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The Construction of Jacobi and Periodic Jacobi

Matrices With Prescribed Spectra

By Warren E. Ferguson, Jr.*

Abstract.   The spectral properties of Jacobi and periodic Jacobi matrices are analyzed

and algorithms for the construction of Jacobi and periodic Jacobi matrices with pre-

scribed spectra are presented.   Numerical evidence demonstrates that these algorithms

are of practical utility.   These algorithms have been used in studies of the periodic

Toda lattice, and might also be used in studies of inverse eigenvalue problems for

Sturm-Liouville equations and Hill's equation.

1.   Introduction.   A periodic Jacobi matrix is any real, symmetric matrix of the

form

,   where b¡ >0 for i = 1, 2, . . . ,N.

This paper shows how one can characterize the family of periodic Jacobi matrices with

prescribed spectra and numerically construct each of its members.  For example, there

is a nonempty family of periodic Jacobi matrices with Xj, X2, . . . , \N as their eigen-

values if and only if the numbers A,, X2, . . . , \N are real and can be rearranged so

that

Xj > X2 > X3 > X4 > X5 > . . . .

This family of periodic Jacobi matrices was partially characterized by van Moerbeke

[15], and an algorithm which constructs some members of this family was proposed by

Bo ley and Golub [3].

The results presented in this paper are based upon an analysis of the spectral

properties of periodic Jacobi matrices. The derivation of the spectral properties of

periodic Jacobi matrices depends quite heavily on the discrete version of Floquet theory,
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1204 WARREN E. FERGUSON, JR.

as presented by Flaschka [6], Flaschka and McLaughlin [7], and van Moerbeke [15].

We develop this version of Floquet theory by using our knowledge of the spectral prop-

erties of Jacobi matrices.  Recall that a Jacobi matrix is any real, symmetric tridiagonal

matrix whose next to diagonal entries are positive.  Our canonical Jacobi matrix will be

the matrix

,    where b¡ >0 for i = 1, 2, . . . , N - 2.

obtained from L by deleting the last row and column.

An algorithm which constructs a Jacobi matrix with prescribed spectra is present-

ed in Section 2.  We hasten to point out that essentially the same algorithm was pre-

sented by de Boor and Golub [4] and by Boley and Golub [2].  Inverse eigenvalue

problems for matrices in general, and for Jacobi matrices in particular, is a very actively

studied subject.   In particular, we would like to mention the work described in [8],

[11], [12].
The spectral peoperties of periodic Jacobi matrices are considered in Section 3.

In Section 4 we use these results to characterize the family of periodic Jacobi matrices

with prescribed spectra.  The results of several numerical experiments are presented in

Section 5.   These results demonstrate that the algorithms presented in Theorems 2.2

and 3.4 are of practical utility.   In Section 6 we conclude the paper with several com-

ments.

2.   Spectral Properties of Jacobi Matrices.   In this section we will consider the

spectral properties of the Jacobi matrix

,    where ft. > 0 for i = 1, 2, . . . , N - 2.

J =

J =

N-2\

N-2        uN-\

Observe that / is a real, symmetric matrix.  Consequently J has real eigenvalues ßx,

ß2, . . . , Mjv-i and a corresponding set Y1,Y2, . . . , YN1 of real, orthonormal

eigenvectors [16], [17].  If F denotes the matrix whose /th column is Y}, then y is an
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orthogonal matrix and

(1) JY = YD   where D =

■%_i

Many important relationships between the eigenvalues and eigenvectors of / can

be derived from the representation

(2) (pi - /)"' = Y(pl - D)-1 YT

of the resolvent of/.  For example, by comparing the entries in row 1, column N - 1

of (2) we obtain the identity

(3a)

Here

(3b)

N-l
Ujiti

b1b2 . . . bN_2      2_,   ,. _ ..
k=ï   *      ßk

íOjip) = detíju/ - J)

is the characteristic polynomial of/, and Y{ ¡ denotes the entry of Y in row /, column

/.  Another important identity

(4)
w-i  ur(u)     ,

tiV-H
\,k'

k=l

sometimes attributed to Cauchy, is obtained from (2) when we compare the entries in

row 1, column 1.   Here coj is the characteristic polynomial of the Jacobi matrix J

obtained from J by deleting the first row and column.

