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Numerical Stability of Nested Dissection Orderings

By Indu Mati Anand

Abstract.   Rigorous bounds on rounding errors for sparse positive definite matrices are

obtained.   When used for nested dissection orderings of finite element matrices, the

analysis furnishes bounds which are stronger than those for band orderings.

1.   Introduction.   It is the purpose of this paper to obtain rigorous bounds on

rounding errors associated with sparse positive definite matrices, particularly those

associated with nested dissection orderings of finite element matrices, and to compare

these bounds with those obtainable for band elimination. Nested dissection was intro-

duced by George [6] for regular n x n grids and later generalized by Birkhoff and

George [2], and by George [8] to any grid.  These methods provide very efficient

orderings for the Cholesky factorization of linear systems

(1.1) Ax = b,

arising from a finite element discretization of two-dimensional boundary value problems.

It has been shown that nested dissection is an optimal strategy, in the sense that we

cannot reduce the arithmetic and storage requirements, by an order of magnitude, by

any other ordering of such a system; see, Hoffman et al. [11]. This has led to the

conjecture, see Birkhoff and George [2], that nested dissection ordering may be

accompanied by a smaller accumulated round-off than band elimination.  Our analysis

shows that indeed to be the case.

Backward error analysis, as applied to Gaussian elimination, seeks to establish

bounds for \\E\\, for some norm ||-||, where E is the perturbation matrix such that the

computed triangular factors L and U of A satisfy

LU=A+E.

For a specific ordering of the rows and columns of A, L and U are obtained by the

well-known recursive procedure:

Let A{1) = A, and denote by af} the elements of A<-k\  Define A{k+l) for k =

1, 2, . . . , n, by

(1.2a) -?+1)-4*)-,^)'      Ui>k>
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where

(1.2b)

(1.2c)

For all other values of / and j

(1.2d)

'ik      aik lukk>

a)(fc+i)
fft

0,      i > k.

(k+i)=a(k)
i¡ V

After the completion of the kth major step, which results in the generation of

the first k columns of L and the matrix A^k+ l', we obtain the incomplete factorization:

lu ¿i:

A2     •^22-

^11

AT [j'1L/112t/ll 'n-kJ

"ll      ^11^12

0     A2k2+1\

where the matrix on the left-hand side is a block form of A with A x l of order k, and

the second matrix on the right that of A^k+1\  Further,

-" 11 = ^ 11 " 11 '

and the submatrix A2k2+1\ known as the Schur complement, is defined by

A(k+l) _  a      -aTtj-It-Ia       -a      -at  a-\a
^22 ^22      A\2U\11 1^12       ^22      A\2A\\A\2-

If A is positive definite, then we can take advantage of symmetry by using the

Cholesky algorithm, which produces the factorization A = L LT in about half as many

operations as Gaussian ehmination.

The accumulation of round-off errors is related to the growth of the elements of

the reduced matrices, as the following lemma given by Widlund [14] shows.

Lemma 1.   Let the matrix A be factored, according to the formula (1.2) on a

t-digit, base ß computer using floating-point operations.   Then the computed triangular

matrices L and U satisfy

LU = A+E,

where the element e/;- of the error matrix E satisfies

(1.3)
m in (/,/')

< e     ¿     |aifc)

fc=2
'/

min(i',/)

a(;-')| + e(l + e)    £*    \afkK
k=2

Here e, 01-f/2 < e < ß1~t, is a machine-dependent constant and 2* denotes the sum

over the values ofk, for which the (z, j)th element of the intermediary matrix A^k~^

undergoes a change at step k - 1.

Lemma 1 is an improved version of a result proved by Reid [13], which itself

extends a result of Wilkinson [15]. We note here for future reference that Lemma 1

holds also for Cholesky decomposition and is well suited to applications where A is

sparse.
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If the norm of E is acceptably small compared to that of A, then the decompo-

sition of A is said to be stable. The method defined by (1.2) is known to be stable

for a positive definite symmetric matrix.

Thus, \\E\\ provides a satisfactory basis for a comparison of the stability properties

of the various methods of factorization.

