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On Factoring a Class of Complex Symmetric Matrices

Without Pivoting

By Steven M. Serbin*

Abstract.   Let A = 8 + iC be a complex, symmetric n X n matrix with 8 and C each

real, symmetric and positive definite.   We show that the LINPACK diagonal pivoting
—1        —1  T

decomposition  U     A(U     )     = V   proceeds without the necessity for pivoting.    In

particular, when B and C are band matrices, bandwidth is preserved.

In this brief note we wish to investigate the problem of solving the linear system

(1) kz = ft,

where A is a complex, symmetric (A = A ), n x n matrix and z, ft G C".   In general,

such systems do not admit simple methods like Cholesky factorization without pivot-

ing, as would be the case for A positive definite real symmetric or complex Hermitian.

The best currently available scheme is a version of Bunch's diagonal pivoting method,

(for symmetric indefinite systems), which may be found in LINPACK (cf. Chapter 5

of LINPACK guide [3] for details).  The essential step at each stage of the elimination

is the choice of either 1 by 1 or 2 by 2 blocks for the purpose of pivoting for numeri-

cal stability.   Bunch et al. [1], [2] discuss various complete and partial pivoting

strategies.

For certain applications, in particular one arising in the use of the (2, 2) Padé

method for the solution of certain systems of ordinary differential equations [4], A

has additional structure which we would like to exploit to expedite the solution of (1).

Namely, we will assume that

(2) A = B + iC,

where B and C are both real, symmetric, positive definite.   Further, for the particular

application in mind, B and C are also band matrices.

The point in question here is the necessity of row/column interchanges in the

pursuance of the diagonal pivoting method.   Bunch and Kaufman [1] discuss the situa-

tion for band matrices; they report that when the bandwidth is greater than five, if 2

by 2 pivots are required, then the bandwidth is not preserved.  On the other hand, if

symmetry is ignored, then bandwidth may be preserved, but only at the expense of

doubling storage. We show here that in our case, no pivoting is required in the LINPACK

algorithm, hence bandwidth will be preserved.  Our analysis can be modified easily to

treat the usual LDLT decomposition.
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The LINPACK algorithm seeks to produce a factorization

<3) IT1 MU-l)T = V,

where U is the product of upper triangular block "elementary eliminators" and permu-

tation matrices and V is a symmetric block diagonal matrix with 1 by 1 or 2 by 2

diagonal blocks.  The elimination works from the last column to the first, rather than

as in a standard Gaussian elimination.  At an intermediate step, the working matrix is

of the form

(4)
0

0

Dh

Ak being symmetric and ik by k), Dk symmetric, block diagonal (n - k) by (n - k).

The decision on how (and whether) to pivot first rests on a comparison of Xfc =

max1<<k_j \iAk)k\, the largest off-diagonal element in the last column of Ak, to the

diagonal element.   For complex z, the algorithm uses \z\ = |real(z)| + |imag(z)|.  Spe-

cifically, if

(5) \(Ak)kk\ > a\k       (a = .6404),

then no interchanges are required and a 1 x 1 block elimination is used.

Since B and C are positive definite, at the first step ik = n), clearly the condition

(5) is met (it is true with a = 1).   Hence the elimination proceeds without interchange.

If we can show that the (n - 1) by (n - 1) matrix A n_1, obtained from the elimina-

tion step, inherits the property that its real and imaginary parts are positive definite,

then an induction shows that the entire algorithm may proceed without any inter-

changes.   Since we shall only investigate one elimination step, the subscripts may be

abandoned.  The technique modifies an argument found in Wendroff [5].

Since no pivoting is required at the first step, we can write

(6) A =
bT    *\'

d = a + ir,      o,t > 0,

with

(7)

and

(8) a = a + iß.

The elimination is performed by letting

(9) m = -<r' a,

and

(10) u =
7        ml
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so that

(11) UAU1

Our main result is stated as

B - mdmT        0

0 d

Theorem .  Under the conditions stated on A, the matrix B - mdmT in (11) has

real and imaginary parts both positive definite.

Proof.   Write B = S + iT   S and T themselves are positive definite, being princi-

pal submatrices of positive definite matrices.   By direct computation,

.r_

(12)
mdm1 = {[oiaa1 ~ßß') + r(pV + aß)]

+ i[aißaT + of) + rißßT - aaT]}lia2 + r2).

It suffices (due to the symmetries S <—+ T, a •<—► (3, o «—»• t) for us just to investigate

the real part of B - mdmT.   Let x G R"-1 be arbitrary (x j= 0).  Now, for any % G R,

(13)

or in scalar form

(14)

or

(15)

[xr|]

Ta a
>0,

0<  Z  siixtxj + 2^aixi + oe,
<',/'= i '-i

n-\ n-l

"2| Z   «/*/ -°? <   Z W/-
i=l i,/=l

Now, from (12), if Q = Re{B - mdmr}, then

i n-l

ia2 + r2yxTQx = I £   [(a2 + r2>0 - oía,-«,- - 0$) - r(^. + aßj)]xtKj

(16) > (ff2  + T2) rv¿a,.*,.-ffi;2i

-X   Ka^.-^O + T^. + a^.)]^.,   by (15).
í,/=i

Now, if we abbreviate I,"Z¡ a¡x¡ = /u, £"=J 0¿x;- = i>, we have

(o2 + r2)xrßx > (a2 + r2) [-2&U - o%2] ~ [o(ju2 - v2) + 2tH

= -(a2 + r2)aU + O-Y + ^irp - av)2.

(17)
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Choosing £ = -p¡a, we have that for all x # 0,

(ff2 + t2)xtQx >-irp- ov)2 > 0,

which completes the proof.
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