
MATHEMATICS OF COMPUTATION, VOLUME 35, NUMBER 152

OCTOBER 1980, PAGES 1251-1268

The Spectral Transformation Lanczos Method

for the Numerical Solution of Large Sparse

Generalized Symmetric Eigenvalue Problems

By Thomas Ericsson and Axel Ruhe

Abstract. A new algorithm is developed which computes a specified number of eigen-

values in any part of the spectrum of a generalized symmetric matrix eigenvalue prob-

lem. It uses a linear system routine (factorization and solution) as a tool for applying

the Lanczos algorithm to a shifted and inverted problem. The algorithm determines a

sequence of shifts and checks that all eigenvalues get computed in the intervals between

them.

It is shown that for each shift several eigenvectors will converge after very few

steps of the Lanczos algorithm, and the most effective combination of shifts and Lanc-

zos runs is determined for different sizes and sparsity properties of the matrices. For

large problems the operation counts are about five times smaller than for traditional

subspace iteration methods.

Tests on a numerical example, arising from a finite element computation of a

nuclear power piping system, are reported, and it is shown how the performance pre-

dicted bears out in a practical situation.

1. Introduction and Summary. In the present contribution we set out to ob-

tain numerical solutions, X and x, to the generalized symmetric eigenproblem,

(1.1) Ku = \Mu,

where K and M are symmetric matrices, and M is positive semidefinite. Our main

practical interest will be in finite element computations; then K stands for the stiff-

ness matrix, M for the mass matrix, and X and u will give approximations to the

modes of vibration of the structure. Our discussion will, however, not be restricted

to such computations but will cover any problem formulated as (1.1) and satisfying

the restriction

NQC) n N(M) = {0},

where A() denotes nullspace.

Our goal is to find all the eigenvalues X in a given interval (a, ß), most often in

the lower end of the spectrum.

The matrices K and M are so large and sparse that it is not practical to perform

similarity transformations, so the methods from [12], [15] cannot be used. On the

other hand, we assume that a routine for solving linear systems is available (in the case

Received October 2, 1979; revised December 5, 1979.

1980 Mathematics Subject Classification. Primary 65F15; Secondary 15A18, 65N25, 65N30,

70J10, 73K25.

© 1980 American Mathematical Society

002 5-5 718/80/0000-0166/$05.50

1251

1252 THOMAS ERICSSON AND AXEL RUHE

of FEM computations that we can solve a static problem). Such a routine solves

(1.2) iK-pM)x = y

for x, with v and p given. It is divided into two parts; one factorization,

(1.3) K-pM = LDLT,

finding (possibly block-) triangular L and (block-) diagonal D and one solution,

(1.4) x = L-TD~1L-1y,

yielding x. As a by-product, we get a count on the number of eigenvalues X < p., in

the simplest case as the number of negative elements of D.

We also assume that M can be factored as

(1.5) M=WWT,

where W may be rectangular but is assumed to have linearly independent columns.

We will now apply an iterative algorithm, the Lanczos method, to this inverted

and shifted problem. We compute approximations to v¡, the eigenvalues of

(1.6) iA -pi)'1 = WTiK - pMT1 W,

which are related to the original eigenvalues \k by

(1.7) ^.= l/(Xfe-p);

see Figure 1.1. This is the spectral transformation that maps eigenvalues Xk close to

the shift p onto eigenvalues vt of large absolute values. The Lanczos algorithm applied

to (1.6) will converge first to those extreme v., and we will obtain approximations to

all \k in the interval by searching it through with a sequence of shifts p0, Pj, . . . , ps.

We choose the shifts sequentially, starting from the lower end of the interval, using

the eigenvalue count obtained from (1.3) as a check.

The use of the spectral transformation (1.7) is quite natural when dealing with

iterative algorithms. The sectioning algorithm of Jensen [6] finds a set of shifts and

uses inverse iteration to find the eigenvalues in their neighborhoods. In the engineer-

ing literature, spectral transformation is most often combined with simultaneous itera-

tion as in Bathe and Wilson [3], where the single shift p = 0 is used, and in some

works of Jennings et al. [1], where a sequence of shifts is used.

Hitherto the Lanczos algorithm has been used on (1.1) without inversion and

has proved very successful as the works by Paige [8] and Parlett and Scott [10] show.

Even though it is very natural to use it in conjunction with spectral transformation, as

outlined in [11], it has only been used so with one shift at the end of the spectrum

as in Underwood [14, Example 7].

After introducing some of our notation, we continue, in Section 2, by giving a

general outline of the algorithm we have used. In Section 3 we give criteria for

acceptance of a computed eigenvalue and eigenvector approximation. Properties of

the spectral transformation have to be taken into account, when adapting the stand-

ard criteria (see [9]), to find a bound on the angle between the computed and true

GENERALIZED SYMMETRIC EIGENVALUE PROBLEMS 1253

eigenvectors as well as the difference between the eigenvalues. In Section 4 we put

practical aspects on the algorithm and use operation counts to determine how many

shifts we shall use, choosing between many shifts with few Lanczos steps each and

few shifts with many Lanczos steps each. The remarkable fact is that we obtain oper-

ation counts that are several times better than those for inverse iteration algorithms

when large problems are treated. We conclude the description in Section 5 by dis-

cussing the choice of shifts and starting vectors and the mechanism to check that ap-

proximations to all the relevant eigenvalues are obtained.