Although nested dissection has been the subject of much analysis and many

experiments to compare it with the other methods, we know of only one study of its

stability properties.  Birkhoff and George [2] compared the stability properties of

nested dissection and band elimination, and presented some arguments which suggest

that for a subclass 4 of weakly diagonally dominant matrices, called S-matrices, [A E. ¿,

<=> a.j < 0 for / =£ / and 2;. a¡ ¡>Q for all i], nested dissection is at least as stable as

band-ehmination.

In Section 2 we carry out backward error analysis for general sparse, positive

definite, symmetric matrices.  In Sections 3 and 4 we establish error bounds for row-

by-row and nested dissection orderings of two-dimensional finite element problems

and show the superiority of nested dissection.

We find that when the matrix in (1.1) is generated by the conventional row-by-

row ordering of the unknowns in an n x n grid, then the l2 norm of the perturbation

matrix E satisfies

||£||2 < en2 G \\A \\2,   where LLT = A + E.

Here c is a constant. We also show that we cannot generally expect to reduce the ex-

ponent in the factor n2 in this estimate.

The analysis of Section 4 shows that for nested dissection orderings we have

LLT = A+E,   where \\E\\2 < Clns'5 G ||^||2.

These results are proved for simple n x n grid problems in this paper.   However,

the proofs extend with only slight modifications to the nested dissection partitioning

of graphs relating to the class of two-dimensional finite element problems described by

George [8].

It has become increasingly evident that the usefulness of the dissection ideas is not

limited to complete nested dissection.  The one-way dissection given by George [5],

and the incomplete nested dissection by George et al. [10], are useful variants of the

method. The use of these methods for certain indefinite problems is examined in

Anand [1], where dissection again appears to improve the numerical stability of com-

puted solutions.  We may also note here that the method of dissection is available for

arbitrary grids.  George and Liu [9] have developed an automatic algorithm for an

economic generation of partitions based on heuristic considerations. They aim to find,

at each step, a small separator set which disconnects a graph into two or more com-

ponents of approximately equal size. More recently, Lipton, Rose and Tarjan [12] have

designed an algorithm, which partitions any n-vertex planar graph G into three sets .4,

B, C, where C separates A and B, \C\< 2\/2\Jn and \A\ and \B\ do not exceed 2n/3.
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2.  Error Analysis of Sparse Matrices.  We now extend to sparse matrices the

rigorous backward error analysis carried out by Wilkinson [16] for dense positive defi-

nite symmetric matrices.  He proved the following theorem:

Theorem (Wilkinson). If A is a positive definite floating-point matrix of

order A > 10, then, provided that

>20N3>22 fl\\A\\2,

the Cholesky factor L can be computed without breakdown and the computed L satis-

fies

LLT = A+ E,   where \\E\\2 < 2.5 A3/22~fl|Hli2.

Here tx—t- log2(1.06)/or t-digit binary arithmetic.

He showed, furthermore, that since aNN is involved in A independent operations,

the factor N3¡2 cannot be improved upon in a significant way.

If A is a highly sparse matrix, then it is possible to improve the above bound,

since a typical element in the matrix is only operated on a few times.  Lemma 4 will

show that the bound on the norm of the error depends mainly on a, the maximum

number of nonzero elements in a row of L + LT.

We shall need the following result on Cholesky factorization in exact arithmetic,

which we quote without proof; see Wilkinson [ibid.].

Lemma 2.   Let A^ be a positive definite matrix of order N and Z/1* be its

Cholesky factor so that A(1) = Z,(1)(I(1))r, and let

A(D =
MV    <

A(2)
¿0) =

'11 0

¿<2>

where B™ = ¿(2>(Z,<2>)r = A™ - I&

Then

(i) B^ is positive definite,

(ii)  ||5(2>||2<|M<2>||2<||^(1)||2,anrf

(iii)   11/,/fHj = Itf!Iß = HfliHlMV < IM1(2)||2 < ||¿(1)

We assume now that for the actual computations floating-point arithmetic of
A-t

relative accuracy ß     1 is used on a base ß computer.  When chopping arithmetic is

used, t1 = t, the number of significant digits in the mantissa, while tx is a nonintegral

number greater than r, when rounding arithmetic is used.  Thus, we assume that the

floating-point basic operations satisfy

fl(jc ®y) = ix ®y)il + error),

where lerrorl < ß      1 and © represents addition, subtraction, multiplication or division.

