We shall now show that, when the quadrature scheme is sufficiently accurate,

condition (A.2) holds with respect to a"{ ,   ).  Furthermore, an analogue of Theorem

2.4 holds with u" replaced by u".  For this purpose, we recall that P¡{D) consists of all

polynomials of degree not greater than / defined on the set D.
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Theorem 5.1. Suppose that N = K = 2, u satisfies (2.1 )(D), and fG W2 (£2)

for some pQ > 1. Finally, suppose that

(5.14) E0) = 0,   for each ¿> G />, (?).

Then for h > 0 sufficiently small, there exists a unique function, uh G SH, satisfying

(5.13).  Furthermore, we have

II" -"X~m)< epilog A| U/H„2 (n),

where C is independent of h.

Proof.   To begin with, assume that there exists a function, u" G S", satisfying

(5.13).  Using elliptic regularity theory and Sobolev's inequality, we conclude from the

hypothesis on /that u G W¿(£2). We observe that it follows, exactly as in the proof of

Theorem 4.1, that

(5.15) II" -"*ll_-(n-n") < ^NI»!(_)•

Now suppose that x0 is an arbitrary point in £2", so that x0 G /* for some triangle

¡h e jh    y/e apply Eq (3.10) with x replaced by uA (obtained from (A.4)) to deduce

u(x0) - u"(x0) = ah(G - G", u - uA) + (3h - a") (G", u")

(5.16)
+ {f-f"){G") + {u{x0)-ah{G,u)).

We may estimate the last term in (5.16) using the same argument as in the proof

of Theorem 4.1.  Hence we have

(5.17) \u{x0) - a"{G, u)\ < Ch2\\u\\wtjny

Now consider the first term on the right side of (5.16).  We may apply (A.4) and

Theorem 2.3 to obtain

\a"{G -Gh,u- uA)\ < CIIG - G"\\wt(nh) \\u -uA\\wi (-Ä)

(5.18)
<O!2|l0g/z| 11-11^,2 (n).

We next consider the second term on the right side of (5.16).  It follows from

(5.1), (5.10), and (5.11) that

(5.19)     {ah - _*)(U, vv) = -   E   £> ( E au t ë) '   for each »•wES*-
theTh \u=x       °*i °XjJ

Suppose that t^ G T" and recall that t is mapped onto r*1 by means of the affine map-

ping given by (5.5).   It may be readily seen using the arguments of [11] that

(5.20) |det(_»|<C7V2,
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and

L,   /   t- dv  9vv
(5.21) \Ethl   E   -IR-E

1 \ 1.7 = 1 '        /

<c p /   V1  "    90  9vv

?l.^/'/9x: 9X

obtain

(5.22)

Set

We may now apply the Bramble-Hilbert lemma and the hypothesis, (5.14), to

\Eji$)\ < CVp\wlft,    for each ¿ G Wl{t).

î, _  V   î    9D   9vv
* - E aa 9j a^

,-,/=! ox¡   oxj

and substitute in (5.22).  Since 0 and vv are linear, we deduce

(5.23)
dv  9vv

Et (aa Wi Wj < Ê iá«/lwi(í)lílivL(í)|ví'lH'L(?)
',/=

We now map t back onto z/1 and combine (2.3) and (4.24) with (5.21) and (5.23) to

obtain

c    / v^   „    3u  9w>l

V,/=i '      v

2

(5.24) <C£ ^la^^^Mwi^WwWwl^
¡,/=i

< CTi2 max   lk,yllH'^(rfc)IM¡wijf>i)llwllvv11(f>')-
i,j= 1,2

Set v = w'1 and vv = Gh and then combine (5.19) and (5.24) to conclude that

(5.25) \&"-ah){ù\Gh)\<Ch2\\ïï"\\wl(nhr\\Gh\\wti(nh).