We discuss a practical example arising from a finite element calculation of a

piping system in a nuclear power reactor. We demonstrate that the performance pre-

dicted in the earlier sections really bears out in practice when we compare our pro-

gram to a widely distributed FEM package based on the procedures in [3].

We have chosen not to discuss two important aspects of our algorithm. One is

the influence of rounding errors. It has happened to us that the eigenvalues have

been obtained with a much better accuracy than predicted by a general perturbation

theory applied to a standard backward error analysis of (1.1). What limits the accura-

cy is the precision of the factorization (1.3) and the solution (1.4), and it is believed

that the rounding errors are correlated in a way that avoids the worst possible per-

turbations. See the discussion by Argyris et al. [2] or Strang and Fix [13] on finite

element computations. We have also chosen to use only available (possibly unstable)

codes, for the factorization and solution, and to postpone the introduction of a safer

strategy based on the methods of Bunch and Kaufman [4] to a later occasion.

We believe that our notation agrees with standard practice in numerical analysis.

Unless otherwise stated, all matrices are denoted by capital latin letters, A, B, K, M

etc., and have order n x n. We then let A, stand for the matrix obtained by taking

the ;' first columns of A, and av . . . , a- stand for those columns. The eigenvalues of

a matrix A are denoted by X(4) and ordered from below

<X2< < K-
Exceptions are the unit matrix 7, with columns ev e2,

matrix

en, and the tridiagonal

Ti =

Pi
0

0,
a2

0

02

a.

0

0

Lo 0

We will use the Euclidean vector norm,

»M aiJ

\\2 :=(*V/2,

and we define the angle between two vectors by

<$ (x, y) := arc coslx^l/Obcll-, llyll2).

1254 THOMAS ERICSSON AND AXEL RUHE

For any set S, we let \S I stand for its cardinality, i.e., number of members.

2. The Algorithm. In this section we formulate the algorithm we have used in

an informal algorithmic language. Some of the steps will in themselves involve non-

trivial computations and choices. We devote the rest of this section and the following

ones to a discussion of these.

From now on we will often discuss the problem (1.1) using the reformulation

as a standard eigenvalue problem,

(2.1) Ax = lx, A = W-1KW~T, x = WTu,

understanding that we never form A explicitly but use the factorizations (1.3) and

(1.5), of K and M, to solve shifted systems as (1.6).

Figure 1.1

Original eigenvalues X(4) versus transformed eigenvalues v = XHA - pi)-1)

The algorithm is built up around the spectral transformation (1.7) computing the

eigenvalues,

(2.2) v^mA-piy1),

GENERALIZED SYMMETRIC EIGENVALUE PROBLEMS 1255

for different shifts p. As seen from Figure 1.1, the smallest vx,v2, . . . correspond

to those eigenvalues X(4) that are below p, \, Xr_,, . . . , while the largest vn,

vn_x,... correspond to those above, X,.+,, Xr+2,... . We also see that the extreme

p,, vn are very well separated from the rest, and that those X's far from p are lumped

together around zero in the transformed spectrum. We will use the Lanczos algorithm

to determine the extreme eigenvalues vx, v2, . . . and . . . ,Pn_1,vn, and to obtain

approximations to the eigenvalues of (1.1) around p.

The outermost level of our algorithm deals with determining a sequence of shifts

ps and records which eigenvalues converge in different subintervals.

Algorithm A. Determine all eigenvalues Xk in interval [a, ß].

Siy, Ô) set of eigenvalues in (7, ô).

C(t, S) set of converged eigenvalues in (7, 5).

1. Start with p0 = a, C = 0-

2. Repeat (for s = 0, 1, . . .).

1. Factorize K - pj\f, giving eigenvalue count IS (a, ps)\.

2. Draw random starting vector rQ, orthogonalizing to converged vectors

if necessary.

3. Run Lanczos, with (4 - pjY1 starting at r0, giving vlt...,Pru

converged eigenvalues.

4. Addps + VJ1 to C,Z= 1.r.

5. Determine a new shift ps+ j, or restart with a new vector at 2.2.

until \Cia, ß)\ = \Sia, ß)\.

3. Transform the eigenvectors to original coordinates.

Let us now comment on some of the steps in more detail:

Step2.\. The factorization (1.3),

(2.3) K-psM = LDLT,

is required to give the inertia of K - pJM, that is the number of eigenvalues below ps.

