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On Faster Convergence of the Bisection Method

for all Triangles

By Martin Stynes*

Abstract.   Let AABC be a triangle with vertices A, B, and C.   It is "bisected" as fol-

lows:   choose a/the longest side (say AB) of AABC, let D be the midpoint of AB, then

replace AABC by two triangles aA.DC and ADBC.

Let Ag| be a given triangle.   Bisect Aqj into two triangles A¡¡ and Aj2.   Next

bisect each Aj(-, /= 1, 2, forming four new triangles A2j-, i =  1,2, 3,4.   Continue thus,

forming an infinite sequence T-, / = 0, 1,2,..., of sets of triangles, where T¡ = {a.(-: 1

< i < 21}.  Let m.- denote the mesh of Ti.   It is shown that there exists N = JV(Aqj)

such that, for / > N, m2¡ < (^3/2)^(1/2y     íMq, thus greatly improving the previous

best known bound of m2- < (\/3/2)'mQ.

It is also shown that only a finite number of distinct shapes occur among the

triangles produced, and that, as the method proceeds, Anj tends to become covered

by triangles which are approximately equilateral in a certain sense.

1.   Introduction and Summary.   Let AABC be a triangle with vertices A, B, and

C.   We define the procedure for "bisecting" AABC as follows:   choose a/the longest

side (say AB) of AABC, let D be the midpoint of AB, then divide AABC into the two

triangles AADC and ADBC.

Let AQ1 be a given triangle.   Bisect A01 into two triangles Aj t and A12.  Next

bisect each A1(-, i= 1,2, forming four new triangles A2l-, i= 1, 2, 3, 4.  Continue

thus, forming an infinite sequence T.-, j = 0, 1,2,.. ., of sets of triangles, where T.-

= {A/7: 1 < / < 2'}.  Define m-, the mesh of T¡, to be the length of the longest side

among the sides of the triangles of T..  Clearly 0 < m+ j < m-, for all ;' > 0.  It is

known [2], [1] that m. —> 0 as / —> °°.

In [1, Theorem 3.1] an explicit bound is obtained for the rate of convergence

of m-: m- < (\Z3/2)'/-'2 ' m0, j > 0, where [x] denotes the integer part of x.  This may

be written as m2- < {yj3l2)'m0, j > 0.   In [1] it is also mentioned that computer

experiments indicate that in many cases this bound is unrealistically high. This prompt-

ed the results of [3] where it was shown that if AQ1 lay in any one of four sets of

similarity classes of triangles, then m2 ■ < (v/3/2)(l/2)/~1m0, for /> 1.  Note however

that in [3] the inequality was not written in this form; see [3, Corollaries 1 and 2].

In the present paper we show that for any AQ j there exists a positive integer N de-

pending only on A01 such that

Received April 10, 1979; revised February 28, 1980.

AMS (MOS) subject classifications (1970).   Primary 50B30, 50B15; Secondary 41A63,

65N30, 55C25.

'This paper was written while the author was at University College, Cork, Ireland.

© 1980 American Mathematical Society

0025-5718/80/0000-0161 /$02.75

1195



1196 MARTIN STYNES

m2j < (V3/2)min{/';v}(l/2)max{/-iV'0>m0,   for / > 0.

For / > N this becomes m2 ■ < (-^3/2)^(1 /2)'~ m0, thus generalizing [3, Corollaries

1 and 2].   It is also a great improvement on the result of [1] for / large.  We have

the interesting result of Corollary 1 below that for any A0 j the bisection method

yields only a finite number of distinct shapes among all the triangles in the T-, j = 0,

1,2,.... Finally Corollary 2 shows that the shapes produced tend to be closer to

equilateral than the original A0,.

2.   Results.   All notation used is consistent with that of [3].  The results of this

paper can also be proven using the methods of [2], [3] (i.e., by consideration of

angles in triangles) but the technique below seems simpler.

Given two triangles A and A', we write A ~ A' to indicate that the triangles are

similar.

Definitions.   Given a triangle A, define d(A), the diameter of A, to be length of

the longest side of A.  Define r(A) to be (area A)/c?2(A).  Note that if A ~ A', then

r(A) = r(A').  (This similarity invariant t is closely related to J. H. C. Whitehead's

"relative thickness of Simplexes" [5, pp. 811, 812].)

