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An Efficient Algorithmic Solution

of the Diophantine Equation u1 + 5v2 = m

By Peter Wilker

Abstract.   The determination of irreducible elements of the domain Z[^J — 5 ) re-
2 2

quires the solution of the Diophantine equation u    + Sv   = m, where m represents

certain primes or products of two primes.   An algorithm of order log m is given for

the solution of the equation.

1.   Introduction.   It is well known that looking for primes of the domain

Z[V-1], one has to solve the Diophantine equation u2 + v2 = p for rational primes

p = 1 mod 4.  An efficient method for an algorithmic solution of the equation has

already been presented by Hermite.  Recently, J. Brillhart [1] published a considerable

simplification of Hermite's method.

If one considers domains like Z[\^5], which have no unique decompositions

into irreducibles, the situation is more involved.  It can be shown, using methods of

algebraic number theory, that the irreducibles of Z[\f^5\ are

(1) Rational primes p = 3,7, 11, 13, 17, 19 mod 20.

(2) The numbers 2 and \J—5.

(3) Solutions u + u-v/^5 of the Diophantine equation u2 + 5v2 — m, where m

is equal to one of the following:

(a) p, p a prime =1,9 mod 20,

(b) 2p, p a prime = 3,7 mod 20,

(c) pq, p, q primes =3,7 mod 20.

(In case (c) there are always two nonassociate solutions.)

It is the purpose of this note to present an algorithm, shaped after the one used

by Brillhart (Joe. cit.), to efficiently solve u2 + 5v2 = m for appropriate numbers m.

The algorithm is easily described, but the proof is more involved as the continued frac-

tions which occur are no longer regular.  We prefer a direct approach using methods,

but not results, from the theory of continued fractions.

The proof that the algorithm leads to a solution of the equation implies the

existence of a solution.   Otherwise, to prove existence, one usually relies on results

from the theory of quadratic forms.   For an approach using Minkowski's theorem, see

Mordell [3].

We shall first derive necessary conditions for u2 + 5v2 = m to be solvable, next

describe the algorithm, and finally present a proof that it always leads to a solution.
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Some remarks on the order of the algorithm and possible generalizations will conclude

the paper.

2. Necessary Conditions for Solvability.  Suppose u2 + 5 u2 = m is solvable.

If m is divisible by 4 or 5, the equation will also be solvable for m/4 and m/5, re-

spectively.  We may therefore assume m not to be divisible by either 4 or 5. As the

case m = 1 is trivial, we shall also assume m > 1.

Suppose m is odd. As m = u2 mod 5, m must be = 1, 4 mod 5 and m = 1, 9,

11, 19 mod 20.  Considering the equation mod 4, one obtains m — 1,9, 13, 17

mod 20.  Hence m = 1, 9 mod 20.

If m is even, m = 2m say, then by the same argument m =2,3 mod 5 and

m = 3, 7, 13, 17 mod 20.  Considering the equation mod 8, one obtains easily m =

3, 7, 11, 19 mod 20.  Hence m =3,1 mod 20.

We want to restrict m somewhat more.  Suppose a prime p # 5 divides m but

does not divide u and u.  We choose x such that u = xv mod p.  Then x2 + 5 =

0 mod p, and -5 is a quadratic residue mod p.  Consequently, p = 1, 3, 7, 9 mod 20

or p = 2.  If, therefore, p divides m, but p = 11, 13, 17, 19 mod 20, then p must

divide either u or v, hence both, which in turn means that p   divides m; u/p and v/p

will then be a solution with respect to m/p2. Thus, we may assume m not to be divisible

by any prime p = 11, 13, 17, 19 mod 20.  As a consequence, x2 +5 = 0 mod m

will always be solvable.

We shall use the results and assumptions of this section implicitly in the sequel.

3. Description of the Algorithm.  To start the algorithm for a given m, solve x2

+ 5 = 0 mod m with 0 < x < m. (It is sometimes convenient, though not necessary,

to choose x such that 0 < x < m/2.)  Next develop the Euclidean algorithm with m

and x = r0 as a start:

™=foro +ri>

ro=firi +r2,

rn-2       fn-lrn-l  + rn'

rn-l = fnrn + rn+\-

We may always assume r2, > m. If r% < m, obviously x2 + 5 = m and u = x; v = 1 is

already a solution of u2 + 5v2 = m.

Develop the algorithm to the point where there is a first remainder less than\A".

Let the notation be so chosen that r2n + 1 <m, while r2 > m.  We must have rn + 1 > 0,

for rn + 1 =0 implies that rn is a divisor of x and m, hence of 5.  As m does not have

the divisor 5, rn must be equal to 1, contradicting r2 > m.

Define a sequence g¡ recursively as follows:

£_! = 1,    g0 =/o>    £/=//£,--l  +gj-2        0' = 1, • • • , «)•
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We shall prove in Section 5:

Theorem 1. m = r2+x + 5g2.

As Brillhart in his note, we want to show that the calculation of gn can be dis-

pensed with.  There are two cases to consider.

