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An Efficient One-Point Extrapolation Method

for Linear Convergence*

By Richard F. King

Abstract.   For iteration sequences otherwise converging linearly, the proposed one-point

extrapolation method attains a convergence rate and efficiency of 1.618.   This is ac-

complished by retaining an estimate of the linear coefficient from the previous step

and using the estimate to extrapolate.   For linear convergence problems, the classical

Aitken-Steffensen 6  -process has an efficiency of just -J2, while a recently proposed

fourth-order method reaches an efficiency of 1.587.   Not only is the method pre-

sented here more efficient, but it is also quite straightforward.   Examples given are for

Newton's method in finding multiple polynomial roots and for locating a fixed point

of a nonlinear function.

1.   Introduction.  We are concerned with extrapolation methods for improving

the convergence rate of a sequence x0, x,,. .. —► a exhibiting only linear convergence.

Presume that the sequence is generated by a one-point iteration function <p from an

initial point x0:

(1.1) x„+i = <Kxn),      n = 0,1,2,....

The error equation

(1.2) en+1=Ken+Le2n+Me3n + ---,

derived for error en = xn - a by expanding 0(*„) in a Taylor series about a, then has

0<\K\<1.  Here we have taken K = 0'(a), L = 0"(a)/2!, and M = 0"'(a)/3!.

The 'ô-process', developed by Aitken [1] and applied to <j> by Steffensen [7]

(see [3, pp. 135-139] or [6, Appendix E]), is one such extrapolation method. It

may be derived by applying a single step of the secant method,

o-«       *„„-*.♦, -^-'^^¡Ly
to the function g = x - (¡>, remembering that 0(xo) = xt and 0(x,) = x2.  The re-

sulting extrapolation, used after every two linear-error substeps, is

(1.4) x„ =
2xj + x2
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where here, and henceforth in this section, we suppress n in the subscripts.  Now use

(1.2) and (1.4) to get the error equation

n o - eQe2 ~e\      _( -LK \  2

(L5) e2=e0-2e1+e2nwr°'

for the error e~2 = x2 - a. Extrapolated iterate x2 becomes a new x0 for two more

linear-error substeps and another extrapolation, and so forth.  Thus, the procedure has

convergence of order two; its efficiency in the sense of Traub [8, p. 263] is \J2,

because two function evaluations are required for each step. The 52-process is a two-

point method without memory [8, p. 8].

Another extrapolation method for a linearly converging sequence is described in

[5].   It is a fourth-order scheme requiring just three evaluations of 0 per step, and so

enjoys an improved efficiency of 41'3 = 1.587 versus 1.414 for Aitken-Steffensen

extrapolation.  The method may be described as follows:

(i)    x, = 0(xo) ,

(ii)   x2 = 0(x,) ,

(1.6) (in)   x2 = x, -(-fTjf") (*i ~x2) >

(iv)   x3 =<p(x2)  ,

(V)      X3 = X2 - [y^Y) (*2 - *3)    >

where

(1.7) K1 = *2 ~ Xl = K+LÍK + l)e0 + [L2 + M(K2 + K + 1)] e2   ,
X1       Xq

Y      _    Y

(1.8) K* = J---=K+LKe0 + [1 - AT]"1 [¿2(-2^ + 1) + Mi~K3 +K2)]e20  ,
2 1

(1.9) k =K*il +K*- KA=K+ [1 - K]-1[L2i-3K+ I) + MiK2 - K)]e20   .

Linear-error substeps (i) and (ii), together with extrapolation (iii), constitute one step

of the 52-process. A third linear-error substep (iv) (applying 0 to x2) and final extra-

polation (v) complete the procedure. Note that both A'j and K* are merely first-order

approximations to K but combine as in (1.9) to form the second-order approximation

K. It is the second-order accuracy of the approximation K to K in extrapolation (v)

that gives the method its fourth-order convergence. The iterate x3 at the end of each

step becomes x0 for the next step.   For this method the error equation turns out to be

(1.10) ?3= r, -K]-3[L3i-2K2 +K)+MLiK3 -K2)]e*.

This is a three-point method without memory.

In the next section we develop a one-point extrapolation method with memory.

An estimate of K based on two current and two intermediate points is used to extra-

polate after each linear-error step.  The result is a method that is more efficient than
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either of the methods heretofore discussed, and that is incidentally quite straight-

forward.