Note that when a triangle is bisected, its area is bisected.  This fact is used im-

plicitly many times in what follows.

Definition.   We say that A0 j is good if it has an associated positive integer N

such that

m2j < (V3/2)mini/'Jv}(l/2)max{/-iV'o}m0,    for / > 0.

For the rest of this paper we always assume that we are working with the smallest

such N associated with a given A0 j.

Remarks.   Clearly all triangles generated from a good A0 j, by the bisection

method, are also good, using the result of [1] that m2j < (\/3/2),m0, / > 0, for any

A01.   In [3, Corollary 1 (i)] it was shown that for A01 = AABC, as in Figure 1 satis-

fying (length of AC =) AC < BC < AB, AC > max{CD, AD], and CD > CF,

where D, F are the midpoints of AB, BC respectively, we have m2j <

(V3/2)min(/' " \l/2)maxi/-1 'o}m0, for / > 0, so such triangles are good.  We note that

these inequalities were expressed differently in [3].  In [3] three other classes of

triangles satisfying conditions on the length of their sides and medians were consider-

ed and similar inequalities for m2 ■ were proven; however, these three classes can be

shown to be subclasses of the one specified above (this passed unnoticed in [3]).

Lemma 1. If t(A0l)>y/7/8, then AQl is good.

Proof.   We use the result just quoted from [3].  Take A0 j = AABC in Figure

1.  Assuming AC<BC< AB, we show that AC > max{Œ>, AD} and CD > CF.

Since r(A) is invariant under similarity, we may take AB — I.  In Figure 1, CL

is perpendicular to AB.  Let CL = h, AL = x, and LB = 1 - x.  Now 7/64 <

t2(AABC) = n2/4 by definition of r(A), so n2 > 7/16.  Hence 1 = AB2 > BC2 =

h2 + (1 -xf > 7/16 + (1 - x)2, which gives jc > 1/4.
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Figure 1

Now

max{CD2, AD2} = max{/i2 + (1/2 -x)2, 1/4}

< n2 + x2    since h2 > 7/16 and 1/2 > x > 1/4 = AC2.

Also

CF2 = BC2/4 = (h2 +(1 -jc)2)/4

< n2    since x > 1 /4 and /i2 > 7/16 < CD2.

By the remarks above, A01 = AABC is good.

Definitions.   Using the notation of the introduction, an iteration of the bisection

method is defined to be the progression from T to T-+ ¡, for any / > 0.  A cycle of

the bisection method is defined to be two successive iterations, i.e., the progression

from T¡ to 7}+2, for any / > 0.

Lemma 2.  After one cycle of the bisection procedure, applied to A01, we

have four triangles A2i,i = 1, 2, 3, 4. Suppose that for each i either A2i is good or

A2i ~ A01 with d{A2i) = d(A01)/2.  Then A01 is good

Proof.   Set N = I + max{Af.: A2(. good with associated positive integer N¡}.

We show that

m2j < (V3/2)min{/'^l/2)max{'-^°}m0,   for / > 0.

To do this we use induction on /.

For / < A^, this is the n = 2 case of [1, Theorem 3.1].  Fix k> N and assume

that the result holds for /' = k.  We now prove it for / = k + 1.

Each triangle A2(-fc + 1),-, /' = 1, 2, . . . , 22(-k+1\ is obtained by applying k

bisection cycles to one of the A2|.,i = 1, 2, 3, 4. We consider the possibilities for

A2/ separately. If A2i is good with associated positive integer N¡, then, after k bi-

section cycles applied to it, any resulting triangle A2,k+l-, t> satisfies
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d(A2(k+l)/) < (s/3l2fKmf N'd(A2i)

< (y/3l2fi+l(l/2f~Nim0    by [1, Theorem 3.1]

< (^3/2^(1 /2)k+' ~Nm0     since N, + 1 < N.

If A2l- ~ A01 with d(A2¡) = cf(A01)/2, then, after k bisection cycles applied to it,

any resulting triangle A2,k+l-,j> satisfies

d(A2(k+l)/)<^3/2nH2)k-Nd(A2i),

by the inductive hypothesis applied to A2(- since A2¡ ~ A01. Now use d(A2i) =

m0l2 to complete the proof for / = k + 1.