We further write e = aß      1, where a > 0 is a parameter close to unity.  It is con-
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venient to replace quantities such as (1 ± ß ~ 1)k, which appear in extended computations,

by 1 ± kß ~ 1, and the parameter a is intended to allow for the second-order effects,

which are ignored in such a replacement. Wilkinson [16], for example, chose the value

a = 1.06 under the assumption

kß1"'1 <0.1.

We shall also use quantities like e¡-, tk- to denote actual errors introduced in a computa-

tion.  These quantities satisfy

(2.1a) Ifyl < e,

and

(2.1b) It?,/! < 2e.

We also assume, following Wilkinson [16], that the magnitude of relative error intro-

duced in a square-root operation is at most 2 e.

We shall now consider the effect of round-off on Cholesky decomposition, and

prove first a result on the growth of elements.

Lemma 3.   If A is a symmetric, positive definite, sparse floating-point matrix of

order N > 10, then, provided that

(2.2) Amin - —7— > 20Aa1/2e|UI!2,
, mm       u-l\^

the Cholesky factor L of A can be computed in single-precision arithmetic without

breakdown.  IfB^ denotes the computed Schur-complement oforder N- k + 1, then

(2-3) ||*(*>||2 < [1 + eia1'2 + 2.2)]k-1\\A\\2,

where a is the maximum number of nonzero elements in a row of L + LT.

Proof.   As we see below, the condition (2.2) will ensure that the matrices B^

are positive definite. Since M_1||2||j4||2 > 1 for any A, we must have

(2-4) 2Aa1/2e<0.1.

In order to evaluate the role of sparsity, we shall first obtain bounds ignoring sparsity

in the manner of Wilkinson [16], and make adjustments for it subsequently.

Now consider the computation of the first column of Z/1' and the Schur-comple-

ment B^2' for the matrix A = A^l\   Let F^ be the error matrix associated with the

computation of the first column of Z/1* and E^1^ be that associated with the compu-

tation of L^1' and B^2\  Using the notations of Lemma 2,

Zn =fl[sqrt«<\>],

which gives

/21=a<V(l+2e(1V),
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and

/,, = fi
4í}
„(1)
"ll

,(1)
'il

"ll

Thus, Zn and lx are exact for the matrix^(1) + F^, where/<}>= 2*5I1V111),/}JÎ

= /(i) = a(i)e(i) /O) = 0 otherwise.  This gives \\F^\ <|||F(1>|||2 <2e||L4|||2

< 2N 1/2e||.4(1)||2.  The condition (2.2) then ensures that .4(1) + F(1) is positive

definite, so that it follows from Lemma 2 that

(2.5) Z,||f < \\A^ + F^\ < (1 + 27V1/2e)|M(1)|L,

where now /j denotes the computed vector lv

The elements of B^ are given by

ft<2> = fKa^ - I.A..) = a0)(l + e</>) - /.,/, .(1 + tjÇ.1))
i/ v ¡/ il  Ip        t]   v i/   '       il  l/v 'ij   '

i/  v        i/ ii 1/'i/        i/i/

Thus, the computed Z.O and 5^2^ are exact for the matrix A^ + E^, where the

elements of E^ are given by

e(i) = 2flO)e(i)       g(i) = e(i) =fl(i)een       zan fcn '       eii       en       "il Si'

i/ 1/   ei/        'il'l/77//   '       lA* L,

and satisfy

|e(/1)|<e|a(/1)| + 2e|/.1/1/|,      /,/*l.

Hence, using (2.5),

H^^llj < || |F(»)| ||2 < 2e|| Ul<»| ||2 + 2e|l/1||2

<2eNils\\A<-t% + 2e(l + 2A1/2e)IM<1>||2

= 2e(A1/2 + 1 +2A1/2e)||/!(1>||2,

so that using (2.4), we certainly get

(2.6) IIF(1)II2 < 2e(A^1/2 + l.l)!^*1)^.

