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Reciprocal Polynomials Having Small Measure

By David W. Boyd*

Abstract.  The measure of a monic polynomial is the product of the absolute value of

the roots which lie outside and on the unit circle.  We describe an algorithm, based on

the root-squaring method of Graeffe, for finding all polynomials with integer coeffi-

cients whose measures and degrees are smaller than some previously given bounds. Using

the algorithm, we find all such polynomials of degree at most 16 whose measures are

at most 1.3.   We also find all polynomials of height 1  and degree at most 26 whose

measures satisfy this bound.   Our results lend some support to Lehmer's conjecture.

In particular, we find no noncyclotomic polynomial whose measure is less than the

degree 10 example given by Lehmer in 1933.

1.  Introduction.  The measure M{P) of a polynomial P{x) = a0x" + • • • + an

with _0 =£ 0 with zeros a,, . . . , a„ is defined by [8, p. 5]

M{P) = \a0\ TJ max(|a,.|, 1) = exp ( Ç log|P(e27rif)l_r}.

If P has integer coefficients, as we assume unless otherwise stated, Kronecker's

theorem tells us that if M{P) = 1 and an =£ 0, then P is cyclotomic. Lehmer [7] raised

the question of whether there might be a constant e0 > 0 independent of n so that,

if P is not cyclotomic, then M{P) > 1 + e0.

Smyth [12] has proved that if P is nonreciprocal, then M{P) > 90, where 60 =

1.3247 ... is the smallest Pisot-Vijayaraghavan number.  For reciprocal P, the ques-

tion is still open, although Dobrowolski [5] has recently proved that

M(P) > , + _L (!_|__L_) 3,
v ' 1200 \    log «   /

unless P is cyclotomic.   Surveys of related results have been given by Stewart [13] and

the author [3].  In [3], we used Lehmer's notation £1{P) for M{P) and (unfortunately)

M{P) for maxla,!.  The notation adopted here is due to Mahler [8].

In [7, p. 477], Lehmer states that, "we have not made an examination of all

10th degree symmetric polynomials, but a rather intensive search has failed to reveal

a better polynomial than

x10 +x9 -x1 -x6 -xs -x4-*3 +x + 1, £2= 1.176280821.

All efforts to find a better equation of degree 12 and 14 have been unsuccessful".
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In view of the current interest in Lehmer's conjecture and urged on by C. L.

Stewart, we recently carried out an exhaustive search of polynomials of small degree

(n < 16) for those of small measure (generally M < 1.3), and in addition a search of

all polynomials of height 1 up to n = 26.  (In this paper, the height H{P) is defined

by H{P) = max\a.|.)  We also investigated a number of families of polynomials as de-

scribed in Section 5. In spite of this extensive investigation, we found no better poly-

nomial than Lehmer's 1933 example.

Because of Smyth's result, we were able to restrict consideration to reciprocal

polynomials, although it should be pointed out that the structure of the set {M(P):

P nonreciprocal} is far from being well understood.  With M{P) < 2, we have \a0\ = 1

and hence we may assume that a0 = an = 1.   Using the symmetry x —► -„, we may

also assume that ax > 0.  If P{x) = Q{xs), then M{P) = M{Q), so we can omit P of

this form with s > 1.

For any fixed M and n, the set of P with degree n and M{P) <M is clearly finite.

For example [8, p. 7],

(2) >•-•<(„)*

However, the number of reciprocal P satisfying (2) with, say, n = 10,A/ = 1.3, a0 = 1,

and ax > 0 is about 1.5 x 101 ' so a direct calculation of M{P) for all such P is out

of the question.   Using Newton's identities, a smaller set results, as described in Section

3(c), but even for relatively small n a more elaborate algorithm is needed.

Our approach is based on the root-squaring method of Graeffe, described in most

numerical analysis texts and in complete detail by Bareiss [1].  The efficiency of our

algorithm depends to a considerable extent on certain improvements of (2) given in

Section 2.   However, the basic idea can be illustrated using (2), and the following con-

sequence of (1) and (2), [8, pp. 7-8] :   Let L{P) = H^Q\ak\ be the length of P, then

(3) M{P) < L(P) < 2"M{P).