Following the work of Bo ley and Golub, we will demonstrate that the Lanczos

algorithm can be used to recover the entries of J from the entries on the diagonal of

D and in the first row of Y.  Before we describe this algorithm, let us introduce the

following:

Definition 2.1.  (a)  The Jacobi matrix J is characterized by the data {ju, y} if

and only if

(1) /j, , ß2, . . . , MAr_, are the eigenvalues of /, and

(2)y1,y2, . . . ,yN_x are the first components of a set Y1,Y2, •

real, orthonormal eigenvectors of/ corresponding to /i,, ju2, . . . , juiV_1.

(b) The data {ju, y} are compatible if and only if

(1) /i,, ju2, . . . , HN_¡ are real, distinct numbers, and

(2)y¡,y2, . . . ,yN_i are real, nonzero numbers whose squares sum to one.

We feel justified in using the words "characterize" and "compatible" in this manner

because the following theorem is true.

Yn-, of
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Theorem 2.2. Data characterizing a Jacobi matrix are compatible.  Furthermore,

each set of compatible data {¡i, y} characterizes a unique Jacobi matrix J.   The entries

(a, ft) of this Jacobi matrix are computed by the Lanczos algorithm:

i. ft0 = i;

2. Y0j = 0forj=l,2,...,N-l;

3. Yu=y;.forj=l,2,...,N-l;

4. For i = 1, 2, ... ,N-2;

^i k = l^k    k k>

7-   Yi+i,j = [fry - ai)Yi,j - bi-x Yi-iJ lbiforj=\,2,...,N-\;
8. Next i;

O/z        = y,N-1u Y2
y-   «jv-l       ^k=l^k'N-l,k-

Proof.   The proof of this theorem will be presented as a sequence of three lem-

mas. D

Lemma 2.3. Data characterizing a Jacobi matrix are compatible.

Proof.   Let the Jacobi matrix / be characterized by the data {p, y}.  The ju^s

are real because they are the eigenvalues of a real, symmetric matrix.  Clearly the y ¡'s

are real, and their squares sum to one because they are also the entries in the first row

of the orthogonal matrix Y in (1).  Consider the limiting form of the identity (3) as p.

tends to one of the eigenvalues of /, say u-.  If /j. were a repeated eigenvalue, then we

would be forced to conclude that ft,ft2 • • ■ bN_2 = 0, which is impossible because

each ft;- is positive.  Therefore the eigenvalues of/ are distinct and

(5) btb2 ...bN_2=0}'(p/)Y1JYN_1J    for/= 1,2, .. .,/V-l.

From (5) we also infer that the y'% are nonzero because y¡ = 7, y for / = 1,

2.N-\. D

Lemma 2.4.  Given compatible data {p, y} the Lanczos algorithm of Theorem

2.2 computes the entries (a, ft) of a Jacobi matrix J characterized by the data {p, y}.

Proof.   First, we infer that the Lanczos algorithm computes the entries (a, ft) of

some Jacobi matrix / only if the value of ft(- computed in step 6 is never zero.   From

the compatibility of the data we infer that ft, > 0.  If ft,, ft2, . . . , bl_1 > 0 but

ft, = 0 for some I <N- 1, then step 7 implies

\, j

a, ft

i-\

i,/

'i.i
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for / = 1, 2, . . . , N - 1.  But this is impossible, for no matrix of order I < N - 1 has

N- 1 distinct eigenvalues.

Second, we will demonstrate that the numbers Y¡ -, computed by this algorithm,

form the entries of an orthogonal matrix Y.  That is, the rows of Y satisfy the ortho-

normality relations

N-\

(6) Z   Yi,kYj,k = 5«,,    for/= 1,2,...,/,
k=l

and 1 = 1,2,..., TV — 1.   From the compatibility of the data we infer that (6) is

true for 1=1.   If (6) is true fot i = 1,2, ... ,1, then the following argument demon-

strates that it is also true for /' = / + 1.  Clearly steps 6 and 7 imply that (6) is true for

f = I + 1.   For / < / step 7 implies that

JV-l j

Z    Yl+l,kYj,k = h
k=\ I

'7V-1

Z VkYi,kYj,k~ah¡•"bi-isi-u
fc=i

Since step 5 was executed, the right side of this equality is zero for /' = /.   The right

side of this equality is also zero for / < / because step 7 implies that

z vji.jj.k = z *i.*[*/-i *)-!,*+V7,*+vw - Vw+i-
k=l k=\

Third, we will demonstrate that the data {p, y} characterizes /.   It will be suf-

ficient to prove that the matrices /, Y constructed by this algorithm satisfy (1).  Step