If G^ is the matrix E^ with its first row and column deleted, then

IK?(2>||2 < || |G<2>| ||2 < e|| |^2>| ||2 + 2e!!'!||2

<Zv'1'2e||i4<2>||2 + 2e(l + 2A1/2e)||^(1>|l2.

Now from Lemma 2,

||5<2>||2<||,4(2> + G(2)||2,

so that by the above estimate for ||G^2^||2,

ILB<2>||2 < |U(2)||2 + ||G(2)||2

< \\A(2)\\2 + Nll2e\\A<-2\ + 2e(l + 2A'1/2e)||.4<1>||2
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or, using (2.4) again,

(2.7) ||£(2>||2 < {1 + eiN1'2 + 2.2)}|U(1>||2.

Proceeding in the same way to obtain the /cth column of z/fc) and the Schur-comple-

ment 5(fc+1> from B(k), we shall find that they are exact for a matrix fi(fc) + F(fc),

where

(2.8a) HF(fc)||2 < 2e{(A - k + I)1'2 + l.l}||5<fc>||2,

and

(2.8b) H5(fc+1>||2 < [1 + e{(N-k + 1)1/2 + 2.2}]||5<*>||2.

The formula (2.8b) used recursively for A: — 1, k — 2,. . . , 1, will, in conjunction

with (2.7), give

||fi(k>||2 < [1 + eCA1'2 + 2.2)][1 + e((A- l)1'2 + 2.2)]

• • • [1 + e{(N-k + 2)1/2 + 2.2}]||.4(1>||2.

This certainly gives

(2.9) II5(*>II2 < [1 + eiN1'2 + 2.2)]fc-1||^(1)||2.

In the case when it is known that L has no more than a nonzero elements in a

column

IIF(1)||2<|||F(1)|||2<2e|||5(1)|||2,

where, as before, F^ is such that the first column of L^ is exact for A^ + F*1*,

and S^ is the submatrix oí A, obtained by deleting from A all rows /' and columns /

such that a;i, a1- = 0.  Since the order of S^ is no more than a, and S^ is a

principal submatrix of A^l\

||pS(1>|||2<a1/2||S(1)H2<a1/aIU<,>tl2.

Therefore,

||F(1)||2<2eaI/2IU(1)||2,

and instead of (2.5), we shall have

||/,||2<(1 +2a1/2e)IM(1>||2.

Further, in the computation of B^2\ we observe that if either an or at/- equals zero,

then lnli} = 0, so that in that case 6Í2) = aj1* and e\p = 0.  It follows that F(1)

has no more than o nonnull rows and columns, and

llalla < || |F<»)| ||2 < 2e|| I5(1)l ll2 + 2611/!|||,

or

||F<% <2e(a1'2 + 1 + 2a1/2e)M(1>||2 <2eia1'2 + \.\)\\A^\.
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Similarly (2.7) can be replaced by

||fi(2>||2<{l +e(a1/2 + 2.2)}|!^1>||2,

and (2.8a) and (2.8b) can be replaced, respectively, by

(2.10a) ||F<fc>||2 <2e{a1/2 + l.l}||fi(*>||2,

and

(2.10b) l|5<fc+1>||2 < [1 + e{a1/2 + 2.2}]||£(k)||2.

Finally, in place of (2.9), we shall obtain

\\B^\\2 < [1 + eio1'2 + 2.2)]fc-1IM(1)ll2,

which completes the proof of the lemma.

Under the condition (2.2), (2.3) gives the following bound

\\&N\<c\\A\\2,

where c is a constant no more than 1.18.

The above analysis also furnishes a bound for the norm of the error matrix which

is of the order of No1'2. A more satisfactory bound is obtained in Lemma 4 by using

Lemma 1.

When A is sparse, L will typically contain more nonzero elements than the lower

triangular part of A.  This phenomenon is known as the "fill" suffered by A.   To

understand how this fill takes place we return to the formulas (1.2).  If at the first

step of the algorithm an and a1- are nonzero while af;- is zero, then aj2' will be non-

zero.  In the following steps this can lead to a propagation of fill.  We may note here

that aifc\ /', / > k, might be zero, even if a{k~^ differs from zero.  However, exact

cancellation rarely occurs and we may disregard such accidental creations of zeros. We

shall always assume that if a[k~ ^ =£ 0, then so is a a^.P', p > k.