2.   An Extrapolation Method With Memory.   First observe that the extrapolation

(v) of (1.6) is possible after just one new function evaluation (iv) only because an

estimate £ of K is available from current and previous substeps.  We use this idea as

the basis of the proposed method:   each step consists of a linear-error substep followed

by an extrapolation requiring information retained not only from the present step, but

also from the preceding one.  If we define

(2.1) Kn + l

Xn+2       xn+l

Xn+1 ~ xn

then one step of the method may be written as

(0   xn + 2 = <P(xn + 1) ,

(2-2) _„ l       !      \    ^
W     Xn + 2 - Xn + 1       I,       g        J   (xn+l      xn + 2)  ■

Start the process by evaluating Xj = 0(xo) and x2 = 0(x,), and setting x0 = x0 and

xx - xr  Then Kx = (x2 - x,)/(Xj - x0), so the first extrapolation is simply that of

Aitken-Steffensen.  Our new sequence of iterates is   (xn },n=0, 1,2,....

Another way to derive the scheme, analogous to (1.3) for the S2-process, is to

apply the secant method to the function h(x) = x - 0(x). Thus

(1 Vi                    ~            ~            <~      ~       ^ /       h(xn+l)       \
(2J) xn + 2 = xn+l-(Xn-Xn+l)[,.~.       ,,~-7'

\hixn)-hixn + 1)J

and (2.3) is seen to be equivalent to (2.2).

To get the error equation, we must find out how good Kn+l is as an estimate of

K.   From (1.1), (1.2), and (i) of (2.2), we can write

(2.4) e„ + 2 = K7n+l + L72+1,      en+l = KZ,, + ¿72.

Then from (2.1) and (2.4) it follows that

(2.5) Kn+i=€H + 2~€T±K+Le»>
en+l~ en

since ultimately \en + l \ « \en\.  Finally, the error equation can be calculated from

(ii) of (2.2), using (2.4) and (2.5), as

(2-6) 7n + 2 1 -K

Thus, the error equation has the same form as that of the classical secant method

for a simple root.  Consequently, the method has a convergence rate of (1 + \/5)/2 =

1.618.   Since only one evaluation of 0 is required each step, it also has an efficiency

of 1.618, as against 1.587 for the method of [5] and 1.414 for the 52-process. It may

be classified as a one-point method with memory.

In none of the three schemes discussed do succeeding elements of the sequence

defined by (1.1) need to be evaluated once extrapolation has begun.  For instead the
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function 0 is applied to more accurate estimates of a than the terms of the original

sequence.

(3.1)

3.   Examples,  a.  The first two examples are for Newton's method,

A**)
vn + l 0(*„) A**)

applied to a nonlinear function / with a multiple root at a of multiplicity m i= 1.  It

has been shown in [5] that for derivative ratios

(3.2) R =
/<mV)

the coefficients in (1.2) are given by

m-1        r R

/(W + 1V) .     s = f{m+2\a)

f(m\a)

(3.3)   K m
L =

m im + 1)
M

2S R2

m2im + 1) im + 2)    m3im + 1)

Tables 1 and 2 list the results of computations done on an IBM 370 in quadruple

precision for functions/= (x - l)2tan(7rx/4) and/= x sin([x - l]4), respectively.

Both the actual error e = x - a and the error estimate computed from (2.6), as well

as the function value /, are given for the proposed method.   Since m = 1/(1 - A'),

from (3.3), it follows that m = 1/(1 - K) is an estimate of m; both K (from (2.1)) and

m are shown in the tables.   For comparison, results using the §2-process are also in-

cluded.   Extrapolation substeps have a T (for tilde) following the number n of the sub-

step in the first column.

Table 1

f M

(x-l)'tati(nx/4) 1/2 n/8 -n2/32

n+2
=[-L][l-K] È  c    = [-it/4] c     c

n n+1 n n+1
~6^

'-^4';n S,»,

process

x-a

.500000

.62253K-1)

.32584K-1)

.340712(-1)

.174802Í-1)

.168097(-2)

.839374(-3)

.450433C-4)

.225224C-4)

.594677(-7)

.297339C-7)

.210378(-11)
,105189(-11)
.982590C-19)

.103553

.427423(-2)

.11175K-2)

.122470C-2)

.314065C-3)

.28182K-5)

.703620(-6)

.202904(-8)

.507278(-9)

.35364K-14)