Let Pm{x) = a{0, m)x" + • • • + a{n, m) be the monic polynomial whose roots

are the 2mth powers of the roots of P.  As is well known,

a(k, m) = (-l)ka(k, m - I)2

(4) min(fc,7i-fc)

+ 2       £       (-l)'+ka(k - j, m - l)a(k +j,m- 1),

/=i

so PX,P2, . . .  are easily generated recursively.  Since evidently M(Pm) = M(P)2m,

the requirement M(P) < M and (2) imply that

(5) \a(k,m)\<(nk)M2m.

Thus, if one begins with an initial set R0 of polynomials (all those satisfying (2), say),

one obtains in succession sets R0 D Rx 3Ä2 D • ■ • , where Rm consists of those

polynomials in Rm_ x satisfying (5).  Now (3) implies that

(6) M(P) = M(Pm)2'm < L(Pm)2~m < 2"l2mM(P),



RECIPROCAL POLYNOMIALS HAVING SMALL MEASURE 1363

so that Rm contains only polynomials with measures < 2"l2mM   Thus Rx = D Rm

is exactly the set R0 n {M(P) < M }.

In fact one stops the process for a moderately small value of m = m* and simply

computes M(P) for all P in Rm » from (1). Although (6) shows that lim L(Pm)2

= M(P), we have found that the direct computation of M(P) by finding the zeros of P

and using (1) is a more effective way of calculating an accurate value of M(P).  The

advantage of (6) is that it gives reasonably good bounds on M(P) by a small amount

of computation.

An additional feature of this approach is that if P is cyclotomic, then Pm =

Pm + X as soon as 2m_1 > n (see Section 3(b)).  Thus the cyclotomic polynomials may

be detected in a small number of steps.

Timings are given in Section 4.  Initially we hoped to extend our exhaustive

search to n = 20 but eventually settled for « < 16. The case n = 18 is feasible, but

potentially expensive, so this has been deferred in the hope of future theoretical

progress or else an improved algorithm.

The search among polynomials with H(P) = max |_f| = 1 is considerably less ex-

pensive.  It is known that, for any P with M(P) < 2, there is a Q with integer coeffi-

cients with H(PQ) = 1.  It has been our experience that Q can be taken to be cyclo-

tomic and of fairly small degree relative to n.  The proof of a quantitative result of

this nature would greatly enhance the value of the lists in Section 6 for 18 < n < 26.

2.  The Basic Inequalities.   In this section, P is any polynomial with complex

coefficients.  We shall derive a number of inequalities for \ak\ which depend on M(P).

We begin by recalling the notion of Schur convexity [10, pp. 167-168].  Sup-

pose that x = (Xj, . . . , xn) is a vector with real components and that „J, . . . ,x*

denote xx, . . . ,xn arranged in decreasing order.  If y = {yx, . . . , yn), we write

x -< y provided that

£ „,* < __ y?>      k=l,...,n,
i= 1 I-1

with equality holding if k = n.  A function F{x) is said to be Schur convex if x -< y

implies F{x) < F{y).

Lemma 1 (Schur, Ostrowski [10, p. 168]). If F is differentiable, then it is

Schur convex if and only if {x¡ - „.) (F¡ - F-) > 0, for all i and j, where F¡ denotes

the partial derivative with respect to x¡.

Lemma 2.   Let ok(ax, . . . , an) be the kth elementary symmetric function of

ax, . . . , an.   Then F(x) = ok(e 1, . . . , e ") is a Schur convex function of x.

Proof.   F i - F, = (e ' - e >)A, where A is a nonnegative function of the re-

maining variables.

Lemma 3.  Let P(x) = a0x" + ■ • •   + an satisfy M(P) <M   Then

m Ki < (j : î) -+(: : f) w+(" ;2) M+(; : î) k«„i«-.



1364 DAVID W. BOYD

Proof.   Assume for the moment that an =£ 0.  Number the roots of P so that

\ax\ >       > |_J > 1 > |_m + 1| > • • • > |a_| > 0.   Define x, = log|_f|.  Then

(8) „, + • • • + xm - Iog0i0>)/|_o|) < log(M/|_0|),

(9) *m + x + ■ • • + xn = log(|__ IMP)) > log(|«- l/M).