Furthermore, the (/', ;)th element will not change at the kth step, unless a^k) is

different from zero.  Therefore, if accidental creation of zeros is ruled out, then the

number of times the (/', /)th element changes will be no more than the number of non-

zeros in the sequence a[\\ a^2), a^3), . . . , a^m.\ where m = min(/' - 1,/ - 1).

Lemma 4.  If A is a symmetric, positive definite, sparse floating-point matrix

of order N > 10, and

\min>20Nol'2\\A\\2,

then the computed Cholesky factor L of A is exact for a matrix A + E, where

(2.11) \\E\\2 < 3e[l + eio112 + 2.2)]N^lo2\\A\\ 2-

Proof   Since the number of times the (/', ;')th element changes during the elimin-

ation process is no more than the number of nonzeros in the sequence a\V, a^),
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a33\ . . . , a^\ where m = min(i - 1,/ - 1), and a is the maximum number of

nonzeros in a column of L + LT, no element undergoes more than a - 1 changes.  Let

a« denote the exact number of changes suffered by the (/', ;')th element.

From Lemma 1, we find that the elements e« of E = 2 F ^ satisfy

min(/,/) min(/,/)

ItyKe    Z     l^-^-^l + eO+e)    £*    \a\k\
k=2 k=l

Clearly, if the (/', ;')th element undergoes change o* times, then from the above esti-

mate, we get

|e„| < 3eaijp,   where p = max laj^l.
hl, k

Consequently,

(2.12) ||F||2 < 3ep max £fy,
'    i

and therefore,

(2.13) ||F||2 < 3ea2p,

since the 2-norm of F is bounded by the sum of its elements in a row and there are

no more than a nonzero elements in any row of F, assuming that no zeros are created

during elimination by cancellation.

But

p < max||5<k)||2 < [1 + eio1'2 + 2.2)fr-1|MII2
k

from Lemma 3.  Hence from (2.13), we get

||F||2 < 3e[l + eio1'2 + 2.2)fr-1a2M||2,

which is the result of (2.11).

As an immediate corollary of Lemmas 3 and 4, we can prove the following

Lemma 5.   Z/^4 is a symmetric, positive definite bandmatrix of order N > 10

and bandwidth m = maxa..^0|/ -/I, and if

Xmin =     ^      >20Am1/2e|UII2,
ll2IM-"

then the computed Cholesky factor L of A is exact for a matrix A + E, where

(2.14) ||F||2 < 3e[l + eim1'2 + 2.2)]"-1m2||,4||2.

Proof.  It can easily be shown that if the Cholesky factorization of a bandmatrix

is obtained, then, in the absence of pivoting, fill takes place only within the band.

Therefore, there will be no more than 2m nonzero elements in a row of F.  Also, the

(/', /)th element will undergo changes between 1 and m times depending on its position

within the band.  The result (2.14) then follows from (2.12).
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3.   Error Analysis of Finite Element Matrices:   Row-by-Row Ordering.  We

assume now that the system

Ax = b

is associated with a finite element mesh M0, formed by subdividing the unit square

(0,1) x (0, 1) into n2 small square elements of side length 1/n. The meshAf0 has a node

at each of the N= in + l)2 vertices, and these nodes are ordered in the standard row-by-

row manner.  We assume further that each x{ is associated with a node of M0, and

a« ¥= 0 if and only if x{ and x- are associated with nodes of the same element.

While we have chosen to exhibit our results for a simple mesh, the methods of

proof, in this and the next section, are not limited to it but may be extended to other

planar finite element problems.  The other assumptions are also not as restrictive, as

they might seem.  If there are no nodes (unknowns) on the boundary, as in the

Dirichlet problem, then the system will simply have an appropriate number of identities,

which will not affect our bounds seriously.  Similarly, if some a« = 0, even when x¡

and x, are associated with the same element, the bounds obtained will not be tight,

although they will still provide a useful overall estimate of accumulated round-off errors.