Theorem 1. Any triangle AQl is good.

Proof   Let 5 be the set of all triangles A01 which are not good.   Assuming 5

is not empty, set t = sup{r(A): A €E S}.  By Lemma 1, t < >/7/8.  Now choose AQ j G

S such that t* = r(A01) > max{3r74, ?(1 - 9P/2)}.  We show that in fact A01 is

good, contradicting the assumption that S is nonempty.

Take AQ1 = AABC in Figure 1, with AC < BC < AB. Here D, E, F, H, and M

are the midpoints of AB, AC, BC, CD, and BD respectively. When the bisection meth-

od is applied to AABC, AB and BC must be bisected as shown. Any of the three

sides in ACAD may be bisected next, while in ACDF either CD or CF will be bisected

since DF = AC/2 < BC/2 = CF (if DF = CF, we can assume that CF is bisected since

either choice has the same effect). This gives six possible combinations of bisections

of sides.  We analyze these cases separately.

Case (i):  AC in ACAD, CD in ACDF.   In this case we are in the situation of

[3, Corollary l(i)] ; by the Remarks above AABC is good.

Case (ii):   CD in ACAD, CF in ACDF.   This is impossible unless CD = CF,

since CD > AD = .45/2 > BC/2 = CF and if CD > CF, then CF cannot be bisected

in ACDF.  If CD = CF, we proceed to Case (vi) below.

For the remaining cases we shall use the well-known formula for the length of

the median CD:

(*) CD2 = AC212 + BC2/2 -AB214.

Case (iii):  AC in ACAD, CF in ACDF.   Now BC2\4 = CF2 > CD2 > AD2¡2

+ BC2I2 -AB2 ¡4, hence AB2\2 > BC2. Thus t(ACDF) = (area ACDF)lCF2 =

(area AABC)/BC2 > 2t*.   By choice of t* ACDF is good.

When ACAD is bisected, we get AADE ~ AABC with d(AADE) = d(ABC)l2

and ACED ~ ACDF, so AŒD is good.   Also ADBF ~ AABC with d(ADBF) =

d(AABC)/2.  By Lemma 2 AABC is good.

Case (iv):  AD in ACAD, CF in ACDF.   Here t{ACAD) = (area ACAD)/AD2 =



THE BISECTION METHOD FOR ALL TRIANGLES 1199

2(area AABC)/AB2 = 2r*, so ACAD is good, and consequently the two triangles ob-

tained from it by bisection are good.

Now r* = (AB-AC- sin CÂB)I(2AB2) <AC¡{2AB) so AC > 2-AB-t*.  Hence

BC2/4 = CF2 > CD2 > 2-AB2'{t*)2 + BC2/2 -AB2¡4 using (*) =* (1 - 8{t*)2)AB2

>BC2.  Thus t(ACDF) = (area ACDF)/CF2 = (area AABC)/BC2 > r*/(l - 8(i*)2).

Now f* > 3f/4, so t(ACDF) > r*/(l - 9p/2) > t, since t* > i(l - 9?/2) and 1 -

9?/2 > 0 by Lemma 1 and the definition of t.  Therefore ACDF is good.  Also

ADBF ~ AABC with d(ADBF) = d{AABC)l2.

We can now apply Lemma 2 to obtain AABC good.

Case (v):  ,4£> in ACAD, CD in ACDF.   As in Case (iv), ACAD is good.  In

ACDF bisection yields ACHF ~ ABCD and ADF/f ~ ACAD (consequently good).  In

AFDB (~ A45C) bisection yields ABFM ~ ABCD and AMfü ~ ACAD (consequent-

ly good).  Applying Lemma 2 to ABCD now shows that ABCD is good.  But AFDB,

obtained from ABCD by bisection, must then be good, so AABC ~ AFDB is good.

Case (vi):  CD in ACAD, CD in ACDF.   If we can show that ACAD is good,

then repeating the argument of Case (v) shows that AABC is good.  We therefore

analyze ACAD.