7 implies that JY = YD if we can show that the numbers

YN,j - G*/ " ai)YN-i,j - bN-2YN-2,j

are zero for /' = 1, 2, . . . , N- 1.  The techniques presented in the previous paragraph

can be used to demonstrate that

Z YN,kY,,k=0    for/=1,2,..., A-1.
fc=i

Since the rows of Y form a real, orthonormal basis for R^-1, we infer that

YNJ = 0    for/'= 1,2, . . . ,N- 1. D

Lemma 2.5. Each set of compatible data characterizes at most one Jacobi matrix.

Proof.   Let /be any Jacobi matrix characterized by the compatible data {p, y}.

Then yx,y2, . . . ,yN_i are the first components of a set Y,, Y2, . . . , YNj of

real, orthonormal eigenvectors of / corresponding to the eigenvalues pi,p2,...,pN_l ■

If Y denotes the matrix whose /th column is Y-, then Y is an orthogonal matrix and
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JY = YD,   where D =

0 "%-i_

We will now prove that the entries (â, ft) of / are identical to the entries (a, ft) of the

Jacobi matrix / computed by the Lanczos algorithm presented in Theorem 2.2.

The entries Y¡ ¡ of Y satisfy the orthonormality relations

N-l

z
fc=l
Z   Yi,kYj,k=t>ij    for«,/=1,2, ...,A-1,
fc=i

because YYT = I.  The entries Y¡ ■ of Y also satisfy the recurrence relation

St-i Yi-uj + StYu + Btfi+U¡ = P¡YU    for i, j = 1, 2, . . . , N - 1,

with

<V 0   and    YN,/ = 0    for/= 1,2,..., TV-1,

because /F = F£). When the recurrence relation is multiplied by Y¡ • and the result is

summed over /, we find, using the orthonormality relations, that

¿v-

z
k = \

äi=   Z   ̂ kYlk-

The recurrence relation also implies that

o      _ 1
1+1,/ [(¡ij - âf)Yu - ft,-_, Y^hj]    for / = 1, 2, . . . , N - 1,

and, when this identity is squared and the result is summed over /, the orthonormality

relations imply that

In-\

\=y z
k=\

[(Mfc-W,*-*,-!^.!,*]2.

Starting with the fact that Yi, = y, for / = 1, 2, . . . , N - 1, it is easily shown, by

following the sequence of computations presented in the Lanczos algorithm of Theorem

2.2, that the entries (â, ft) of/ are identical to the entries (a, ft) of/.   D

The statement and proof of Theorem 2.2 certainly would not surprise anyone

familiar with this branch of linear algebra.   Lemma 2.1 was presented because it con-

tains the important identity (5).  Lemma 2.2 was presented because it demonstrates

that, given compatible data, the Lanczos algorithm cannot prematurely terminate by

producing a b( in step 6 which is zero, a point not mentioned in the paper by Bo ley

and Golub [2].  Lemma 2.3 was presented because it shows how one could have de-

duced the Lanczos algorithm from the eigenidentity

JY = YD.
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Indeed, by using Lemma 2.3 as an outline, it is possible to deduce the generalization

of the Lanczos algorithm needed to solve the inverse eigenvalue problem posed by

Boley and Golub [2].  Interestingly enough, the generalization so derived is not the

block Lanczos algorithm Boley and Golub use to solve their inverse eigenvalue problem.

We have chosen to characterize a Jacobi matrix / by the data {p, y} for two

reasons.  First, this characterization makes it possible to simply describe an algorithm

which solves the inverse eigenvalue problem for periodic Jacobi matrices.  Second, this

characterization makes it possible to generalize Definition 2.1 and Theorem 2.2 to the

same class of band matrices considered by Boley and Golub [2].