George  [6]   has proved the following lemma and corollary, which we quote here

without proof.

Lemma 6.   Let M0 be the regular finite element mesh described above; and let

Mk, k = 1, 2, . . . , N = in + I)2 ,be the mesh sequence generated through the elimin-

ation process by an arbitrary ordering of M0.   Then at least one element having n + 1

or more unknowns associated with it, appears in the mesh sequence {Mk}.

The next result is a corollary of Lemma 6.

Lemma 7.  Every ordering of M0 results in a bandwidth satisfying m> n.

We can now obtain a bound on the error for the Cholesky factorization of a

matrix which corresponds to a row-by-row ordering of M0.

Lemma 8.   If A is a matrix of minimum bandwidth, obtained by a row-by-row

ordering ofM0, then the computed Cholesky factor L satisfies

LLT =A+E,

where

(3.1) IIFHj <3e[l + ein1'2 + 2.2)]Nn2\\A\\2.

Proof.   The lemma follows from Lemmas 5 and 7, since we may safely assume

N>10.

In order to interpret the estimate (2.14), we observe that under the assumption

(2.2) of Lemma 3 the factor [1 + (n1/2 +2.2)6]^ reduces to a constant < 1.18 so

that the bound on the error is proportional to n2.  It can be shown that for band-

matrices arising from finite element problems, fill propagates to all the elements with-

in the band outside the first block.  Therefore, we should expect most elements outside
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the first block to change n times, and to have 2n nonzero elements in a row of L +

LT.  Therefore, we cannot expect to improve the factor n2 in (3.1) by an order of

magnitude for row-by-row ordering by using a general a priori analysis for single-

precision arithmetic ignoring statistical distribution of the errors.

4.  Error Analysis of Finite Element Matrices:  Nested Dissection Orderings.  We

now consider the stability of factorization corresponding to nested dissection orderings

of meshM0 described in Section 3.

Theorem.   If A is the matrix associated with a nested dissection ordering of the

mesh MQ, then the computed Cholesky factor L satisfies

LLT = A+E,

where

(4.1) IIFHj < Cie«8/5[1 + 4e{n1/2 + í.í}f\\A\\2,

and Cl is a constant.

Proof. ' For the purposes of the proof, we first assume that n = 2l, where / is a

multiple of 5.  It is also convenient to follow the description of the dissection strategy

as given by George [6].

The nested dissection ordering of the mesh M0 is defined as follows:   Suppose

x¡j is the unknown associated with the node (/n, jh).

Let

rr(0 = p + 1    if / = 2P(2<7 + 1),

7T(0) =  1,

rr(n)= 1.

Now define sets of nodes Pk by

pk = {*//(max(7r(/), "0")) = *)}■

For k > 1, the sets Pk are unions of +-shaped sets. They are displayed in the paper by

George [6].  The strategy is to number the unknowns corresponding to the nodes in

P1, followed by those in P2 and so on, finally numbering those in P¡.  As observed by

George, each Pk consists of n2/22fc independent +-shaped sets of nodes, which remain

independent during the elimination.  Furthermore, each independent set has no more

than 2k + 1 unknowns in it, and each unknown in Pk is connected to no more than

6 • 2fe - 3 unknowns, at the time of its elimination.

Let nk = the number of nodes in Pk. Then by the above observation,

(4.2) „   <_"L.2fc+1 =22/-fc+1.
v    ' K     22k

Let mk = the maximum number of unknowns to which any unknown in Pk is

connected.  Then

(4.3) mk < 6 • 2k - 3 < 6 • 2k.
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Let further ak = the maximum number of unknowns in Pk to which an unknown

in Pj ,i>k, may be connected during the elimination of Pk.

An unknown in P¡ cannot be connected to more than four independent subsets of

Pk,i> k.   Therefore,

(4.4) ok<4-2k+1 =8 -2k.

Now, turning to the elimination process, we know that the computed L satisfies

LLT = A + F,

where

AT-l

(4.5) E=  £  F<'\
í=i

F*') being the error matrix corresponding to the elimination of the z'th unknown.