We have used symmetric Gaussian elimination without pivoting, making D diag-

onal and L lower triangular with unit diagonal. The count is then simply the number

of negative diagonal elements in D. Such a routine is what traditionally has been used

by practitioners; see [3]. The algorithm is safe numerically, provided that the ele-

ments in the factorization do not grow uncontrollably. Such growth occurs if p is

close to an eigenvalue of iK, M) or any of its leading minors, and the general tactic

is to move p away in case any of those n(n + l)/2 trouble spots are encountered.

The reliability of such a tactic and the motivation for including a safer strategy, based

on indefinite factorization [4], need further study and are not discussed in this con-

tribution.

Step 2.2. A random direction is generated by taking n normally distributed

random numbers. Rectangular numbers avoid directions close to the coordinate direc-

tions.

1256 THOMAS ERICSSON AND AXEL RUHE

Step 2.3. The Lanczos algorithm needs a routine for multiplying a vector by the

matrix whose eigenvalues are to be determined. In this case the relation (1.6) is used,

together with (1.4). Note that if rank(Af) = m < n, then the matrix A will also have

order m x m.

The reader is referred to any good work about the Lanczos method for a de-

tailed description of the computations in this step; see [8], [10], [9] or [11]. At

this level it is sufficient to know that Lanczos delivers the extreme eigenvalues of

(A — pi)*1 first and then approximations to those further inside the spectrum. When

to determine convergence will be discussed in Section 3. Section 4 is devoted to a

discussion of how many steps of the Lanczos algorithm should be executed before

leaving Step 2.3 of our algorithm.

Step 2.5. The choice of the next shift ps+ j depends on the success of the

current step. A discussion of the different cases that can occur is given in Section 5.

Step 3. When M has full rank, we simply take (2.1)

u = W~Tx,

but otherwise we have to compute

u = iK-pM)~1Wx,

for any suitable shift p, e.g., using the last factorization (2.3) available.

3. Accuracy of the Computed Results. In this section we will take a careful

look at the spectral transformation (2.2) and the Lanczos algorithm to see how to

determine whether an eigenvalue and eigenvector approximation is good enough to

label it converged.

The Lanczos algorithm will compute, after / steps, an n x / matrix (2/ of ortho-

normal columns and a / x j tridiagonal matrix T¡, satisfying

(3.1) iA-pJ)-1QrQiTj = ßßj^ef,

up to rounding errors. The eigenvalues vf of Tj will approximate those of (4 - pi)-1,

from the inside of the spectrum, so that p + vj1 will give under (over) estimates of

the eigenvalues Xfc(4) to the left (right) of p. Generally the approximations to the

extreme eigenvalues of T¡ are the best ones, and they will correspond to the eigen-

values of A closest to p.

Computing the eigendecomposition of T,

(3.2) T = SDST, D = dng{ut},

(drop / from now on) we can assess the accuracy of its eigenvalues as eigenvalues of

{A - pl)~ ' by noting that with

(3-3) yf = Qs{

GENERALIZED SYMMETRIC EIGENVALUE PROBLEMS 1257

we can get the residual

(A -pirbt-yft "(A-pir'QSi-Qw

(3.4) =HA-pJ)-1Q- QT)st = ßflj+ !efst

= «/+i0/s/,=î<Z/+i0/i-

The computable quantity fL, the product of the last nondiagonal element, and the

last element of the normalized eigenvector of T, will be the basic quantity in assessing

the accuracy. From (3.4) we get

(3.5) l(*»-iOr1-«vKfyl.

for an appropriate choice k, and using the gap,

yk = min |(X, - p)'1 - (Xk - p)'1 \,
l*k

we can bound the angle between the eigenvector xk and y¡ by

(3-6) sm^ixk,yi)<\ßii\lyk,

and improve the eigenvalue bound,

(3.7) KX^-M)"1 -»'ilOj/Tfc-

Let us now turn to the original problem and see how well p + if approximates Xfc.

We can reformulate (3.5) and make use of the fact that \v¡\ < |Xk - p\~x (approxima-

tion from the inside of spectrum) to get

(3.8) |Xfc - ip + if1* = |if »(^ - M)((Xk - pT1 - v¡)\ < \ß„\lvj,

showing that only a moderate accuracy /L is necessary to give good approximations

to those Xk that correspond to large v, that is those that are close to the shift p.

Note, however, that (3.4) implies |j3;i.| < max(-i^j, vn) ■ Is^l, making the error essen-

tially proportional to sJv¡.

The eigenvector bound (3.6), on the other hand, cannot be improved in a

corresponding manner. Moreover, even though y, is a good eigenvector approximation

for (4 - pl)~x, it is not so for A. That can be seen by looking at its Rayleigh quo-

tient which is not close to p + vj1. Instead we should use the modified vector,

(3-9) 2,.=/+^,%!,

obtained by adding a little of the next Lanczos vector. The reason for this is that,

by (3.4),

h = y i + HA - pir'yi - y^lvi = vj'iA - ^rxyt,

and now we see that the Rayleigh quotient is (drop z' for convenience)

piz) = zTAz/zTz = p + zTiA - pI)z/zTz.