Case S. rn is divisible by 5 and (/„/5)2 < m. We shall prove in Section 6:

Theorem 2S. gn = rj5, consequently m = r2+x + 5(rn/5)2.

Case N.  Case S does not apply. We need the following:

Lemma N.   The linear Diophantine equation rn = rn+xs + 5t is solvable with

s>0,0<t<rn + 1.

Lets=fn + l>t = rn + 2-

Theorem 2N.  gn = rn+2, consequently m = r2+x + 5r2+2.

We shall prove Lemma N and Theorem 2N in Section 7.

Let us consider two examples.

Case S.  m = 134, x = 53.        134 = 2-53 + 28,

53 = 1-28 +25,

28 = 1-25 +   3.

g2 = 5 = r2/5.  Solution 134 = 32 + 5-52.

Case N. m = 269, x = 110.      269 = 2-110+49,

110 = 2-49 + 12,

49 = 2-12 +5.5.

gx=r3 = 5.      Solution 269 = 122 +5-52.

4. Some Identities. In this section we derive some identities between the vari-

ables of the algorithm. Though we shall only need a few of them, it is quite as easy

to state them in full generality.

(1),- m = girt + g¡_ xri+x      (i = 0, 1, . . . , n).

This follows immediately from the definition of g¡.

Next we show that there are constants f„ such that

rirj = i-iri+'5gi_1gj_x+tijm,

for /, / = 0, 1, . . . , n + 1.

By induction, g¡x = (-l)'+1r¡+, mod m, i = 0.n.  Multiplying by x and

adding 5g,., we get ^.(x2 +5) = 0 = (-1),+ xrf+ ,x + 5g¡ mod m, hence r¡x =

i-iy+Hgf^mod m,i = 0,...,n + l.  Finally, rigj_xx = (-l)i+15gi_xgj_x =

(-lyVj-r- mod m.

To simplify notation we introduce a¡ = tu, b( = tii+ ,.  The identities just

established imply

(2),. r]  +5g2_x =a¡m      (i = 0.n + 1),

(3),. rtrl+, - 5g._ xg. = b,m      (i = 0, . . . , n).
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Multiplying (l)f by ri+x and using (2);+1 and (3),., we obtain

(4),- r¡+, = btgt + ai+ xgi_,       (i = 0.n).

We need one inequality

(5). If rf>m,   then rt > g¡.

To prove it, by (1); write rf - m = rf -g¡rt -g(_xri+i = rfa -g,)-g¡_xri+1 > 0.

Hence r¡ — g{ > 0.

Lemma 1.   a. ^ 2, 3 mod 5 and a¡ ^ 0 mod 4 (i = 0,. . . , n + 1).

Proof.   As was shown in Section 2, solvability of u2 + 5v2 = m implies m =

1, 4 mod 5.  If a¡ = 2 or 3 mod 5, then a¡m = 2 or 3 mod 5, which contradicts (2)f.

To prove the second assertion, multiply identities (2)f and (2)i+, together and

use (3)f and (l)f to get

(6),- a¡ai+x=b2+5.

If 4 divides a¡, then 4 divides ¿>? + 5, which is impossible.

5.   Proof of Theorem 1.   To prove Theorem 1, we have to show that an+x = 1.

By(1)„,(2)B + 1 and (5)„ we get

5m = 5gnrn + 5g„_1r„+1 > 5g2n + 5gn_xrn + x

= an + 1m + 5gn_xrn + 1 - r2+1 > an+xm - r2n+1.

From the assumption r2+i < m we infer 6m > an+xm, hence 1 < an+, < 5.  By

Lemma 1, an+, cannot be equal to 2, 3 or 4.  By (2)n+,, an+ x = 5 if and only if 5

divides rn+x.  (Remember that 5 does not divide m.) We now show that this is im-

possible.  Thus an+l = 1 and Theorem 1 is proved.

Lemma 2. rn +, ^ 0 mod 5.

Proof.   Suppose rn+1 = 5r'n+1, hence an+l = 5. (3)n implies bn = 5,0^ and

(3)n and (4)n change to

rnrn + i -Sn-ig„ = b'„m;      r'n + x = b'ngn + gn_v

Because gn > gn_x, we must have b'n > 0. b'n = 0 leads to r¿+, = gn_x and rn =

gn, contradicting (5)^. Thus b'n > 0, which in turn implies r'n+1 > gn. But an + xm

= 5m = r2!+1 + 5g2 <r2+1 + 5^2+1 < 2a-2+1 < 2m is impossible.

Note that rn+x = 1 implies m = 5gn + 1.   Let x = 5gn, then x2 + 5 = 5m

and m = gnx + 1.  This shows n = 0.  (The argument does not apply to the lowest

case m = 6.)  In the sequel, we may therefore assume rn+1 > 1.

