Gaussian Quadrature of Integrands Involving the Error Function

By J. P. Vigneron and Ph. Lambin

Abstract. Orthogonal polynomials corresponding to the weight function 1 - erf(x)and defined on the positive real axis are constructed. Abscissas and weight factors for the associated Gaussian quadrature are then deduced (up to 12-point formulas). The stability of the algorithm used for this particular computation is discussed. An example is provided to test the efficiency of the new Gaussian rule.

1. Introduction. In recent years, the field of automatic quadrature has achieved important progress. For tabulated functions with arbitrary grid spacing, cubic spline integrators supply an efficient way to obtain an approximation to a definite integral [1]. In the case where very little is known about the integrand, adaptive quadrature methods [2] can be used with a high probability of success. When possible, however, Gaussian formulas [3] remain extremely interesting, regarding the few integrand evaluations needed. This advantage is especially desirable when the integrand computation is very time consuming. Rather few weight functions and intervals of integration have been considered so far [3]-[5]. In the present paper, a Gaussian quadrature formula is derived for computing expressions of the form

(1)
$$I = \int_0^\infty \operatorname{erfc}(x) f(x) \, dx,$$

where

(2)
$$\operatorname{erfc}(x) = 1 - \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

is the complementary error function [4], and f(x) is a regular function.

To determine the abscissas x_i and weight factors w_i appearing in the Gaussian expression

(3)
$$I \approx \sum_{i=1}^{n} w_i f(x_i),$$

it is necessary to obtain the set of orthogonal polynomials $p_k(x)$, k = 0, 1, ..., n, corresponding to the following scalar product

(4)
$$(f, g) = \int_0^\infty \operatorname{erfc}(x) f(x) g(x) \, dx.$$

Received July 25, 1979.

© 1980 American Mathematical Society 0025-5718/80/0000-0171/\$03.25

¹⁹⁸⁰ Mathematics Subject Classification. Primary 65A05.

The construction of these polynomials and the derivation of the integration formula is treated in Section 2.

2. Orthogonal Polynomials and Gaussian Formula. The Schmidt orthogonalization procedure can be used to generate these polynomials from the set of nonorthogonal functions

(5)
$$1, x, x^2, x^3, \ldots, x^n$$
.

This procedure is described in [6] and amounts to determining recursively the polynomials $p_k(x)$ through the following relation

(6)
$$p_0(x) = 1,$$

(7)
$$p_{k}(x) = x^{k} - \sum_{n=0}^{k-1} \frac{\int_{0}^{\infty} \operatorname{erfc}(t) t^{k} p_{n}(t) dt}{\int_{0}^{\infty} \operatorname{erfc}(t) [p_{n}(t)]^{2} dt} p_{n}(x),$$

for k = 1, 2, ..., n.

If the explicit expression for these polynomials

(8)
$$p_k(x) = \sum_{j=0}^k p_j^k x^j$$

is introduced in (6) and (7), the following relation is obtained

(9)
$$\sum_{n=0}^{k} p_{n}^{k} x^{k} = x^{k} - \sum_{n=0}^{k-1} \frac{\sum_{i=0}^{n} p_{i}^{n} \mu_{i+k}}{\sum_{l=0}^{n} \sum_{i=0}^{n} p_{i}^{n} p_{l}^{n} \mu_{i+l}} \sum_{j=0}^{n} p_{j}^{n} x^{j},$$

where the quantities μ_p are the moments of the weight function

(10)
$$\mu_p = \int_0^\infty \operatorname{erfc}(x) x^p \, dx = \frac{\Gamma(p/2+1)}{\sqrt{\pi}(p+1)}$$

In Eq. (9), the right-hand side can be put under an explicit polynomial form, by reordering the summation on n and j. This leads to the following recursion relations for computing the coefficients p_i^k of the orthogonal polynomials

(11)
$$p_{k}^{k} = 1,$$

and, for $n \neq k$,

(12)
$$p_n^k = -\sum_{j=n}^{k-1} \frac{\sum_{i=0}^j p_i^j \mu_{i+k}}{\sum_{i=0}^j \sum_{l=0}^j p_i^j p_l^j \mu_{i+l}} p_n^j.$$

3. Discussion. A large amount of comments exists in literature on the illconditioned character of the problem of determining the zeros and weights for Gaussian rules [7]-[10]. It is not obvious, in a general case, to forecast the stability of relation (12). This question has in fact two different aspects. If one considers the moments μ_k as exactly known quantities, the recursion scheme can propagate the truncation error that affects the coefficients p_j^k at each stage of the recursive process. On the other hand, the polynomial coefficients may be sensitive to errors introduced in computing the moments μ_p . Both effects act to progressively reduce the accuracy of the computed coefficients. Furthermore, the evaluation of the zeros of the polynomials and the subsequent computation of the weight factors will introduce further errors. For this reason, an arithmetic of about 35 figures has been used in performing the computation realized here and a check on the μ -wise sensitivity of the polynomial coefficients, as well as the abscissas and weight factors, has been completed.