To express this in terms of v and ß, we first note that y¡ and <7-+, are two ortho-

normal vectors so that zTz = I + ß2¡v2, by (3.9), giving us the value of the denom-

1258 THOMAS ERICSSON AND AXEL RUHE

inator. To evaluate the numerator, we first express z in terms of y and then use the

fact that y is a Ritz approximative eigenvector to (4 - pJ)~x, corresponding to the

eigenvalue approximation v. We get

piz) = p+ zTiA - pJ)z/zTz

= p + v~2yTiA - iiO" V/0 + ß2lv2)

= p + v~xi\ +ß2lv2)-\

differing from p + v"1 only by second order quantities, and the residual will be using

(3.4);

Az-zpiz) = ^(^y-qjlil+ß2lu2),

Uz - zpiz) 11/\\zII = % /(l + ß2lv2).
V2

With z¿ we can now get a bound for the error angle of the eigenvector,

<3-10) sin § ixk, z,-) < l/3/,l/[^I25k(l + p>2)],

where 5fc is the gap of Xk in the original problem,

(3.11) 5k = min{Xk+1 -Xk, Xk-Xk_!}.

The last factor in the denominator of (3.10) is close to, and larger than, unity, and so

we realize that IßJ/v2 also is the relevant quantity for bounding the error in the eigen-

vector approximation. We can, further, get a bound similar to (3.7) for the eigenvalue,

(312) |Xk - p(z,.)| < (jy*2)2/[ôk(l + ß2/u2)2].

If we want to use (3.10) to determine when to stop the computations and label the

eigenvalue as converged, we need a computable estimate for Sk (3.11) and an assur-

ance that (3.10) always will drop below a certain tolerance if only we perform suffi-

ciently many iterations. Such an assurance can be granted only for separated eigen-

values, and it is therefore necessary to replace 6k by a gap between such eigenvalues,

with the silent understanding that problems with closer ones will only get a subspace

basis accurately determined.

One way of estimating the gap is to study the eigenvalues just above and below

the shift ju. For these we see that Xk+ j - Xk < v~x - v\x, giving a slight overestimate

of 5k. In the program, our strongest concern is to avoid demanding so much accuracy

as to cause an infinite loop, so there we use the less stringent scaling invariant stopping

criterion

(3.13) |fL/i>f| < tolerance.

One complication arising from using z¡, instead of y¡ as eigenvector approximation, is

that different z{'s are not exactly orthogonal to each other. However, the departure

from orthogonality is only a second order effect since

GENERALIZED SYMMETRIC EIGENVALUE PROBLEMS 1259

*ih = to + ßjM+i)T(y, + ßjM+i) = (ßjihXßflh),

so that the z vectors corresponding to different eigenvalues converged during the same

Lanczos run will be nearly orthogonal. The orthogonality is comparable to that be-

tween two z vectors converged during different Lanczos runs.

4. How Many Eigenvalues for Each Shift? The efficiency of our algorithm is

intimately dependent on how we choose to place the shifts ps and how many steps j

we run the Lanczos algorithm each time. The considerations will be of a software

engineering nature, trying to minimize the expenditure in computer time and storage,

to reach the goal of computing all the required results. The choice is between using

many shifts ps, necessitating many factorizations of the matrix (1.3), but for each

shift only demanding few Lanczos steps /, or using few shifts, saving the factorizations,

but needing more time and space for longer Lanczos runs.

We will first estimate how many eigenvalues, r say, will converge if we perform

/ Lanczos steps. Then we will evaluate the cost of performing these / steps, on differ-

ent assumptions on the sparsity pattern of the matrices, and the reorthogonalization

strategy in Lanczos. Finally we minimize the cost for each eigenvalue by making a

choice on how far to go in each Lanczos run, either in terms of r or /. We also give

comparable operation counts for traditional algorithms based on inverse iteration and

subspace iteration.

In order to estimate r, the number of eigenvalues converged after / Lanczos steps,

we have made a calculation based on the Kaniel-Paige-Saad error bounds; see [9, Chap-

ter 12]. We assume that the eigenvalues X(/4) are approximately linearly distributed.

This gives a special distribution to X[G4 - pl)~x], if we assume that p is in the middle

between two of the X(j4)'s. We calculate the amplification factor for the component

of x¡, the eigenvector, after different numbers of Lanczos steps/. When that amplifica-

tion factor, corrected for the scaling by multiplying by v\, exceeds 106, we declare

that the corresponding eigenvalue has converged. Since the eigenvalue distribution of

iA - pjy1 will be essentially symmetric, the eigenvectors will converge in pairs. In-

specting Table 4.1, where the amplification factors are recorded, we see that ten steps

are needed for the first pair to converge and that then one pair converges each five

steps. We therefore assume that

(4.1) 7 = 5+ 2.5/-,

where r is the number of eigenvectors converged. This is of course only a qualified

quess, but we have also found that our practical test runs behaved like this in essentials.