6. Proof of Theorem 2S. Let us now take up Case S. As rn is divisible by 5,

the same holds for an by identity (2)n. We shall write rn = 5r'n and an = 5a'n. (2)n

changes to

(2)'n 5r'2+g2n_x=a'nm.
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Lemma 1, applied to an, shows a'n ¥= 4.  The argument of Lemma 1, applied to iden-

tity i2)'n, yields a'n i= 2 or 3.

We now show that, by our assumption at the end of the preceding section, n

cannot be 0.  For n = 0, (2)¡j would read 5r'02 + 1 = a0m.  As r'02 < m, we would

get a'0 < 5.  As a'0 = 5 is clearly impossible, a0 = 1, and consequently rx = 1, a case

we agreed to omit.

(1)„_! and (5)fJ_1 now lead to

m=gn_xrn_x +gn_2rn >g\_x + gn_2rn

= a'nm + gn_2rn - 5r'2 > dnm - 5r'2.

As r'2 < m, we get 1 <a'n < 5. We have already excluded a'n = 2, 3 or 4. a'n = 5

would mean that g„_1 is divisible by 5, which in turn, by (1)„, would make m

divisible by 5.  Hence a'n = 1.

Introducing an + l = 1 and an = 5 into equality (6)„ shows bn = 0.   By (3)n

and (4)n we get rn+ x = gn_ x and rn = 5gn.  This proves Theorem 2S.

7. Proof of Lemma N and Theorem 2N.  To establish Lemma N, note that, by

Lemma 2, rn + x and 5 are relatively prime.  Thus, there is a solution of rn = rn + xs -

5r with s > 0, 0 < t < rn + x. We may also assume t > 0.  For t = 0 means that rn+,

divides rn, which is only possible if rn + x divides 5.  This in turn means that rn + x = 1,

a case already dealt with.

Introduce rn = rn + 1s - 5t into (3)n and use (2)„ + 1 with an + 1 = 1:

V« + l =rn+ls-5rn+lt = Sm^5sën-l ~ 5rn+ l' = 5^«- lin + bnm-

Thus

(s - bn)m = 5(sg2n +rn + xt +gn_1g„).

Identity (4)n, together with an+, = 1 and gn > gn_x, imply bn > 0.  If bn = 0, then

rn +1 = 8n-i an(^ 'n = ^^n ^v (3)n > which can only hold in Case N if g2 > m.   But

(2)n+ j shows 5g2 < m.   Therefore bn > 0.

The equation derived above now implies 0 < s - bn < s and shows at the same

time that s - bn is divisible by 5.  This can only hold if s > 5.  Consequently, we

may define fn+x = s - 5 and rn + 2 = rn +, - t, which proves Lemma N.  Note that

the solution as stated in the lemma is clearly unique.

To prove Theorem N, introduce (4)n into (1)„ and use (2)„ + 1 to obtain

rn=bnrn+l + 5Sn-

As was shown above, bn > 0.  From (4)n we infer 0 < gn < rn + x.  Hence, as noted,

bn =/„+1 and gn = rn + 2, which is Theorem 2N.

8. Efficiency of the Algorithm.   Concluding Remarks.  The algorithm presented

in Section 3 consists of three parts:

(1) A Euclidean algorithm (with certain tests on the way).

(2) The solution of a linear Diophantine equation.

(3) The solution of x2 = -5 mod m.
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As is well known, (1) and (2) are problems of order log m.  Problem (3) is also

of order log m, as has been shown by D. H. Lehmer [2], if the prime factors of m are

known.   It is unknown to this author if Lehmer's procedure can be generalized to

composite m without knowing its factorization.  However, if one is interested not in

the solution of u   + 5v2 = m for general m, but only in the determination of irreduc-

ibles of Z[\/-5], the problem does not present itself, though, of course, it is now

necessary to determine primes = 1, 3, 7, 9 mod 20.

The imaginary quadratic number field Q(\/-5) has class number 2.  Recently,

all fields of this kind have been determined (H. M. Stark [4]).  Of the 13 fields

QXyJ-d) (note that d in our notation does not denote the discriminant) two have

prime numbers for d (5 and 37), while the rest has d\ with two prime factors.

The author has applied the algorithm presented in this paper to the case d = 6.

There occurs a new phenomenon, as Theorem 2 S is not necessarily true with 6 instead

of 5.  For instance:

m = 4054,   x = 544      4054 = 7-544 + 246,

544 = 2-246 + 52.

246 is divisible by 6 and 412 < 4054.  Again, 522 < 4054. Nevertheless, 522 +

6-412 = 11850.

An analysis of the proof shows that Eq. i2)'n of Section 6, with 6 instead of 5,

does not necessarily imply a'n = 1.  One can show that in case a'n¥= 1 one has to

switch to Case N.  In the example above the next line would be

246 = 3-52 + 6-15

and 522 + 6-152 = 4054.

Of course, the reason underlying the different behavior of the algorithms is the

fact that 6 is not a prime like 5.  It is reasonable to assume that the other cases of

quadratic number fields with class number 2 behave like the cases for 5 and 6, but the

author has not attempted to treat the remaining cases.
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