The Lanczos algorithm of Theorem 2.2 can also be used to solve the inverse eigen-

value problems considered in [4], [11], [12].   Recall that co7 is the characteristic

polynomial of the Jacobi matrix / obtained from / by deleting the first row and col-

umn.  Given the eigenvalues of / and /, we can recover the data {p, y} characterizing

/ from the identity

wjiPj) = u'jip^yf    for / = 1, 2, . . . , N - 1,

derived from (4).

It is worth mentioning that each y. in the data {p, y} characterizing / is unique

to within a sign.  For if F- is an eigenvector of/ corresponding to the eigenvalue p-,

then so is -F,.  Consequently y- may be taken to be either +F, ■ or -F, -.  More

precisely, we may say that there is a one-to-one correspondence between the set of

Jacobi matrices / and the set of compatible data {p, y} having each y. positive.

3.   Spectral Properties of Periodic Jacobi Matrices.   In this section we will con-

sider the spectral properties of the periodic Jacobi matrix

,    where b¡ > 0 for i = 1, 2, . . . , N.

Throughout this section we will use / to represent the Jacobi matrix obtained by de-

leting from L the last row and column.

Observe that / is a real, symmetric matrix.  Consequently L has real eigenvalues

and a corresponding set of real, orthonormal eigenvectors [16], [17].  Let z be an

eigenvector of / corresponding to the eigenvalue X.  From the eigenidentity

Lz = Xz,

we infer that the components z;. of z form a nontrivial solution of the recurrence re-

lation (ft0 = ft^)

¿>,_i Vi + ai2i + bizi+i = *zi    for i = 1, 2, . . . , N,

N-l
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which satisfies the boundary conditions

Z7V=20      and     ZN + 1  =Z\-

By analogy with Floquet theory, which analyzes the analogous problem for ordinary

differential equations [14], let us consider the nontrivial solutions of this recurrence

relation which satisfy the boundary conditions

zN =pz0    and   zN+1 = pzx.

Here the parameter p is called the Floquet multiplier of the solution z.  When p = 0

there are no nontrivial solutions, while for p =£ 0 a nontrivial solution exists if and only

if X is an eigenvalue of the matrix

With these facts in mind let us introduce the following

Definition 3.1.  Let the / be characterized by the data {p, y} and have Wj as its

characteristic polynomial.  Then the Floquet multipliers p,, p2, . . . , pAf_, of L cor-

responding to p.,, p2, . . . , pN_¡ are the numbers defined by the relation

(7) bxb2---bN= -PjJj(p.¡)b2Ny2    for / = 1, 2, . . . , N - 1.

Some of the interesting spectral properties of L   are described in the following

(8)

Theorem 3.2.  The characteristic polynomial of L   admits the representation

1det(X/-/p) = ft,ft2 •• -ft^AÍA)-    p +

where A, called the discriminant of L, is independent of p.   The Floquet multipliers

p,, p2, . . . , pAr_, of L corresponding to the eigenvalues p.,, p2, . . . , pN_¡ of J

satisfy the relation

(9) Aijup = Pj + 1/p.   for] = 1, 2, . . . ,N- 1.

Furthermore, the eigenvalues X,, X2,. .., X^ of L are real and can be ordered so that

X, > X2 > X3 > X4 > X5 > . . . .

Proof.   Using elementary properties of determinants, it is not hard to demonstrate

that

±àei{\I-Lp)=-bïb2---bN(\-^
dp
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When both sides are integrated with respect to p, we find that

d*QJ-L) = b1b2---bN   A(X)-   p +

Of course, the constant of integration ft,ft2 ... bNA(\) is necessarily independent of p.

Let / be characterized by the data {p, >}.  Then yl ,y2, . . . ,yN_¡ are the first

components of a set F,, F2, . . . , YN_} of real, orthonormal eigenvectors of/corre-

sponding to its eigenvalues p,, p2, . . . , PN_X.  Let Y¡ • denote the rth component of

F-.   From the definition (7) of the Floquet multipliers and the identity (5), we infer

that

Jn i^v-i,/    for/=1>2)
DN * \,j

.,N-\,

and so

"/
for/= 1,2, 7Y-1.

Consequently p;. is an eigenvalue of Lp. for / = 1, 2, . . . , N - 1, and we infer from

(8) that (9) is true.