When evaluating the cost of performing / Lanczos steps, we assume that the ex-

penditure is proportional to the number of arithmetic operations. (One operation is one

multiplication plus one addition.) This disregards the expenditure for storage admin-

istration and assumes that reading and writing from external storage can be overlapped

by other operations. Such an assumption is not entirely unfounded since external

storage will be used only sequentially when reading and writing Lanczos vectors Q

(3.1), (3.3).

1260 THOMAS ERICSSON AND AXEL RUHE

Table 4.1

Amplification factors for eigenvectors from Kaniel-Paige-Saad bounds

Step Con-
verged

Eigenvalue pair r/2

12 3

10

15

2 0

25

30

35

-10

0

2

4

6

8

10

14

16

1.5E2

6.3E6 5.7E2 2.2E1 3.2E0

5.0E12 1.6E6 3.4E3 1.2E2 1.8E1

1.8E19 2.3E10 3.4E6 1.8E4 6.2F2

2.4E26 1.3E15 1.4E10 1.2E7 9.7E4

8.6E33 1.9E20 1.5E14 2.3E10 5.0E7

4.2E0

7.9E1

3.1E3

5.2E5

7.3E41 6.5E25 4.1E18 1.1E14 6.3E10 2.2E8

1.8E1

2.8E2

1.7E4

2.7E6

1.2E50 4.5E31 2.2E23 1.1E18 1.7E14 2.1E11 1.0E9

5.3E0

6.8E1

1.3E3

8.5E4

1.5E7

2.0E0

2.0E1

2.2E2

5.9E3

4.6E5

6.7E0

6.4E1

7.8E2

2.8E4

Thus a vector inner product takes n operations, as well as adding a multiple of

one vector to another x := x + ya. The bulk of the operations will be of this kind

except for the factorization and solution of the linear systems. To keep the discussion

general, assume that

F • n = operation count for factorization (1.3),

S ■ n = operation count for solution (1.4).

One Lanczos run now consists of one factorization. Then one solution and 5n opera-

tions are needed in each step of the Lanczos recursion (3.1) to compute q-+l, a-, and

ßj. We also need to compute the eigenvalues and some components of the eigenvectors

of Tj (3.2), but that takes a negligible cost for large n and small /. To insure the linear

independence of the basis vectors, Q , we need to reorthogonalize the vectors, and the

choice is between performing full [7], or selective reorthogonalization [10]. Finally

we need to compute the eigenvector approximations (3.3) which is an expensive opera-

tion for large /. The operation counts are summarized in Table 4.2.

The operation counts for selective orthogonalization are intimately dependent

on the convergence behavior and are made on the following assumptions; see Table

4.2. Each time one pair of eigenvalues converges far enough to necessitate reorthog-

onalization, the pair that did converge last time has reached full accuracy. We thus

compute four Ritz vectors every five iterations; see (4.1). We also need to orthogo-

nalize two basis vectors q¡ against all converged vectors, since the amplification factors,

recorded in Table 4.1, indicate that it will take about five steps for a new copy of an

eigenvector, that has already converged, to grow up after a reorthogonalization.

Summing up, the work per eigenvalue will be

(4.2) w = n/ri F + j-S + 5/ + rij + r+ 12) -20}

Factorization Solution Lanczos Eigenvectors + Orthogonalization

provided that we use selective orthogonalization. Insert / = 2.5r + 5 (4.1), and get

GENERALIZED SYMMETRIC EIGENVALUE PROBLEMS 1261

W = n{iF + 5S + 5)r~x + (2.55 + 29.5) + 3-5/-},

which is minimized for

(4.3) r = ((F+55 + 5)/3.5)1/2,

giving

(4.4) W = n{2(3.5(F + 55 + 5))1/2 + 2.55 + 29.5}.

The corresponding figures for full reorthogonalization can be obtained analogously.

To get some idea of how these operation counts turn out, let us discuss two

special cases that we believe to be typical. They are:

(a) Band matrix, half width m, factorization O.Snm2, solution 2nm operations.

(b) Nested dissection scheme of a 2-dimensional elliptic equation, factorization

10n3'2, solution lOn log n.

The reader is referred to George [5] for a discussion justifying these figures.

Case (a) also covers such schemes as profile or envelope storage; m is used only to get

a value to insert in the operation counts and can be termed equivalent mean (half)

bandwidth. A third case, using a fast Poisson solver, would also be of interest, but

so far we have not seen any such algorithm that works on indefinite matrices.

We record the values oír and W/n in Table 4.3. For the band case we list both

the figures (4.3) and (4.4) obtained for selective orthogonalization and full reorthogo-

nalization. In that case the last term in (4.2) is replaced by /(/' + r + 1), which makes

the optimal r a good deal smaller and the optimal work about 20% larger. Full reorthog-

onalization is safer and simpler to program, and from these figures it is indicated

that it is not significantly more time consuming than selective orthogonalization.