TABLE 1

Sensitivity of the 12th-degree orthogonal polynomial coefficients to a slight variation of the moments μ_p . A relative increase of 3.10^{-33} of all moments has been performed. $\Delta p_{12}^i/p_{12}^i$ is the relative change of the polynomial coefficients, $\Delta x_i/x_i$ is the relative change of its zeros, and $\Delta w_i/w_i$ the corresponding relative change in the weight factor.

i	$\frac{\Delta p_{12}^{i}}{p_{12}^{i}}$	$\frac{\Delta x_{i}}{x_{i}}$	$\left rac{\Delta w_i}{w_i} ight $
1	(-16) 3.4	(-17) 3.7	(-17) 3.6
2	(-16) 3.0	(-17) 3.7	(-17) 2.9
3	(-16) 2.7	(-17) 3.6	(-17) 1.4
4	(-16) 2.4	(-17) 3.3	(-17) 1.1
5	(-16) 2.1	(-17) 3.1	(-17) 4.7
6	(-16) 1.8	(-17) 2.9	(-17) 9.9
7	(-16) 1.6	(-17) 2.7	(-16) 1.7
8	(-16) 1.2	(-17) 2.5	(-16) 2.5
9	(-16) 1.0	(-17) 2.4	(-16) 3.5
10	(-17) 7.3	(-17) 2.2	(-16) 4.8
11	(-17) 4.8	(-17) 2.1	(-16) 6.6
12	(-17) 2.4	(-17) 2.0	(-16) 8.6
13	0.0		

TABLE 2

First sixteen polynomials orthogonal with respect to the scalar product $(f, g) = \int_0^\infty \operatorname{erfc}(x)f(x)g(x) dx$. The coefficients are ordered following the decreasing powers of x. For example, the second-degree polynomial is approximately $p_2(x) = x^2 - 1.35x + 0.264$.

degree 0		degree 7
1.00000 00	0000 00000	U U
		(-1)-1.59280 57293 12968
1		4.00002 89900 2000
degree 1		(1) 5 50214 97631 00272
	($(1)_{-6}$ 22930 73346 99218
(-1)-4.43113 4	6272 63790	(1) 3,50528 71260 54658
1.00000 00		-9.56516 01678 28539
		1.00000 00000 00000
degree 2		
U		degree 8
(-1) 2.63907 4	5846 91510	degree 8
-1.34782 8	1344 19103	(1) 1 05050 50467 50136
1.00000 0	0000 00000	(-1) 1.85050 52867 50136 -5 44440 03831 45843
		-3.64460 02821 43842
1		(2)-1 17503 25457 81872
degree 5		(2) 1.68875 47149 73991
	2400 42575	(2) = 1, 30437, 09256, 21547
(-1)-1.901/1 2	5800 42575 4210 02063	(1) 5.48253 01848 02072
1.00432 8	4210 02003	(1)-1.17484 67323 09489
-2.55919 0	0000 00000	1.00000 00000 00000
1.00000		
degree 4		degree 9
(-1) 1.57384 9	0122 88715	(-1)-2.27856 44262 46158
-1.91636 8	0353 98978	8.15920 09750 55590
4.87950 4	8762 39656	(1) = 6.93607 43469 76043 (2) 2 42876 44333 11118
-4.01018 1	4460 37398 0000 00000	(2) - 4 - 31508 058/0 25540
1.00000 0	0000 00000	(2) 4.28075 72282 38953
		(2)-2.45982 69604 81033
degree 5		(1) 8.09256 91094 27278
0		(1)-1.4078/ 40810 91919
(-1)-1.45181 1	2915 76531	1.00000 00000 00000
2.36388 8	4058 09562	
-8.47579 4	7416 00099	
(1) 1.09608 5	3386 21661	degree 10
-5.68398 2	0904 56470	
1.00000 0	0000 00000	(-1) 2.95562 02971 09199
		(1)-1.22276 58537 98924
degree 6		(2) 1.21022 50205 56238
005100 0		(2)-4.99433 98195 12650
1-1) 1 46419 5	2508 81862	(3) 1.06450 41977 91601
-3 03400 7	2000 01002 8200 00483	(3)-1.30010 (1830 84340
(1) 1.42776 4	7509 63747	121 4.30220 13030 23001
(1)-2.56745 0	6962 56243	(2) 1 14230 01788 47078
(1) 2.07253 2	5849 80429	(1)-1.65473 39858 57488
-7.53930 2	5678 37419	
1.00000 0	0000 00000	1.00000 00000 00000