If we define j^j = log(M/|_0Q, >»„ = log(\an\/M), and ^ = 0 otherwise, then it is easy

to check that x -< y.   Hence, by Lemma 2,

(10) ok(\ax\, ..., \an\) < ak(M/|_0|, 1, . . . , 1, \an\/M),

from which (7) is immediate.

Using continuity, the assumption aniz 0 can now be dropped.

Remarks.   1.  The inequality (7) is uninformative if k = 0 or n, but in these

cases |_0| <M and \an\ <M   For our purposes _0 = an = 1, so (7) improves (2) con-

siderably, especially for large M.   Note that (2) is sharp only if M = 1, while (7) is

sharp for all M, with equality for P(x) = (x + M) (x + 1)"~2 (x +M'1).

2.  It is often possible to obtain information concerning max\a.\ and min|„(.|,

(see e.g. Lemma 6 or [9, Chapter 7]).   Lemma 2 allows us to use this information

very easily, as the next result illustrates:

Lemma 4.   Let P satisfy M(P) < M.  Suppose in addition that la, | = maxla,-! <

a <M/\a0\, and that \an\ = minla^ > c > ajM.  Define integers s, t and real num-

bers b, d with l<b<a,l<d<cby

asb = M/\a0\   and   ctd= \an\/M.

Then

(11) \ak\ < \a0\ok{a,-a, b, 1_, 1, d, c.c),

where a, c, and 1 are repeated respectively s, t, and n - s - t - 2 times.

Proof.   Analogous to Lemma 3 except that y is defined by yx = • • • = y  =

log a, ys+x = log b,yn_t = log d, yn_t+x = • • • = yn = log c, and y¡ = 0 otherwise.

Obvious modifications are of course made ifn-s-f-2<0.

Lemma 5.   if P is a reciprocal polynomial with a0 = an = l,for which M{P) <

M and max|a;.| < M1/2, then

i^i«if+4+_-)(J;*)+2at"»+--"»)(ï:J)+(ï;i)

<12)    +r:Hr)-
Proof   A special case of Lemma 4.

Lemma 6.   Let P be a reciprocal polynomial with real coefficients and a0 =

an= 1. Suppose in addition that all real roots of P are positive.  If ax > n - 4, then

\ax\ = max|_.| <M{P)112.
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Proof. If „j is not real, then ctx is also a root of P so \ax\2 <M Thus we may

assume ax is real, hence positive, and that ax >M1/2. Let ßx, . . . , ß2s be the complex

roots of P. Then

2s

u maxd/3,.1, l)<Af/ai< Af1'2,
f=i

so that 1/3,1 <M1/4 for all i.   Hence, by Lemma 4,

Z0/<__ ll3fl<2(M1/4 +M-1'4) + «-6.

Since P is reciprocal, a^1 is also a root of .P, so

£    a,->a1 -r-ai"1 >M1/2 +M-1/2.

a¿ real

Combining these inequalities,

(13) _a, = ¿ a^M1'2 + M"1/2 - 2M1'4 - 2M'1'4 - {n - 6).

í=i

The right member of (13) is an increasing function of M for M > 1, hence (13) implies

_j < n -A. Thus ax > n - 4 implies \ax\ <Afx'2.

Remarks.  3.  The assumption that the real roots are positive is valid for Pm if

m> 1.

4.  A corresponding result is true for nonreciprocal P, with n - 4 replaced by

n-2.

Lemma 7.   Lei ax, . . . ,an be a set of complex numbers closed under complex

conjugation.   Then

~,  I   n \2 n 71

(14) n\tx   k)      k=i   fc    *=i    *

flroo/   Let afc = ßkei6k, ßk > 0.  Then

_>t + Z l«fcl2 = £ 0|(cos(20k) + 1) = 2__ pt cos2Öfc.

Thus (14) follows from the Cauchy-Schwarz inequality.

Lemma 8.   Let L2{P) = \a0\2 + ■ • • + \an\2.   Then

(15) M{P)<L2{P)<(2^1'2 M{P),

(16) M{P)2 + \a0an\2M{P)-2 <L2{P).