As a comparison we list also the operation count for solving one system (factori-

zation + solution) as well as for computing the eigenvalues using inverse iteration. The

first inverse iteration acts on one vector at a time, needing four factorizations for each

eigenvalue, as assumed for the algorithm DETERMINANT SEARCH of [3]. The sec-

ond inverse iteration is SUBSPACE ITERATION of [3], using q = 58 vectors to find

p = 50 eigenvalues. Smaller p, q give even larger operation count for large band-

widths m.

We see that the counts for our algorithm are significantly better than those for

any of the inverse iterations, for all bandwidths recorded. The improvement is around

a factor five for the larger bandwidths.

The figures for nested dissection with selective orthogonalization are given in the

last columns of Table 4.3. It is not a coincidence that the data for nested dissection

for n = m2 are at the same line as those for band m. Those data correspond in the

case when we deal with a 2-dimensional elliptic problem. For matrices with narrow

bandwidth, m « n1'2, a band solution scheme is the most natural. Nested dissection

will only be of advantage for relatively large problems. The crossover point is at

about n = 1000 precisely as in the linear systems case [5].

1262 THOMAS ERICSSON AND AXEL RUHE

Table 4.2

Operation counts for different steps of algorithm

Step
Operation count

Factorization (1.3)

Solution (1.4)

Lanczos (3.1)

Eigensystem of T (3.2)

Reorthogonalization

Eigenvectors of A (3.3)

Band

0.5nm

2nmj

Dissection

10n3/2

10jn log n

5nj

Crj
.2

Full Selective

nj(j + l)

nr j

nr(j+r+12) - 20

Assumed history of convergence of eigenvectors and

selective orthogonalization

steps

j

converged

vectors

r

U eigenvectors

ti basisvectors

1_

innerprod + subtr

Vq:>i

_\£
eigenvectors

4_
10

13

20

j

2-10

4-15

4-20

4-j

2-2-2

2-2-4

2-2-6

4- r

Total 4 | i(10 + j + 2+r) - 20

Table 4.3

Optimal number of eigenvalues for each shift r and work per

eigenvalue W/n. Band elimination bandwidth 2m +1

and nested dissection of elliptic problem of order n

Band storage

Full reorth.

r w/n

Selective orth.

r W/n

Inverse iteration

t+s Single
vector

w/n W/n

Subspace

iteration

W/n

Nested dissection

selective orthog.

n r W/n

5

10

15

20

40

60

80

100

3

4

6

7

11

I E

21

26

135

181

225

271

455

638

822

1005

4

6

8

10

16

26

33

; :

85

126

166

205

359

513

666

819

22

70

142

240

880

1920

3360

5200

296

V, 6

956

1436

4356

8876

14396

22716

1524

1667

1811

1956

2545

3150

3771

4408

2i-

100

225

400

1600

3600

6400

10000

7

9

11

12

14

17

18

2 0

165

213

242

263

318

353

381

403

GENERALIZED SYMMETRIC EIGENVALUE PROBLEMS 1263

5. Choice of Shift and Starting Vectors. The strategy for choosing shifts p and

the tactic of finding a good starting vector for each shift are governed mainly by heu-

ristics. We found that it is most economic if each shift is used to find, on the average,

r eigenvalues, r determined by the assumptions on the density of the matrix made in

the previous section. Moreover, we want to be sure to have found all eigenvalues in

the interval ips_l, ps)-

The first shift p0 is always chosen at the left end a of the interval, most often

zero. We then run Lanczos until r/2 eigenvalues are found or until / has reached a

limit /max. From now on p0 will be treated like any other shift and enters the deci-

sions as the old shift. We will now choose a sequence of new shifts, walking through

the spectrum from left to right and making sure that no eigenvalues will be passed

without being calculated. The main tool for this is the eigenvalue count, produced as

a by-product from each factorization (1.3).

To choose the new shift ps we use the information gathered when running the

old one, ps_¡. If some eigenvalues have converged to the right of ps_x, say Xfc + ¡,

. . . , X„ , we choose

(5.1) Ps = ^s-i +2(Xpi-Mi-i),

so that the last eigenvalue X is half way between ps_l and ps. The next iteration is

started by factorizing iK - pJW), and this yields a count on the number of eigenvalues

to the left of p . In the unfortunate case when the eigenvalues cluster between X
"s

and ps, that is when ISii^-p Ps)\ » r» we have to move back and choose a new ps.

When choosing a starting vector, we have a choice between using some combina-

tion of the old Lanczos vectors or taking a random direction. We have found that,

when several eigenvalues converge for each shift, it is advantageous to choose the

starting vector at random. We avoid convergence towards eigenvectors in ips_l, ps)

which have already converged in the following way: Before starting we orthogonalize

the starting vector r0 against all converged vectors in (ms_j, ps). Now rounding errors

may grow fast (see Table 4.1), so that, nevertheless, we get a new copy of an already

converged vector. Such a copy, however, reveals itself by being orthogonal to the

starting vector. We add a test against that, discarding vectors below ps for which s1(-

is close to zero; see (3.2), (3.3).