From the definition (7) of the Floquet multipliers, we deduce that

co'j^p^O    for/=1,2, ...,N-l.

When the eigenvalues p.,, p2, . . . , MJV_, of / are ordered so that p, > p2 > • ■ • >

Mat-i ' we infer from (9)tnal

(-l)>A(pj)>2    for/ = 1,2,..., N- 1,

because the magnitude of p + 1/p is never less than two.  Consequently the eigenvalues

X,, X2, . . . , Xjy of /, which are the roots of A = 2, are real and can be ordered so

that X, > X2 > X3 > X4 > X5 > • • ■ , because the coefficient (ft,ft2 ■ ■ ■ ft^)-1 of X

in A is positive. D

A typical discriminant of a Jacobi matrix / of order N = 6 is illustrated in Fig-

ure 1.  In this figure we have depicted the relationship between the eigenvalues X,,

X2, . . . , \N of / and the Floquet multipliers p,, p2, . . . , piV_1 of/ corresponding

to the eigenvalues p,, p2, . . . , pN_¡ of/.

Definition 3.3. (a)  The periodic Jacobi matrix L is characterized by the data

{A, B, p, p} if and only if

N

(I) A =a. + a, + aN>

(2)5 = ft,ft2 ---ft^,

(3) p,, p2, . . . , Pjv.j are the eigenvalues of /, and

(4) p,, p2, . . . , PN_t are the Floquet multipliers of L corresponding to p,,

p2, . . . , PN_!-
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2,

(b)  The data {A, B, p, p} are compatible if and only if

(1 ) A is a real number,

(2) B is a real, positive number,

(3) p,, p2, . . . , pAr_, are real, distinct numbers, and

(4) p,, p2, . . . , pN_x are real numbers which satisfy co'(p)p- < 0 for/ = 1,

. ,N- 1 with co(p) = (p-p,)(p-p2) • • • (p- pN_i).

¿en

Figure 1

Plot of a typical discriminant, N = 6

We feel justified in using the words "characterize" and "compatible" in this man-

ner because the following theorem is true.

Theorem 3.4. Data characterizing a periodic Jacobi matrix are compatible.

Furthermore, each set of compatible data {A, B, p, p} characterizes a unique periodic

Jacobi matrix L.   The entries (a, ft) of this periodic Jacobi matrix L are computed by

the algorithm :

i- bN = +V-^=i'l{Bipku'(pk)y,

2. yf = (\lbN) +V-(5/p/co'(p/)) forj = 1, 2, . . . , N- 1;
3. Recover the Jacobi matrix J characterized by the data {p, y};

4-  bN_x =B\bxb2 ■■ -bN_2bN;

5. aN = A - (a, + a2 + • • • + aN_l);

where co(p) - (p - p,)(p - p2) ■ • • (p-pN_x).

Proof. The proof of this theorem will be presented as a sequence of three lemmas. □
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Lemma 3.5. Data characterizing a periodic Jacobi matrix are compatible.

Proof.   Let the data {A, B, p, p} characterize the periodic Jacobi matrix /.

Clearly A is a real number and B is a real, positive number.  The p-'s are real, distinct

numbers since they are the eigenvalues of the Jacobi matrix /.  The definition (7) of

the p's makes it obvious that they are real, nonzero numbers which satisfy co'(ju)p- < 0

for / = 1, 2, . . . , N - 1 because co is also the characteristic polynomial of /. D

Lemma 3.6.  Given compatible data {A, B, p, p}, the algorithm of Theorem 3.4

computes the entries (a, ft) of a periodic Jacobi matrix L characterized by the data

{A, B, p, p}.

Proof.   The data {p, y} used in step 3 in the algorithm of Theorem 3.4 are com-

patible, therefore it is clear that this algorithm computes the entries (a, ft) of some

periodic Jacobi matrix L.  Let L be characterized by the data {Â, B, p, p}.  From steps

4 and 5 of this algorithm it is clear that A = A and B = B.  In view of Theorem 2.2

we know that / is characterized by the data {p, y}. Therefore p- = p. for / = 1,

2, . . . , N - 1, and from the definition of the Floquet multipliers we know that

B = -pjJip^bly2    for / = 1, 2, . . . , N - 1.