We may rewrite (4.5) as

(4.6) E=L[       £     M
k=l\i=vk_1 + l        J

where
k

"* = £ »f
i=i

The sum in the parentheses in (4.6) arises from the ehmination of the nk un-

knowns in Pk.

Let us rewrite (4.6) as

(4.7) F=   ¿(      ¿       F<0)+     ¿   /       ¿      *<o\

fc=l\i=yfc_1 + l /       fc=6+l\i=pjt_j + l /

where we shall choose 5 later.

The idea here is the following:

For the first 5Pfc's, nk is large while mk is small and we shall get a better bound

using the method of Lemma 4.  For the last / - 5 Pk's, nk is small while mk is rela-

tively larger and better bounds are obtained by using Wilkinson's approach in [16] for

a dense matrix. We shall determine S so as to balance the two contributions.

Consider the ehmination of the unknowns in Pk, k < S.  Since any unknown in

P¡ is connected to no more than ok unknowns in Pk, a row in ¿^¡kv      +i^'^ con"

tains < ak nonzeros in the columns vk_l + 1 to vk, each changing no more than ok\4

times; the columns vk + 1 to A contain no more than mk+1 =2mk nonzeros, all

except nine of which change at most ak¡2 times.  Adding all the changes in a row, we

get as in Lemma 4, for k < S,

(4.8)

where pk - naxp<„ktU¡\é$K

Z       F«
k-l + 1

<4emkakPk,
2
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Clearly from a recursive use of (2.10b),

pk<p6<[l +2e(a»/2 + l.l)f«mi|2.

Therefore, (4.8) gives

(4.9)

vk

£      F«
i=vk_l + l

< 4e[l + 2e(o1/2 + 2.2)fs/nfcok||,4||2

It follows that

£       £    e w
k=l\/=Kk_1 + l        )

s
<£

2        k=l

"k

£       E(i)
t=»k-l+l

4e{l+2e(ai/2 + l.l)}"6    £   »WMIIj
,k=l

(4.10)

<4e{l + 2e(ag1/2 + 1.1)}"«|U4||2 • 48  £  22k
k=l

and from (4.3) and (4.4)

<4e ■ 64{1 +2e(ag1/2 + l.l)}"6||i4||2 -226.

For values of /' > vs, we can use the estimates obtained from (2.10a) and (2.10b) of

Lemma 3, so that for vk_ j + 1 < /' < vk we get

(4.11a) ||F«||2 < 2e{(m^2 + 1.1)}||ZÍ<¿>||2,

and

(4.11b)

Therefore,

||5(,'+1)||2 < [1 + e{m}'2 + 2.2}]||5<'>||

/ "*

£      £    e(í) <   £
k=5 + l

£       2eimlk'2 + l.l)

i=»k-l + l
}

■[l+2eim1'2+l.l)f-v*-1

•[1 +2e(nz61/2 + l.l)]''6M||2,

from (4.11) and from the estimate of ||Z? "5 ||2 obtained from a recursive use of

(2.10b).  Now, since vk - vk_1 = nk and ms <m¡, it follows that

£      £    ew
fc=6 + l   i=vk_i + l

<    £    2e[nX/2 + l-l»fc]
k=S + l

[l+2e(m/1/2 + l.l)]JV-1||J4||2



1248 INDU MATI ANAND

Now

£     «*<2
2/-6 + 1

fc=6 + l

and

Moreover, n; = 2n.

Consequently,

,«/»». <ll^  -22'-6/2.£    rnl
'—• k       k 1/2

fc=5 + l 2l,i - 1

(4.12)

/ vk

£      £
fc=6 + l i=vk_l + l

E(0 <2e
2-61'2 22Z-fi/2 + ¡J  . 22'-5 + 1
21/2 - 1

[1 +4e(n1/2 + l.l)]^-1!^^.

From (4.7), (4.10) and (4.12), we get

(4.13)

||F||2 < L • 64 • 226 + 2ej2jf/2    ■ 22H6/2+ 1.1 • 22'-6 + 1

[1 + 4e(n1'2 + l.l^-'MI

We now find S such that 226 = 22,-s'2, which will be the case if S = 4Z/5.

