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On Determination of Best-Possible Constants

in Integral Inequalities Involving Derivatives

By Beny Neta

Abstract.   This paper is concerned with the numerical approximation of the best possible

constants yn k in the inequality

ll^ll2 < Tñjfcíll^ll2 + llf (n)ll2}-

where

HI2 = ¡Ô \F(x)\2 dx.

A list of all constants yn k for n < 10 is given.

1. Introduction.   This paper utilizes the algorithm given in [1] to numerically

approximate the best possible constants ynk, 1 <k < n, for n < 10 in the inequality:

(*) ||F<*>||2 <T~1fc {ll/qi2 + |1F^>H2}S

where || • || denotes the L2 [0, °°) norm.  The function F has a locally absolutely con-

tinuous (n - l)st derivative.  The inequality (1) is equivalent to

(2) ||F<*>|| < Mnk \\F\\(n-k)ln |[F(«)||fcAl)

where

(3) M2    =y-1  f^A]      +( -*_]
Mn,k     yn,k\   k    J       *\n-kj

see [1].

interest in inequalities (1) and (2) increased because of their close connection

with problems of best approximation of the differentiation operator by bounded oper-

ators; see [2], [3], [4], [5], and with the problem of best approximation of one class

of functions by another; see [4], [6], [7].

In the next section we shall give lower and upper bounds for the best possible

constants yn k and Mn k for n < 10.

2. Numerical Results.   In this section the best possible constants yn k and Mn k

are listed.

721 =1,    see [1].

731 = 732 = V^ -2V2   = .555669,    see [1].
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m [1]. Ï4i 's characterized as the smallest positive zero of the polynomial Z8 - 6Z4 -

8Z2 + 1, and 742 is the smallest positive zero of the polynomial Z4 - 2Z2 - 4Z + 1.

Using Müller's method [8], we obtain 741 = 743 = .339246, 742 = .225270.

Remark.   It is known, see [1], that

(4) yn,n-k = 1n,k    for all n, *.

Using the algorithm in [1], one has the following table of lower and upper bounds on

yn k for 2 < n < 10 and 1 < k < [n/2].   For other values of k, use (4).

Table 1

ynkfor2<n< 10,1 <k< [n/2]

n\k 1 2 3 4 5

2 1.

3 .555669

4 .339246 .225271

5 (.225837, .2258375) (.102266, .102268)

6 (.160328, .160338)  (.051986, .05199)  (.0361167, .0361177)

7 (.11936, .11943)  (.028924, .02895)    (.014698, .0147)

8 (.09128, .09129)    (.0172, .01723)  (.0068112, .00681124)(.005014, .0050145)

9 (.07593, .07594)   (.010795, .0108)      (.00345, .0036)    (.00193, .001938)

10        (.0479, .048)-    (.0068, .007)    (.0014163, .0014165) (.000681505, .00068151H.000642565,.00064257)

Using (3) and the values listed in Table 1, one has the following table of lower

and upper bounds on Mn k for 2 < n < 10 and 1 < k < [n/2].   For other values of k,

use Mn,n-k = Mn,k for a11 "> k-

Table 2

MnJ( for 2 < n < 10, 1 < * < [n/2]

n\k 1 2 3 4 5

2 1.41421

3 2.07005

4 2.27432 2.97963

5 (2.70248, 2.70249) (4.37797,   4.37801)

6 (3.12838, 3.12848) (6.02917,   6.02940) (7.44141,   7.44151)

7 (3.55221, 3.55325) (7.92662,   7.93019) (11.60467,11.60546)

8 (3.99579, 3.99601) (10.09176,10.10056) (16.86722,16.86727)     (19.97106,19.97206)

9 (4.32029, 4.32057) (12.54043,12.54333) (23.07295,23.23717)     (32.02543,32.09173)

10 (5.36995,   5.37555)     (15.35013,15.57423)     (36.06112,36.06367)     (53.62984,53.63004)     (55.78980,55.79001)

Remarks.   1.  The lower and upper bounds for each n and k are given in paren-

theses and separated by a comma, for example, .11936 < y7 j < .11943.

2. The number M4 2 in Table 2 agrees with that obtained by Bradley and

Everitt [7].

3. The number M6 3 in this table agrees with a result of Dawson and Everitt [9] -

Conjecture.   For fixed k the yn k are decreasing functions of n.   For fixed n the

yn k are decreasing functions of k up to k = [n/2].
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Thus the initial value of ynk may be taken in the interval

£* = <P. ?„_,,*)    forn>2

rather than the interval suggested by Kupcov, namely

^n,k = (0>#n,fc)>

where

_ _n_

gn,k       kk/n(^ _ kyn-k)/n ■
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