.884103(-15)

.44259K-23)

.110648(-23)

.965483(-38)

-.166586(-2)

.449819(-4)

,594675(-7)

-.210378C-11)

.982590(-19)

.535944

.512405

.499357

.500018

.50000002

2.154914

2.050881

1.997430

2.000071

2.00000009

-.500000

.62253K-1)

.32584K-1)

.340712(-1)

.174802C-1)

.885852C-2)
-.468967C-3)
-.234397C-3)

-.117177C-3)
-.863344(-7)
-.431672C-7)

Inasmuch as both / and /' in the function 0 must be evaluated each substep for

Newton's method, the effective efficiency here for the 52-process is really only 21'4 =

1.189; see Van de Vel [9].   Effective efficiency for the method of [5] is correspond-

ingly 41/6 = 1.260; this matches the efficiency of the nonextrapolation root-finding

procedure of Esser; see [2].  For the proposed method of (2.1) and (2.2), the effective

efficiency with Newton's method is (1.618)1'2 = 1.272; this efficiency is also that of

the procedure outlined in [4], in which the secant method itself is applied to a function
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analogous to ///', namely, to a related function having a simple zero at a.

Table 2

1289

x sin([x-1]*) 3/4 1/16

;[-L][l-Kj- E    e    ,  ■  [-1/4]  c    E     ,
n    n+1 n    n+1

-5/64

f -1Mi;"   S.+1
^'-process

x-a

.500000

.333043

.237900

.111849

.829778C-1)

.154860(-1)

.115992(-1)

.494979C-3)

.371219C-3)

.19474K-5)

.146056C-5)

.241102(-9)

.312297(-1)

.82052K-2)

.244113(-2)

.13900K-3)

.434739C-4)

.566206C-7)

.178914C-7)

.599975(-13)

.189828(-13)

.143823C-22)

.455066(-23)

.308149(-32)

.931265(-2)

.433023(-3)

.19163K-5)

.240982(-9)

.700391

.740726

.748981

.749969

3.337685

3.856921

3.983769

3.999503

-.500000
-.333043
-.237900
-.111849
-.829778C-1)

-.617533C-1)
-.284075(-2)
-.213006Í-2)

-.159726(-2)
-.152028C-5)

b.  The last example is for a direct application of the iteration xn + l = 0(xn)

of (1.1) in finding that fixed point of

(3.4)
„x-l +1

at a = 1.  An initial estimate of x0 = .5 is used.  (The other fixed point, at x =

2.256, does not concern us.)  In this case the coefficients in (1.2) are K = 1/2, L =

1/4, and M = 1/12. We can think of the problem as that of finding a root of the non-

linear function / = x - 0.

Quadruple-precision results are shown in Table 3.  Again the actual error e =

x - a, the function value /, and the error estimate from (2.6) are given, as is K from

(2.1).  A T denotes an extrapolation step.  Corresponding results for the 52-process

are also listed.

Taiílk 3

f

[eX-1+1]/2 x-«j>(x) 1/2 1/4 1/12

;n+2=[-L][l-K]-     E-nE-n+1   =   [-1/2]   E-ne-n+1

[-1/2l?"   'n+1

6   -process

x-a

.500000

.196735

.892957C-1)

.303500(-l)

.149470C-1)

.250417C-2)

.125052C-2)

.369864(-4)

.184929(-4)

.462123Í-7)

.231062Í-7)

.854588Í-12)

.427294C-12)

.197462C-19)

.303265

.107439

.465833C-1)

.154030(-1)

.752909C-2)

.125365(-2)

.62565K-3)

.184935C-4)

.924652(-5)

.231062(-7)

.11553K-7)

.427294C-12)

.213647(-12)

.987312(-20)

.298545Í-2)

.380009(-4)

.463102(-7)

.854614(-12)

.197462(-19)

.446848

.491869

.499365

.4999907

.499999988

.500000

.196735

.892957C-1)

.303500C-1)

.149470(-1)

.741794(-2)

.218535(-3)

.109255C-3)

.546247(-4)

.119348C-7)

.596740(-8)
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Note that here the iteration of (1.1) is known in advance to converge just linear -

ly-if it converges at all-because 0' = [exp(x - l)]/2 > 0 everywhere.  Nevertheless,

the efficiency (1.618) of the proposed method for this problem is as high as that of

the secant method for finding a simple root of the nonlinear function /.
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