It follows from (2.5) and Theorem 2.3 that

IIG*llvv}(n*) < HG - G%}(„") + llGHiv}(_") < ^Hog »I

+ WGWw^y < C

for h sufficiently small.  We now employ (5.25) and (5.26) to deduce

(5.27) 1(2" - a"){Ùh, Gh)\ < Ch2\\ùh\\wUnhy

We next estimate the third term on the right side of (5.16).   Suppose that

t*1 G T" and apply (5.5), (5.14), (5.20), Sobolev's inequality, and the Bramble-Hilbert

lemma to obtain

(5.26)

(5.28) \EthifGh)\<Ch2\Ei{fG")\<Ch2\fGh\   2    .
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Choose qQ < °° such that 1 /q0 + 1 /p0 = 1.   Furthermore, suppose that p = 2 + e

with e > 0 small and choose q < 2 such that 1/p + 1/q = 1.  Note that Gh is linear in

t and apply (4.24) and Holder's inequality to deduce

\fGh\w2,n<Ci\f\w2  Ct)\Gh\LqoCt) +  l/U(í)le%¿(í-))
1 Pn P H

(5.29)

<C(|/|W,2   (f7i)|G'I|L<70(fi1) +  \f\Wp(t^Gh\w\^thy).

We next sum over all t*1 G T" and combine (5.28) and (5.29) with Sobolev's in-

equality to deduce

(5.30) \if-Jh)iGH)\ < Ch2\\f\\w2p^y\\G"\\wtq(nhy

Applying Lemma 2.1 and (5.3), we see that

WGh\\wi(iih) < IIG - G"!!//!^ + IIGI^i^

(5.31)

< Ch\\G\\H2(n) + \\G\\wi(a) <C+ \\G\\wi(ay

In order to estimate the last term in (5.31 ), we write SI = E/^ Ufl", where Dq is de-

fined as the intersection of £2 with a sphere of radius 0{h) centered at x0 and D" =

Sl-DhQ. We choose D" such that distil", supp(?)) > Ch. We now apply Sobolev's

inequality to deduce

(5.32) Il5llwi.(_) < C\\G\\w2i(a) <C(||G||M,2(Dg) + l|G||w2(zyi)).

Employing Lemma 2.1 and elliptic regularity theory, we obtain

HCIIivfCDg) < C^IÑI//2^) < CS||«||_2(n) < C.

To estimate the last term in (5.32), we note with the aid of Lemma 2.1 that G(x) =

faGx{x')8{x')dx', for each x G SI.  We may thus combine (2.5) and Lemma 2.1 with

the definition of f?1 to see that

\VG\\w2i(ph) < Cllog h\.

Combining the last two inequalities with (5.32), we obtain

(5.33) IIG||„,i(„)< Cllog h\.

Combining (5.30), (5.31), and (5.33), we conclude that

(5.34) \{f-Jh){G")\ < Oz2|log h\ \\f\\w2p (n).

We now combine (5.16)—(5.18), (5.27), and (5.34) to conclude that there exists

an h0 G (0, 1] such that, for each h G (0, h0] and each point x0 G £2^, we have

(5.35)  \u{x0) - un{x0)\ < Ch2\\og h\ (Hull^2^) + ||/|V (n)) + Ch2\\u"\\wl&h
P0V V
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where Cis independent of x0 and h.  In order to estimate the last term in (5.35), we

employ a "kickback argument" as in [13].  We first observe that

(5.36) \\"hWwUii") < II"" - "X^n") + H«*»»'•.(«*).

where uh satisfies Eq. (5.2).  It follows from the "inverse inequalities", (2.3), that

\\"h -ùh\\wl(ii")<Ch-X\\uh -uh\\L~{ii")

< Ch-\\\u - u"\\L^nh) + f|u - «"«¿-(„A)).

We readily see using (A.4) and (2.3) that

H^llw^n") < ^ ' u^wl(nh) + II«"1 -"Kim")

+ Nln^in") < Ch~li\\u - uA\\l~(íi") + II" - M"ll/,°°(n'!))
(5.38)

+ II" - uA\\wl(nh) + IMIivi(n) < »H^n)

+ C||U||M/io(i2) + C/z-1||«-«'!||/,oo(nft).

In view of the definiton of u" and Theorem 2.4, we readily obtain

(5.39) U« - -"«¿-(„h) < Ch2\\og h\ \\u\\w2^y

We may thus combine (5.36)—(5.39) to deduce

H2*llwi („/.)< CÄllog A| Huilón,

(5.40)

+ C||W||M/io(í2) + C7z-1||w-2'1||L_(íí/1).