TABLE 2 (continued)

	-11 5.70573		
(-1)-4.01902 156/7 85816 (1) 1.89609 50515 51237 (2)-2.15292 50464 52882 (3) 1.02876 29396 70655 (3)-2.57278 58022 54351 (3) 3.75586 15079 64427 (3)-3.39034 95535 63455 (3) 1.94082 76197 81112 (2)-7.03145 11053 27266 (2) 1.55646 93976 48508 (1)-1.91469 83574 97391 1.00000 00000 00000	(1)-3.03656 (2) 3.90795 (3)-2.13200 (3) 6.14953 (4)-1.04987 (4) 1.12961 (3)-7.91723 (3) 3.65382 (3)-1.09783 (2) 2.06037 (1)-2.18714 L.00000	59772 33418 17623 37901 08660 70018 43871 32167 64468 83048 64014 28498 00000	00071 48806 25917 17855 11039 11033 16176 89054 93299 90957 77419 95518 00000

TABLE 3

Abscissas and weight factors for the 2-point to 12-point Gaussian integration of $\int_0^\infty \operatorname{erfc}(x) f(x) dx \approx \sum_{i=1}^n w_i f(x_i)$.

2-point formula ×i ۳i (-1) 4.31362 74656 8 (-1) 1.32826 83697 3 (-1) 2.37734 38919 5 1.11009 37452 2 3-point formula ×i w_i (-1) 3.18951 01760 6 (-1) 2.24661 47274 2 (-2) 2.05770 93199 8 (-1) 1.54164 78808 7 (-1) 7.41558 72890 8 1.66346 66260 7 4-point formula ۳i ×i (-1) 1.10435 23644 6 (-1) 5.44173 73334 6 1.22674 99482 9 2.13482 25279 6 (-1) 2.43861 10764 2 (-1) 2.52484 36824 2 (-2) 6.51504 63867 3 (-3) 2.69364 37970 1 5-point formula w_i ×i (-2) 8.41744 61816 4 (-1) 4.21632 83009 9 (-1) 1.93037 95728 9 (-1) 2.48263 05150 5 (-1) 1.08110 44734 5 (-1) 9.63742 64731 8 1.66474 17939 5 2.54969 03572 7 (-2) 1.44584 86503 9 (-4) 3.19640 90482 3

TABLE 3 (continued)

6-point formula w i ×1 (-2) 6.69431 49652 0 (-1) 1.57287 34770 0 (-1) 2.31713 66654 3 (-1) 3.39112 56023 9 (-1) 7.84935 94275 0 1.36357 52199 6 (-1) 1.38151 69364 9 (-2) 3.42845 52679 5 (-3) 2.71682 53055 5 (-5) 3.54976 70462 2 2.06126 69281 1 2.92346 87671 3 7-point formula ×i ۳i 2) 5-49123 05061 0 (-1) 1.31182 57034 8 (

(-2)	5.49123	05061	0	(-1)	1.31182	57034	8
(-1)	2.80385	45936	9	(-1)	2.11756	76314	2
(-1)	6.55644	77802	3	(-1)	1.55184	07675	1
	1.14781	30451	2	(-2)	5.66734	24306	1
	1.73629	77397	3	(-3)	8.93478	26639	1
	2.42423	12979	4	(-4)	4.54210	81438	1
	3.26587	55425	8	(-6)	3.75552	25977	5

8-point formula

×í

	×i				w _i		
(-2)	4.61168	15858	0	(-1)	1.11498	80399	6
(-1)	2.36840	20722	2	(-1)	1.92042	52854	2
(-1)	5.58296	24892	3	(-1)	1.62489	71991	7
(-1)	9.84661	14109	2	(-2)	7.71608	17817	4
	1.49562	40201	2	(-2)	1.89093	96565	5
	2.08349	43372	2	(-3)	2.01837	26775	5
	2.76002	10216	3	(-5)	6.95612	94614	4
	3.58341	35310	3	(-7)	3.82737	13411	6

9-point formula

v		
~		
	т.	