Proof.   The left inequality of (15) is due to Specht.  Using the second definition

in (1), it is easily seen to be just the arithmetic-geometric inequality for integrals, to-

gether with Parseval's relation [9, p. 129].  The right-hand inequality of (15) follows

from (2), as observed by Duncan [6]. The inequality (16) is due to Gonçalves, a

more direct proof being given by Ostrowski [11].
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3.  The Algorithm.  We have outlined our basic approach in Section 1.  However,

there are a number of details to be considered before a workable algorithm is obtained.

We shall deal in turn with (a) the root-squaring process, (b) cyclotomic factors, and

(c) selection of the initial set R0 for exhaustive search.

For the remainder of the paper, P will denote a monic reciprocal polynomial of

even degree n = 2h with integer coefficients. Given a set of such polynomials R0, we

are seeking those which have M{P) < M, where M is a parameter to be specified.

According to Lemma 6, if a{l, m) > n - 4 for any m > 1, then la, I <

M(P)ll2, in which case (12) provides improved estimates over (7). We thus find it use-

ful to associate with P a parameter s = s(P) taking on one of the values 1 or 2 to indi-

cate that lajjl <,M(P)lls. Initially s = 1, but if at some point in the processing of P

we determine that \ax | < M(P)ll2, then we set s = 2.

3(a) Root-Squaring. We regard « and M as fixed and R0 as given. GivenPinR0,

we wish to reject P from consideration if M(P) > M.

If M(P) <M and \ax\ <M(P)1/s, the coefficients a(k, m) of Pm satisfy

(IV) \a(k, m)\ < b(k, m, s),

where the quantities b(k, m, s) are given by (7) and (12) as

(18) .fc_i>-(;:ï)if-*iM->+(;:*) + (V).

(19) V ' w /

These can be computed and tabulated once n and M have been specified.

We can then successively compute a(l, m), . . . , a(k, m), for m = 1, 2, . . . , m*,

using (4).  If (17) is violated for any (k, m), we reject P.   If „(1, m) > n - 4 for any

m > 1, we set s = 2.  The advantage of this is fairly evident when one considers the

behavior of b(k, m, 2) versus b(k, m, 1) as m —► °°.

In addition to this "rejection criterion", we include, for m > mx, an "acceptance

criterion" based on (15).  Thus, if L2(Pm) <M2"\ then M(P)<M, so we need no

further root-squarings.  The cost of calculating Ll(Pm) is the same as that of computing

a(m + 1, h).  The choice of m, is discussed in 3(b).

We also accept P if it survives (17) for all m < m*, even though there is the

possibility that M(P) > M.   The best choice of m * depends on the relative sizes of the

sets Rm, which are initially unknown, and on the time needed to compute P    from

Pm_x relative to the time needed to calculateM(P).  To see this, consider the relative

advantages of computing M(P) for all P in Rm_ x versus computing Pm for all P in

^m_i and then computingM(P) for all P in Rm.

The choice of m* affects the size of the a(k, m), so we settled on a choice which

would allow the a(k, m) to be represented exactly as double-precision reals.  This re-

stricted m* < 7 in most cases, but fortunately this proved to be close to the optimal

choice for n < 16.



RECIPROCAL POLYNOMIALS HAVING SMALL MEASURE 1367

This is an appropriate point to discuss whether it is really necessary to compute

a(k, m) exactly, or whether one could not simply increase the b(k, m, s) by a certain

amount to compensate for errors in the a(k, m). The answer hinges on how sensitive M(P)

is to small perturbations in the coefficients of P, so the following example is perhaps

instructive:

Example. Let P(x) = (x + l)2h, and Q(x) = (x + l)2n-x". ThenM(P) = 1 and

P has large coefficients, indeed as large as possible according to (2). Q thus represents a

small perturbation of P. lfh = 30, for example, the middle coefficient of P is (3®) =

1.18 x 1017 >256,so.Pand Q would be identically represented in double precision on

the machine used.

On the other hand, it is easy to see that

•1/2

o
log M(Q) = 2 (     log\(z + l)2h - z"\ dt      (z = exp(2irit))

1/2f■' 0
log|(z1/2 + z'1'2)" -l\dt,   writing n = 2h,

so

log M(Q) ~ 2 f   log 1(2 cos Tit)"\ dt = n log ß,
E

where E = {0 < t < 1/2: 2 cos tit > 1} = [0,1/3), and

ß = exp ¡2 J1/3log(2 cos itt) dt\   = 1.381356444.