We may now combine (5.35) with (5.40) to conclude that the following estimate holds

for h sufficiently small:

||!i -«%_(„*) < C^llog h\ i\\u\\w2(n) + \\f\\w2   (n))

(5.41)

+   C7z||H   -Ü"\\Lao(ahy

It follows, from the unique solvability of (2.1 )(D), estimate (5.41), and the finite

dimensionality of S", that uh exists and is unique for h sufficiently small.  Combining

(5.15) and (5.41) with Sobolev's inequality and elliptic regularity theory, we have

proved the theorem.  Q.E.D.

Remark 5.1.  The arguments employed in the proof of estimates (5.25), (5.30),

and (5.40) follow along lines similar to those employed by Wahlbin in [13].  In [13],

L°° error estimates were established for a second-order linear elliptic boundary value

problem in R2 using a finite element method based on quadratic triangular isopara-

metric elements. It was assumed there that/G Wf{Sl) and the quadrature scheme was
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sufficiently accurate that E-0) = 0, for each i¿> GP2{f).   It was then shown that

(5.42) ll"-"',ll^(n)<CeA3^ll/llH/3(i2)

for arbitrary e > 0.  (Note that Cf —► °° as e —► 0.)  The arguments of [13] may also

be shown to yield the estimate

(5.43) ||u - «ft!l_-(n) < C^2"eH/Hrv2(n).

where uh satisfies (5.13),/G 1V2(£2), and the remaining assumptions of Theorem 5.1

hold.  Note that, in Theorem 5.1, we were able to eliminate the factor h~£ present in

(5.43) under the slightly stronger assumption that H/11^,2    (n) < °° for some e > 0.

Remark 5.2.  The arguments of Theorem 5.1 may be extended to the case in

which K > 2 and N = 2 or 3.  Let us consider each term on the right side of Eq. (5.16).

The first term may be estimated in the same way as before.  The two middle terms are

due to the presence of numerical quadrature.  Hence it is necessary to employ a suffi-

ciently accurate quadrature scheme in order to suitably estimate these terms. We shall

demonstrate this in the proof of Theorem 5.2 below.  The last term in (5.16) is due to

the difference between the polygonal domain, £2'', and the given domain, £2.   For this

reason, estimate (5.17), as well as (5.15), remain the same regardless of K.  This esti-

mate may be improved using alternative methods for treating the Dirichlet problem.

For example, isoparametric elements may be employed as in [13] (with N = 2 and

K = 3).

We next consider the Neumann problem, (2.1)(N), employing the finite element

method described in Section 2 to solve this problem. Hence, our family of finite ele-

ment spaces, S" = 5^,, satisfies condition (A.l) and consists of continuous functions

defined on £2 = \Jth&Th t". Recall that functions in S" need not satisfy any bound-

ary condition on 9£2 and that boundary elements may have one curved face. We may

assume that K > 2 and N = 2 or 3 since the case N = K = 2 may be treated using the

arguments of Theorem 5.1.   The bilinear form, a"( ,   ), is now given by

^c ̂      a\u, v) =  f   f   (atj |H |_ + cm) dx,
(5.44) ,-j^! Jn V 'i bx¡ 9xy /

for each u, vGHl(Sl), h G (0, 1].

We again observe that a"( ,   ) is coercive over //' (£2) x //' (£2) since c > 0.

Suppose that we are given a quadrature scheme, Ith, defined on each element

t" eTh.  We also assume that

(5.45) Ethip) = 0,    for each v G P^^it"), and r* G T",

where Eth(¿) is defined as in (5.10).  We define ah( ,   ) as a perturbation of d1 ( ,   )

as before, where ah( ,   ) is now defined by (5.44).  We are now ready to prove a re-

sult analogous to Theorem 5.1.  As we observed above, the second and third terms on
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the right side of (5.16) describe the effect of numerical quadrature.  For the sake of

simplicity, we shall only estimate the second term.  Thus we may assume that / = f"

in Theorem 5.2.  If f i=fh, we may estimate the third term on the right side of (5.16)

using an argument similar to that employed in Theorem 5.1.  In this case, we would

again require additonal smoothness assumptions on / in order to obtain an estimate

analogous to (5.30).