If no eigenvalues to the right of ps_1 did converge during the old iteration, but

T had some positive eigenvalues, we choose the X corresponding to the largest one as

the new shift, making ps = ps_l + vjx. If no eigenvalues to the right of ps_x did

converge, and T does not even have any positive eigenvalues, we have either exhausted

the spectrum, or the next eigenvalue is far indeed to the right of ps_x, and we choose

to stop.

Now we have got the new shift ps together with a starting vector, and are

assigned to compute ISOVp Ms-)l ~~ IC0V-i> Ps)\ eigenvalues in the interval ips_x, ps),

together with whatever eigenvalues we can find to the right of ps. We run Lanczos

until r eigenvalues have converged, or;max steps, whichever occurs first, and examine

the results. In nearly all cases we have got precisely IS(ms_i, Ps)\ eigenvalues, fulfilling

1264 THOMAS ERICSSON AND AXEL RUHE

the assignment at the first shot, but it may happen that we have too few. If no eigen-

values at all have converged to the left of ps, a most unlikely event, we restart with a

new shift to the left of ps, ps = ps_x + vxx. If eigenvalues have converged, the cause

of missing eigenvalues is either a multiple (more than double) eigenvalue in (ps_l, Ps)

or an unfortunate choice of starting vector. Both things are cured, if we start anew,

using the same factorization and a new random starting direction, orthogonalized

against all eigenvectors that have been found to eigenvalues in ÍPS_1, Ps)- This makes

the missing eigenvalues stand out as more and more dominating negative eigenvalues of

(4 - pj)~x. This restart may have to be repeated several times; in the presence of a

five fold eigenvalue we need three restarts.

When all eigenvalues in ips_1 , Ps) are found, ps becomes the old shift, and the

positions of those eigenvalues converged to its right determine how to continue. Fi-

nally we reach the right end of the interval or have computed the number of eigen-

values that were asked for initially.

6. A Practical Example. In this section we will report the results of several test

runs on a small but yet realistic test example. All the computations have been per-

formed on a Honeywell 6000 computer at the ASEA company, Và'steras, Sweden.

Single precision has been used, so rounding errors leave about eight correct decimal

digits. The timings given are for an in core routine; we wait to use external storage

until the results have to be written out.

Figure 6.1

Perspective drawing of piping system for which

test results are reported

The program is a straightforward FORTRAN implementation of our algorithm,

and we have used the routine from [3] to factorize and solve linear systems (1.3),

(1.4).
The program for the Lanczos algorithm uses complete reorthogonalization of the

o vectors.

GENERALIZED SYMMETRIC EIGENVALUE PROBLEMS 1265

The matrix is a finite element approximation to a piping system which is dis-

played in Figure 6.1. The order n is 384. The stiffness matrix K (1.1) needs 4512

words when an envelope storage scheme is used, while the mass matrix M is made di-

agonal. The condition numbers are,

K(A) -109, KiM)^l04,

so the general perturbation theory for symmetric matrices does not promise to give

any accuracy at all in the smallest eigenvalues when single-precision computations are

used. In spite of this, we consistently got several correct figures in all eigenvalues we

tried to get.

We are interested in getting the fifty smallest eigenvalues, which are in the inter-

val (0, 0.02) whereas Xmax « 2 • 104. We have plotted those in (0, 0.002) in Figure

6.2, and we see that they are distributed fairly evenly with a few small clusters.

10"

nil it
A10

mi m—

10"3
I *9f

10-3

|X24 — k

fo •"6 ̂ 7 VR

-•»■ j -15

M.2 M.3 v*

-»• j=20

",0

— i-2S

H.1

j = 30

Figure 6.2

Eigenvalues \k and shifts ps of test problem

Each Lanczos run (Step 2.3 of the algorithm) used a predetermined number of/ steps,

and then convergence was tested with the tolerance (3.13) set to 10~5. We tried

/ = 5(5)30 and 45. For/ > 15 we got one or more eigenvalues converging each time,

and we summarize the results in Table 6.1.

Table 6.1

Summary of results of test runs

Steps

j

10

15

20

2 3

30

43

Total number of

shifts eigenvalues

3

Id

10

8

5

3

3

47

47

4 9

46

52

Total

time

9.4

87.2

72.3

79.0

07.2

83.3

Time per

eigenvalue

3.13

1.86

1.54

1.61

1.46

1.60

1266 THOMAS ERICSSON AND AXEL RUHE

In the lower part of Figure 6.2, we show how the shifts ps were chosen and when the

corresponding eigenvalues converged. It is noticeable that the clustering was not as

severe as to activate the special routines for treating clustered eigenvalues and that the

eigenvalues always were computed in order, i.e., converging when the closest shift was

used.

It is interesting to see if the assumption (4.1) on the number of eigenvalues con-

verging for different numbers of steps / is realistic. We plot the values measure in

Figure 6.3 and see that, for small /, (4.1) was too optimistic. This is due to the fact

that in those cases the clustering of the eigenvalues have a detrimental effect on the

placement of the shifts. Possibly a more sophisticated rule than (5.1) should be used.