In case I is a multiple of 5, we get an integer value of 5, and recalling that n =

2l, we get from (4.13) finally

||F||2 < C,en8/5[1 + 4e(n1'2 + 1.1)^11.412'

where Cl is a constant.

For a general value of n, we can always determine a value / which is a multiple

of 5 such that 2l~s < n < 2l.  Since the lower and upper bounds are of the same

order of magnitude and a larger problem clearly provides an upper bound for a smaller,

the result follows for general values of n.

To put the exponent 8/5 in (4.1) in perspective, we observe that any ordering of

the mesh M0 would lead to a dense submatrix of order, at least, n during the elimina-

ation process and that Wilkinson [16] has shown that the appropriate factor for a

dense matrix of order n is n3'2. The exponent 8/5 is worse than 3/2 by only 1/10.

Thus, it appears that for very large systems nested dissection orderings have very nearly

the ideal stability properties.

Acknowledgement.  The paper is based on part of the work done for the author's

Ph.D. thesis at New York University. The author is greatly indebted to her advisor

Professor Olof B. Widlund for many valuable discussions and critical comments.

15 Green Way

Chelmsford, Massachusetts   01824



NUMERICAL STABILITY OF NESTED DISSECTION ORDERINGS 1249

1. I. M. ANAND, Numerical Stability of Nested Dissection Orderings, Ph.D. Thesis, New

York University, New York, 1979.

2. G. BIRKHOFF & A. GEORGE, "Elimination by nested dissection," in Complexity of

Sequential and Parallel Algorithms (J. Traub, Ed.), Academic Press, New York, 1973, pp. 221-269.

3. I. S. DUFF, A. M. ERISMAN & J. K. REID, "On George's nested dissection algorithm,"

SIAM J. Numer. Anal, v. 13, 1976, pp. 686-695.

4. G. E. FORSYTHE & C. B. MOLER, Computer Solution of Linear Algebraic Systems,

Prentice-Hall, Englewood Cliffs, N. J., 1967.

5. A. GEORGE, An Efficient Band Oriented Scheme for Solving n x n Grid Problems, Proc.

Fall Joint Computer Conference, 1972.

6. A. GEORGE, "Nested dissection of a regular finite element mesh," SIAM J. Numer.

Anal, v. 10, 1973, pp. 345-363.

7. A. GEORGE, "Numerical experiments using dissection methods to solve n x n grid

problems," SIAM J. Numer. Anal, v. 14, 1977, pp. 161-179.

8. A. GEORGE, "Solution of linear systems of equations:   Direct methods for finite ele-

ment problems," Sparse Matrix Techniques (V. A. Barker, Ed.), Lecture Notes in Math., vol. 572,

Springer-Verlag, Berlin and New York, 1977, pp. 52 — 101.

9. A. GEORGE & J. W. H. LIU, "An automatic nested dissection algorithm for irregular

finite element problems," SIAM J. Numer. Anal, v. 15, 1978, pp. 1053-1069.

10. A. GEORGE, W. G. POOLE, JR. & R. G. VOIGT, "Incomplete nested dissection for

solving n X n grid problems," SIAM J. Numer. Anal, v. 15, 1978, pp. 662—673.

11. A. HOFFMAN, M. S. MARTIN & D. J. ROSE, "Complexity bounds for regular finite

difference and finite-element grids," SIAM J. Numer. Anal, v. 10, 1973, pp. 364-369.

12. R. J. LIPTON, D. J. ROSE & R. E. TARJAN, "Generalized nested dissection," SIAM J.

Numer. Anal., v. 16, 1979, pp. 346-358.

13. J. K. REID, "A note on the stability of Gaussian elimination," /. Inst. Math. Appl,

V. 8, 1971, pp. 374-375.

14. O. WIDLUND, "On the use of sparsity of finite element systems of equations by Gaussian

elimination-type methods," Actas del Seminario Sobre Métodos Numéricos Modernas, Vol. 2,

Universidad Central de Venezuela, 1974.

15. J. H. WILKINSON, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.

16. J. H. WILKINSON, "A priori error analysis of algebraic processes," Proc. Internat. Congr.

Math. (Moscow, 1966), Izdat. "Mir", Moscow, 1968, pp. 629-640.