Step 2 of this algorithm therefore implies that p- = p¡ for / = 1, 2, . . . , N - 1. D

Lemma 3.7. Each set of compatible data characterizes at most one periodic

Jacobi matrix.

Proof.   Let L be any periodic Jacobi matrix characterized by the data {A, B, p, p}.

Let the Jacobi matrix /, obtained from L by deleting the last row and column, be

characterized by the data {p, y}. As pointed out at the end of Section 2, we may as-

sume that each y- is positive. We will now prove that the entries (â, ft) of L are identi-

cal to the entries (a, ft) of the periodic Jacobi matrix L constructed by the algorithm

of Theorem 3.4.

By definition the Floquet multipliers p,, p2, . . . , PAr_, of L corresponding to

px,p2, . . . , pN_,, satisfy the relationship

B = -pfJ(pj)bly*    for / = 1, 2, . . . , N - 1.

The sum of the squares of the y\ equals one because the data {p, y} is compatible,

therefore

N-l R
%2_V a.

bN~ kw^y

and

yf=-h2   B'      ,     for/=1,2,..., A-1.
'        b%p^ (p¡)

In view of steps 1 and 2 of this algorithm, we infer that bN = bN and y, = y- for

/ = 1, 2, . . . , N - 1.  Since / and / are characterized by the same data, Theorem 2.2

implies that / = /.  Finally, steps 4 and 5 of this algorithm imply that bN_A = br

and âN = aN. D
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Observe that Theorem 3.4 recovers the periodic Jacobi matrix / by first recover-

ing the Jacobi matrix/.  This idea was first proposed by van Moerbeke [15], although

his algorithm is known to be numerically unstable.  The algorithm presented in Theo-

rem 3.4 inherits its numerical stability from the stability of the Lanczos algorithm used in

step 3.

The algorithm presented in Theorem 3.4 is different from the algorithm proposed

by Boley and Golub [3].  In particular, Boley and Golub only consider recovering

those periodic Jacobi matrices characterized by data {A, B, p, p} for which |p.| + 1 for

/ = 1, 2, . . . , N - 1.  For example, their algorithm could not recover the periodic

Jacobi matrix

L =

4.  Periodic Jacobi Matrices With Prescribed Spectra.  With these basic facts estab-

lished let us now consider how we can characterize the family of periodic Jacobi mat-

rices whose eigenvalues are X,, X2, . . . , X^.

Let / be a periodic Jacobi matrix characterized by the data {A, B, p, p}.  Then

X,, X2, . . . , \N are the eigenvalues of L if and only if the discriminant A of L admits

the representation

A(X) = 2 + i(X - X,)(X - X2) ■ • • (X - \N).

Therefore the problem of characterizing the family of periodic Jacobi matrices with pre-

scribed spectra is intimately related to the problem of characterizing the family of

periodic Jacobi matrices with prescribed discriminant.

Definition 4.1.   For each polynomial p let Yip) denote the family of periodic

Jacobi matrices whose discriminant is p.

The problem of characterizing which periodic Jacobi matrices belong to Yip) is

answered in the following:

Theorem 4.2. Let p by a polynomial of degree N.   The data {A, B, p, p}

characterizes a member of Yip) if and only if

(1) the data {A, B, p,p} are compatible,

(2) p(X) = il/B) [\N - AX*'1 + lower powers of X], and

i3)pipf) = Pj + \lPjforj = 1, 2, . . . , A- 1.

Furthermore, Yip) is nonempty if and only if

(4) the coefficient of \N in p(X) is positive, and

(5) p has local extrema at N - 1 distinct points v, > v2 > ■ ■ ■ > vN_x with

i-\)>pivj)>2forj= 1,2, ...,A-1.
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Proof.   If the data {A, B, p, p} characterizes a member of Yip), then Theorems

3.2 and 3.4 demonstrate that conditions (1), (2), (3) are satisfied.  Now suppose the

data {A, B, p, p} satisfies (1), (2), (3).  Let A be the discriminant of the periodic

Jacobi matrix characterized by {A, B, p, p}. Now

q = A-p

is a polynomial of degree N - 2 because the coefficients of X^, \N~i in A(X), p(X)

are identical.  Theorem 3.2 implies that

qip,) = 0    for/= 1,2,...,A-1,

and so q = 0 because the only polynomial of degree A - 2 which is zero at A - 1 dis-

tinct points is the trivial polynomial.  Therefore, the data {A, B, p, p} characterizes a

member of Yip).