For larger /', on the other hand, the actual behavior was better than predicted, since

then the clusterings were averaged out. The improvement over (4.1) is also indicated

by the theoretical bounds in Table 4.1.

Figure 6.3

Number of converged eigenvectors r versus Lanczos step /, in test example.

Predicted relation drawn as straight line

We have also tried to verify the validity of the reasoning in Section 4, concerning

the choice of r to minimize work. We plot the time per eigenvalue spent in different

parts of the program in Figure 6.4, for the / values we have tested. We see how the

time spent with factorization and solution decreases with /, while the time for com-

puting vectors and reorthogonalization grows, precisely as predicted. The effect is not

as strong as expected, since the bandwidth is not very large im ~ 15), which makes

the factorization a very small part of the work, and the faster convergence for larger /

makes the orthogonalization part grow slower than expected.

We have run the problem with the ADINA package, using the determinant search

and inverse iteration routine of [3]. When computing forty-five eigenvalues, it needed

seven seconds per eigenvalue. This is in line with the figures in Table 4.3, comparing

the work between our algorithm and inverse iteration, and supports our comparison

GENERALIZED SYMMETRIC EIGENVALUE PROBLEMS 1267

made there. The eigenvalues computed by the two methods agreed to at least four digits

of accuracy.

3,0-\

2,5H

2,(H

1,5

1.<H

0.5

10 15 25
~30~

35 40
J

0 5 10 15 20 25 30 35 40 45

Figure 6.4

Time per eigenvalue in seconds as a function of number of Lanczos steps j.

Time spent in different parts of the program :

1. Factorization and solution.

2. Computing eigenvectors and reorthogonalization.

3. The rest.

Acknowledgement. This work would not have come about without the eager inter-

est and enthusiastic support of Dr. Christer Gustafsson at ASEA ATOM, Västeras.

Department of Numerical Analysis

Institute of Information Processing

University of Umea

S-90187 Umea, Sweden

1. T. J. A. AGAR & A. JENNINGS, Hybrid Sturm Sequence and Simultaneous Iteration

Methods, Internat. Sympos. Appl. of Computer Methods in Engineering, Univ. of Southern California,

Los Angeles, Calif., 1977, pp. 405-412.

2. J. H. ARGYRIS, T.L. JOHNSEN, R. A. ROSANOFF & J. R. ROY, "On numerical error in

the finite element method," Comput. Methods Appl. Mech. Engrg., v. 7, 1976, pp. 261-282.

3. K. J. BATHE & E. L. WILSON, Numerical Methods in Finite Element Analysis, Prentice-

Hall, Englewood Cliffs, N.J., 1976.
4. J. R. BUNCH & L. KAUFMAN, "Some stable methods for calculating inertia and solving

symmetric linear systems," Math. Comp., v. 31, 1977, pp. 163—179.

5. J. A. GEORGE, "Solution of linear systems of equations: Direct methods for finite element

problems," Sparse Matrix Techniques (V. A. Barker, Ed.), Lecture Notes in Math., Vol. 572, Springer-

Verlag, Berlin and New York, 1977, pp. 52-101.

1268 THOMAS ERICSSON AND AXEL RUHE

6. P. S. JENSEN, "The solution of large symmetric eigenproblems by sectioning," SIAM J.

Numer. Anal, v. 9, 1972, pp. 534-545.

7. C. C. PAIGE, "Practical use of the symmetric Lanczos process with re-orthogonalization,"

BIT, v. 10, 1970, pp. 183-195.

8. C. C. PAIGE, "Computational variants of the Lanczos method for the eigenproblem," /.

Inst. Math. Appl, v. 10, 1972, pp. 373-381.

9. B. N. PARLETT, 77ie Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs,

N.J., 1980.

10. B. N. PARLETT & D. S. SCOTT, "The Lanczos algorithm with selective orthogonaliza-

tion," Math. Comp., v. 33, 1979, pp. 217-238.

11. A. RUHE, "Computation of eigenvalues and eigenvectors," in Sparse Matrix Techniques,

(V. A. Barker, Ed.), Lecture Notes in Math., Vol. 572, Springer-Verlag, Berlin and New York, 1977,

pp. 130-184.

12. B. T. SMITH ET AL., Matrix Eigensystem Routines EISPACK Guide, Lecture Notes in

Comput. Sei., Vol. 6 and Vol. 51, Springer-Verlag, Berlin and New York, 1974, 1977.

13. G. STRANG & G. J. FIX, An Analysis of the Finite Element Method, Prentice-Hall,

Englewood Cliffs, N.J., 1973.

14. R. UNDERWOOD, An Iterative Block: Lanczos Method for the Solution of Large Sparse

Symmetric Eigenproblems, Tech. Report STAN-CS-75-496, Stanford University, Stanford, Calif.,

1975.

15. J. H. WILKINSON & C. REINSCH (Eds.), Handbook for Automatic Computation,

Vol. II, Linear Algebra, Springer-Verlag, Berlin and New York, 1971.