Theorem 5.2. Suppose that K > 2, N = 2 or 3, u satisfies (2.1)(N), and u G

IVf (£2). In addition, suppose that Eq. (5.45) holds.   Then for h > 0 sufficiently small,

there exists a unique function, uh G S", satisfying

(5.46) ah(u", v) = (f,v)= f(v),   for each v G S".

« < epilog/z|6*3||Mil,*w£(_)'

Furthermore, we have

(5-47) ||M    „ m/,-^)

where C is independent of h and

1    for K = 3,

0   forK>3.

Proof.   Assume, for the time being, that there exists a function, u" G Sh, satisfy-

ing (5.46).  Now suppose that x0 G //£ for some simplex, t^ G T", and apply (3.10)

(with f = fh and x replaced by uA ) to obtain

Ô/C3 -

(5.48) u{x0) - 2"(x0) = a"{G -G",u- uA) + {ah - a") {Gh, u").

Here, we used the fact that u{xQ) = a"{G, u).  The first term on the right side of (5.48)

may be estimated using the same argument as in Theorem 5.1. We thus obtain

(5.49) \a"{G -G",u- uA)\ < ChK\\u\\wK(ny

We next estimate the last term in (5.48) using a version of the Bramble-Hilbert

lemma established in [19]. Suppose that t" G T" and observe that \Eth{<¿)\ < C|^|L_^/¡^

for each (¿> G C°(í>1).  It now follows from (5.45) and [19] that there exists a constant

C independent of h, t* G T", and v, w G S" such that the following estimate holds:

N

E au
¡,r-

dv   dw
dx.. dx,

<Ch 2K-3
N

Edv   dw

!,/=! 1 /

W2K~3(tn)

(5.50)
<Ch 2K-3

N

E       E       ^wi(t")Mwi+Ht")^wï+i(t")
i,/=l  a+ß+y = 2K-3,

ß+KK-l,
y+KK-1

<Ch 2K-3 max

i,/=l.N

\\aij\\w2K-3(th)\\v\\wK-l(th)\\W\\wK-l(th).



1156 CHARLES I. GOLDSTEIN

Similarly, we obtain the following estimate:

(5.51) \Eth{cvw)\ < a2K~3\\c\\w2K-3{th)\\v\\wK-i(th)\\w\\wK-i(thy

Set v = uh and vv = G", apply (5.50) and (5.51), and sum over each t" G T" to

obtain

(5.52) 1(2" - ah) (u\ G")\ < a2K-3\\uh\\%K-i(a)\\GhtwK-i(ay

We see from Corollary 2.1 that

(5.53) WGH\\wK-i(n) < Or-^-^llog hf™.

We may now apply an argument analogous to that in Theorem 5.1 to deduce

(5.54) WùhtwK-im < aiMl^ín) + h-^Wu - 5*||_-(n)).

Substituting (5.49) and (5.52)-(5.54) into (5.48), we conclude that

|«(x0) - 2"(x0)| < CA*(|log AI6 « IMI «,£(„) + Allog hf^Wu - «"||_-(n)),

where C is independent of x0 and h.  We thus obtain the following estimate for h suf-

ficiently small:

(5.55) II" -«*ll_-(n) < ChK\\og h\6™\\u\\wK(n).

It follows, from the unique solvability of (2.1)(N), estimate (5.55), and the finite di-

mensionality of S", that uh exists and is unique for h sufficiently small. The theorem

now follows from (5.55).  Q.E.D.

Remark 5.3.  We see from (5.14) that the hypothesis, (5.45), of Theorem 5.2

must be strengthened when K = 2.  This is also the case for _2 error estimates.  (See

[11] and the references cited there for the proof of mean square estimates in the

presence of numerical integration.) We also observe from Theorem 5.2 that there is an

additional |log h\ present when K = 3.  This may be removed, e.g., by improving the

quadrature for K = 3, so that (5.45) is replaced by the equation E-0) - 0, for each

<p G P3(t).

Remark 5.4.  The results of this section may be proved under more general as-

sumptions on the boundary value problem, as well as for more general finite element

spaces.  (See Remark 2.2 for an analogous observation regarding the results of Section

2.)  For example, lower-order terms may be present in the differential operator given

by (2.2) and A need not be symmetric.   Furthermore, the smoothness assumptions on

the boundary and coefficients may be relaxed.
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