If CD2 < 3AB2/8, then t{ACAD) = (area ACAD)/CD2 > 4t*/3 > t, so ACAD

is good.  Therefore assume that CD2 > 3AB2/8. We claim that this implies that

ACAD satisfies the hypotheses of [3, Corollary l(i)]  and is consequently good (see

the remarks above).

Using BC < AB in (*) gives

AC2¡2 + AB2¡2 - AB2 ¡4 > CD2 > 3AB2 /8 => AC2 > AB2 ¡4,    i.e.,   AC > AD.

Thus in ACAD, CD>AC>AD. When ACAD is bisected, the median formed is AH.   To

prove our claim, we must show that (a) AD > AH, (b) AD > DH, and (c) AH > AE

all hold.

Note that AH2 = AC2¡2 + AD2 ¡2 - CD2/4.   Now

(a) AD2 -AH2 = AD2/2 - AC2 ¡2 + CD2/4

= AB2116 - 3AC2¡8 + BC2I&    using (*)

> 3BC2/16 - 3AC2/&    since AB > BC.

But AC2 < CD2 < AC212 + BC2/2 - BC2/4 from (*) => AC2 < BC2¡2.  Hence AD2

-AH2 > 3BC2I\6 - 3BC2l\e = 0 as required.

(b) AD = AB/2 > BC/2 > CD/2 = DH.

(c) AH2 - AE2 = AC2¡4 + AD2¡2 - CD2¡4

= AC2/8 + 3¿52/16 -BC2/8    using (*)

> 0     since AB > BC.

This completes the proof that in all cases AABC is good, and the theorem is

proven.
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Remark.   The above proof can also be used to derive other properties of triangles

under repeated bisection.  If we redefine the term "good" in such a way that

(a) all triangles generated from a good A01 are also good,

(b) Lemma 1 still holds, and

(c) Lemma 2 still holds,

then Theorem 1 is still true using exactly the same proof.  In this way we now give

two corollaries.   It is possible to derive more quickly the inequality in the original

definition of "good", using [1,  Theorem 3.1] and [2, Theorem], but this method of

proof does not seem to extend to proving results of the type below.

Definition.   We now say that A01 is good if, identifying similar triangles, only

a finite number of distinct triangles are produced from A01 by the bisection method.

It is easy to verify (a), (b) (use [2, Lemma 4] ), and (c) above under this defini-

tion of "good".  Consequently by the above Remark we have:

Corollary 1.  Every triangle yields only a finite number of similarity-distinct

triangles under repeated bisections.

Definition.   Let pk(A01), k = 0, 1, 2, . . . , by that fraction of the total area

of A0 j that after k cycles of the bisection method applied to A0 j is covered by tri-

angles which satisfy the conditions of [2, Lemma 4] (these are the same as the condi-

tions of [3, Corollary l(i)]).

On examining [2, Lemma 4], we see that pk is a monotonically increasing se-

quence.  Thus p(A01) = lim^.^.^ pfc(A01) always exists.

Definition.  We now say that A01 is good if p(A01) = 1.

Corollary 2.  For every triangle AQ j, P(A0 r ) = 1 •

Proof.   We must check (a), (b), and (c) of the Remark above.  Clearly (a) holds

as, otherwise, we have a contradiction.   For (b) use [2, Lemma 4].

To prove (c) (i.e. to prove Lemma 2), we may assume that of the four triangles

produced, after one cycle of the bisection method applied to A01, at least two are

not similar to A01, as, otherwise, elementary calculations show that A01 satisfies

the conditions of [2, Lemma 4] and so by (b) is good.

By hypothesis in Lemma 2, triangles which are not similar to A01 are good.

If there are exactly two such triangles, we have

p(A01) = 1/4 + 1/4 + p(A')/4 + p(A")/4,

where A', A" are the other two triangles.  But A01 ~ A' ~ A", so p(A01) = p(A') =

p(A").  Hence p(A0, ) = 1 •   Similarly, if there are three triangles which are not simi-

lar to A0 j, we get p(A01 ) = 1.   This completes the proof of Lemma 2 and also the

proof of Corollary 2.

Corollary 2 is of use in explaining an apparent anomaly elsewhere [4].
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