			"i	
95065	(-2)	9.62504	34631	75948
97209	(-1)	1.73913	52569	73502
51686	(-1)	1.63368	15056	63357
59237	(-2)	9.36339	79723	28827
50268	(-2)	3.12025	34366	38391
62237	(-3)	5.40257	21407	42783
71411	(-4)	4.08403	26025	89112
18331	(-6)	9.94530	47663	76975
82185	(-8)	3.78568	70502	76278
	95065 97209 51686 59237 50268 62237 71411 18331 82185	95065 (-2) 97209 (-1) 51686 (-1) 59237 (-2) 50268 (-2) 62237 (-3) 71411 (-4) 18331 (-6) 82185 (-8)	95065 (-2) 9.62504 97209 (-1) 1.73913 51686 (-1) 1.63368 59237 (-2) 9.36339 50268 (-2) 3.12025 62237 (-3) 5.40257 71411 (-4) 4.08403 18331 (-6) 9.94530 82185 (-8) 3.78568	wi 95065 (-2) 9.62504 34631 97209 (-1) 1.73913 52569 51686 (-1) 1.63368 15056 59237 (-2) 9.36339 79723 50268 (-2) 3.12025 34366 62237 (-3) 5.40257 21407 71411 (-4) 4.08403 26025 18331 (-6) 9.94530 47663 82185 (-8) 3.78568 70502

10-point formula

		×i				w _i	
(-2)	3.42628	01138	86749	(-2)	8.41668	63665	35992
(-1)	1.77312	18994	41196	(-1)	1.57737	80598	10978
(-1)	4.22781	07835	69875	(-1)	1.60300	15054	20744
(-1)	7.54733	44456	28952	(-1)	1.05673	96969	32892
	1.15757	30911	38683	(-2)	4.41063	95402	82426
	1.62004	57105	40419	(-2)	1.07617	84774	27428
	2.13749	28265	08512	(-3)	1.36559	15712	75019
	2.71396	59924	26909	(-5)	7.56732	98220	39683
	3.36822	21668	40246	(-6)	1.34496	57738	44262
	4.16095	05571	17240	(-9)	3.65356	71368	48986

TABLE 3 (continued)

1	1-point	formul	la				
		x,				w,	
		-				1	
(-2)	3.01235	67809	91510	(-2)	7.44055	09878	89769
(-1)	1.56296	82886	65323	(-1)	1.43487	70531	10929
(-1)	3.74198	70530	56710	(-1)	1.54963	63216	15209
(-1)	6.71167	50 30 5	64438	(-1)	1.13709	41476	46168
	1.03398	56465	21831	(-2)	5.62965	55142	88725
	1.45196	45969	91976	(-2)	1.77366	27598	88245
	1.91877	38247	88675	(-3)	3.26453	10661	40002
	2.43357	98552	23858	(-4)	3.12389	65808	86007
	3.00296	80277	35979	(-5)	1.30439	25358	55835
	3.64709	52982	26328	(-7)	1.73694	86390	16921
	4.42682	97204	46769	(-10)	3.45407	07142	18236
1	2-point	formu	la				
		×i				"i	
(-2)	2.67596	38529	66870	(-2)	6.63896	49104	55207
(-1)	1.39130	82411	60834	(-1)	1.30989	46211	29896
(-1)	3.34211	81025	64531	(-1)	1.48437	89982	53906
(-1)	6.01843	95516	62340	(-1)	1.18464	93278	90080
(-1)	9.30884	38305	86750	(-2)	6.69879	22078	42853
	1.31158	64866	34759	(-2)	2.56988	20629	53840
	1.73714	04275	97650	(-3)	6.26273	84099	13355
	2.20451	49081	77997	(-4)	8.90261	21073	45358
	2.71527	22992	95223	(-5)	6.57595	07884	67420
	3.27754	09264	30984	(-6)	2.11627	18607	02677
	3.91228	24599	57907	(-8)	2.15753	71144	04678
	4.68026	03797	33544	(-11)	3.20845	69902	36600

This check is summarized in Table 1. It gives the relative change of the coefficients of the 12th-degree polynomial when a relative increase of 3.10^{-33} is applied to the moments μ_p used in the computation. The relative change of the zeros and weights is also displayed. This table shows that the recursion scheme (12) is not a stable computation process. However, since a full precision of about 33 digits can be easily obtained in computing the moments μ_p for this particular problem, an error is likely to appear in the 16th place of the computed abscissas and weights for the 12-point formula. For shorter formulas, a better precision is reached.