If Yip) is nonempty, then conditions (2), (3) and the mean-value theorem can be

used to demonstrate that conditions (4), (5) are satisfied.  Let us now suppose that p

satisfies conditions (4), (5).  Determine A, B so that

p(\) = t[\N -AX*'1 + lower powers of X],
B

and define p,, p2, . . . , pN_l to be solutions of

P(v,) = P, + —    for/= 1,2, ... ,A-1.
i        '     Pj

Then the data {A, B, p, p} are compatible and from (1), (2), (3) we infer that the data

{A, B, p, p} characterizes a member of Yip). □

Using Theorem 4.2, we can now characterize the family of Jacobi matrices having

X,, X2, . . . , \N as its eigenvalues.

Theorem 4.3.  The periodic Jacobi matrix L has\l,'K2, . . . ,\N as its eigen-

values if and only if

¿G   U  F(AB),
B>0

where

MX) = 2 + ¿(X - X,)(X - x2) • • ■ (X - XN).

Furthermore, there is a family of periodic Jacobi matrices with X,, X2, . . . , XN as its

eigenvalues if and only if the numbers can be rearranged so that X, > X2 > X3 > X4 >

X5 > . . . .

Parts of Theorems 4.2 and 4.3 appear in the work of van Moerbeke [15].  For

example, in Theorem 2.1 of [15] van Moerbeke parametrizes the family of periodic

Jacobi matrices having X,, X2, . . . , X^ as their eigenvalues provided there is at least

one periodic Jacobi matrix with these eigenvalues.

5.   Numerical Experiments.  We will now present the results of several numerical

experiments.   These experiments were carried out on a UNIVAC 1110 in single-preci-

sion floating-point binary arithmetic (27 bit mantissa) using FORTRAN versions of the

algorithms presented in Theorems 2.2 and 3.4.
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In the first experiment we tested the algorithm presented in Theorem 2.2.  The

results of this experiment are presented in Table 1.  Observe that this algorithm has

difficulty in recovering the Jacobi matrix described in Example 3.

Experiment 1.  Test the algorithm for Jacobi matrices.

1. Select a Jacobi matrix / of order A - 1.

2. Compute the data {p, y} characterizing / [17], [18] :

(a) use bisection to compute the p's and

(b) use inverse iteration to compute the y ¡'s.

3. Use the algorithm presented in Theorem 2.2 to reconstruct the Jacobi matrix

/ characterized by the data {p, y}.

4. Output the error ||/-/||, where ||^4|| = max(- \a¡ A.

In the second experiment we tested the algorithm presented in Theorem 3.4.  The

results of this experiment are presented in Table 2.  Observe that the Jacobi matrices

used in the examples of Experiment 1 are obtained by deleting the last row and column

from the periodic Jacobi matrices used in the corresponding examples of Experiment 2.

Experiment 2.  Test the algorithm for periodic Jacobi matrices.

1. Select a periodic Jacobi matrix L of order A.

2. Compute the data {A, B, p, p} characterizing L:

(a) A = a, + a2 + ■ • • + aN,

(b)B = blb2---bN,

(c) compute the data {p, y} characterizing / as described in step 2 of Ex-

periment 1,

(d) compute the p.'s using (7).

3. Use the algorithm presented in Theorem 3.4 to reconstruct the periodic

Jacobi matrix L characterized by the data {A, B, p, p}.

4. Output the error \\L -¿II, where \\A\\ = max^-la,.^.

Example 1:

Table 1. Results of Experiment 1

Ail) = -2 /=1,...,A-1

B(I)=l I=\,...,N-2

N Error

5 4 x 10~8

10 2 x 10-7

15 5 x 10-7

20 2 x 10-7

25 2 x 10-7

30 6 x 10~7
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Example 2:

Example 3:

Example 1:

AQ) = iN+ l-I)/N-2 7=1,...,A-1

Bil) = 1 - (A - I)/N 1=1,..., N- 2

N Error

5 4 x 10~8

10 1 x 10"7

15 4 x 10"7

20 3 x 10~7

25 3 x 10"7

30 9 x 10"7

Ail) = I/N - 2 I = 1, . . . , A - 1

B(l)=\-I/N 1=1, . . . ,N-2

N Error

5 1 x 10-7

10 3 x 10-7

15 2 x 10^

20 2 x 10°

25 2 x 10°

30 1 x 10°

Table 2. Results of Experiment 2

Ail) = -2 / = 1.N - 1

£(/)=l 1=1,..., A- 2

/1(A) = 0

B(N- 1) = 5(A)= 1

A Error

5 9 x 10~8

10 5 x 10"7

15 1 x lu"6

20 2 x 10-6

25 3 x lu"6

30 5 x IQ"6



1218 WARREN E. FERGUSON, JR.

Example 2:

A(I) = (N+l- I)IN -2 1=1,-A-l

B(I) = 1 - (A - I)IN 1=1,..., N- 2

AiN) = 0

B(N- 1) = 5(A)= 1

N Error

5 1 x 10"7

10 2 x 10~7

15

20 3 x 10-7

25 6 x 10-7

30

Example 3:

4 x 10~7

3 x 10-7

6 x 10~7

4 x 10~7

A(I) = I/N-2 1=1,..., A-l

B(I)=l-I/N I=\,...,N-2

AiN) = 0

B(N- l) = B(N)= 1

A Error

5 4 x 10~8

10 1 x 10~7

15 1 x lu"3

20 2 x 10°

25 4 x 10°

30 5 x 10°

In both of these experiments we have not worked with matrices of order A

greater than thirty.   In Example 2 of Experiment 2 some of the components of y in

the data {p, y} characterizing / become smaller as A increases.   For example, the

smallest component of y changes from 0(1O~9) for A = 15 to O(10~2°) for A = 30.

Since the Floquet multipliers p- depend on the squares of the corresponding >';-, we

would therefore run into underflow problems.  The immediate remedy for this under-

flow problem is to compute the logarithms of each p- instead of p .  However, under-

flow also occurs in the computation of the yfs when A is greater than fifty-five.

6.  Comments.   It is interesting to note that the Lanczos algorithm of Theorem

2.2 is used in some versions of the implicit shift QR algorithm [16].  These versions

of the QR algorithm make use of the fact that if B = QAQH, where B is an unreduced

upper Hessenberg matrix and Q is a unitary matrix, then the entries of B and Q are

uniquely determined from the entries of A and the entries in the first row of Q.  In

our application we have A = D, Q = F, and B = /!
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We can also recover the Jacobi matrix / from the eigenvalues and the last com-

ponents of the corresponding real, orthonormal eigenvectors of/.   To understand why

let us consider the permutation matrix

0

S =

We find that S2 = /, therefore from (1) we deduce that

iSJS)(SY) = iSY)D.

Consequently the algorithm presented in Theorem 2.2 states that the entries of

SJS

*N-1

'JV-l

can be recovered from the entries of D and the entries in the first row of SY, that is

the last row of F.  There is also an identity analogous to (4) which relates the elements

in the last row of F to the eigenvalues of / and the eigenvalues of the Jacobi matrix

obtained from / by deleting the last row and column.  This identity is easily obtained

by comparing the entries in row A - 1, column A - 1 of (2).

The paper by Golub and Welsch [10] outlines how one can modify the usual QR

algorithm and directly compute the data {p, y} characterizing a Jacobi matrix /.   This

paper is also important because it presents a matrix version of the celebrated Gelfand-

Levitan solution to the inverse eigenvalue problem for a class of Sturm-Liouville

problems.

The paper by Kammerer [13] describes an algorithm that can be used to con-

struct a discriminant whose "shape" is prescribed.  By the "shape" of a discriminant

we are referring to the value of the discriminant at each of its real, distinct local extrema.

For applications of Kammerer's algorithm we refer the reader to the forthcoming paper

[5].
Useful information concerning properties of periodic Jacobi matrices is contained

in [1 ], [9]. We would also like to state that the analysis presented in Section 3 can be ex-

tended in the same generality to "antiperiodic" Jacobi matrices of the form
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,    where ft. >0 for i= 1,2, ... ,A.

i      - jv iv—i it
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