Though quite general from an algebraic point of view, the method just described is then not obviously applicable to generate high-precision Gaussian rules. For the special case considered here, Table 2 gives the coefficients of the first 12 polynomials orthogonal with respect to the scalar product (4).

The zeros of these polynomials have been computed by means of the Bairstow iteration method [11] and the corresponding weight factors have been deduced. These values are reported in Table 3.

The efficiency of the formula can be checked on the following example

(13)
$$I_1 = \int_0^\infty \operatorname{erfc}(x) e^{-\alpha^2 x^2} dx = \frac{\operatorname{arctg} \alpha}{\alpha \sqrt{\pi}}.$$

	form
	Gaussian
	the
	from
TABLE 4	obtained
	result
	the
	oetween

			Gaussian	formula (3)	
8			Relative : Error :	n = 12	: Relative : Error
0.5	: : 0.52317 03028 70155 5 :	0.52317 03028 7025 :	(- 13) 2.	0.52317 03028 70155 5	: (- 16) 6.
1.0	0.44311 34627 26379 0	0.44311 34616	(-9) 2.	0.44311 34627 24	(-12) 5.
1.5	: 0.36965 46542 88	0.36965 53	(-6) 2.	0.36965 4657	.9 (6-)
2°0	0.31232 0887	0.31230	(-5) 6.	0.31232 07	(-7) 3.
2.5	0.26861 965	0.26862 0	(-5) 2.	0.26862 0	: (-6) 4.
	-	•	-		

nula and the exact value of the integral $\int_0^\infty \operatorname{erfc}(x) e^{-\alpha^2 x^2} dx$. Comparison be

The function $\exp(-\alpha^2 x^2)$ is easily approximated by a low-degree polynomial, especially when α is small. Table 4 gives some points of comparison between the exact and the approximate integral. It can be seen that a good accuracy (at least 5 places) is readily obtained with the 8-point formula for α less than 2.5.

Acknowledgments. The authors are very grateful to the Belgian Fonds National de la Recherche Scientifique for financial support.

Institut de Physique, B5 Université de Liège B-4000 Sart Tilman/Liège 1, Belgium

1. J. H. AHLBERG, E. N. NILSON & J. L. WALSH, The Theory of Splines and Their Applications, Academic Press, New York, 1967.

2. G. E. FORSYTHE, M. A. MALCOLM & C. B. MOLER, Computer Methods for Mathematical Computation, Prentice-Hall, Englewood Cliffs, N.J., 1977, p. 92.

3. A. H. STROUD & D. SECREST, Gaussian Quadrature Formulas, Prentice-Hall, Englewood Cliffs, N.J., 1966.

4. M. ABRAMOWITZ & I. A. STEGUN, (Eds.), *Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables*, Appl. Math. Series No. 55, U.S. Government Printing Office, Washington, D.C., 1964.

5. PH. LAMBIN & J. P. VIGNERON, "Tables for the Gaussian computation of $\int_0^{\infty} x^{\alpha} \exp(-x) f(x) dx$ for values of α varying continuously between -1 and +1," *Math. Comp.*, v. 33, 1979, pp. 805-811.

6. M. M. MORSE & H. FESHBACH, *Methods of Theoretical Physics*, McGraw-Hill, New York, 1953, Part I, Chap. 8, p. 928.

7. W. GAUTSCHI, "Construction of Gauss-Christoffel quadrature problems," Math. Comp., v. 22, 1968, pp. 251-270.

8. W. GAUTSCHI, "On the construction of Gaussian quadrature rules from modified moments," *Math. Comp.*, v. 24, 1970, pp. 245-260.

9. W. GAUTSCHI, "Algorithms 3311 Gaussian quadrature methods," Comm. ACM, v. 11, 1968, pp. 432-436.

10. G. H. GOLUB & J. H. WELSCH, "Calculation of Gauss quadrature rules," Math. Comp., v. 23, 1969, pp. 221-230.

11. J. H. WILKINSON, "The evaluation of the zeros of ill-conditioned polynomials," Parts 1 and 2, Numer. Math., v. 1, 1955, pp. 150-180.