Th\xsM(Q) ~ ß". Coincidentally ß = lim„_>00 M(z" + z + 1) [3], and so ß was calculated

in [4]. Using estimates given in [4], it is easy to obtain the more precise result that

M(Q) = ß"e~e", where 0 < e„ < 4/n.

For example, if n = 64, then M(Q) ~ 9.54 x 108, contrasting markedly with

M(P) = 1.  Of course P is very "ill-conditioned" because of the multiple root at -1.

However, observe that if P0 = x64 + 1, which is a reasonably well-conditioned poly-

nomial, then P6 = (x + l)64.   Even if we were in a situation where Q = Q6 for some

initial Q0, we would still have M(Q0) ~ (3 = 1.38 . . . which is still not very satisfactory.

3(b) Cyclotomic Factors.   It is obvious that many of the polynomials P of degree

n with M(P) < M will be reducible since if S, T have M(S) < M, M(T) = 1, and deg S

+ deg T = n, then P = ST has M(P) < M.   Assuming that we have already computed

M(S), it would be inefficient to again compute M(P).  Similar remarks apply if P is

cyclotomic.

The method of recognizing those P with cyclotomic factors depends to a certain

extent on R0.  Let us begin by observing the effect of root-squaring on cyclotomic

polynomials.  Suppose that Q = F k   is the irreducible cyclotomic polynomial whose

roots are the primitive 2fe^th roots of unity, with q odd, so deg Q = 2k~1(j)(q), if

k > 1, and = <fi(q), if k = 0. Clearly Qm = Fsr, where r = 2k~mq and s = 2m if

m < k - 1, while r = q and s = 2k~l if m > k.  Hence, after m > k root-squarings, a

cyclotomic factor F k   of P stabilizes as a factor F   of Pm with multiplicity 2fc_1.

Since deg F k   < deg P = n, we have 2k_1 < n, so after at most mx = [log2n] + 1
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root-squarings, all cyclotomic factors are of the form F  with q odd.

As a consequence, if P is cyclotomic, then Pm = Pm + X for some m<mx, and

hence P is detectable by at most m x + 1 root-squarings.

If R0 is chosen for exhaustive search, then we can afford to ignore any reducible

polynomials in R0, since we naturally intend to search in order of increasing n. Cyclo-

tomic factors can be detected simply by testing Pm x for factors F  with q odd. Since

cyclotomic P are detected by the method of the previous paragraph, we can assume

that P is not cyclotomic and hence that deg F   <n - n0, where n0 is the smallest

degree for which there is a polynomial Q having M(Q) < M.   For example, if M =

1.3, then n0 = 8, and this fact is known before we attempt n = 10.

In our implementation, we decided to check only for the factors Fx and F

where p is prime, since in this case there is a very easy criterion for F   to divide P.

We begin by computingPmx(l) — t.  If t = 0, then Flk dividesP for some k, so P is

discarded.  Since F (1) = p, a necessary condition for F2k   to divide P is that p \t.  If

this holds, then we test whether F   divides Pm   using the following:

Lemma 9. Let P = a0x" + ■ ■ ■ + an and let p be prime.   Then F  divides P if

and only ifc0 = cx = • • • = c    x, where

(20) c/ =      £ ak-
k=/(mod p)

Proof  F   divides P if and only if xp - 1 divides (x - 1)P.

Since ak = an_k, it follows that c, = cn_¡, so only about half of the c¡ need be

calculated.  For example, if n = 16 and p = 5, then c0 = c16 = cx and c2 = c4, so

one need only check that c0 = c2 = c,.

This approach is not appropriate when R 0 consists of all P of degree n and H{P)

= 1, since it would reject those P with a factor P0 having H(PQ) > 1.  Instead, we

adopted the following method.  Note that if P has exactly v = v(P) roots outside the

unit circle, then \a(v, m)\2~m —► M(P).  In fact, a(v, m) is the trace of the polynomial

of degree (") whose roots are (a¡   • • • a¡ )2m, so

\\a(v,m)\-M(P)2m\< (p-l)M^K|-2m

If ? is in Rm, then \a(v, m)\2~m provides an approximation to M(P).  Of course

we do not usually know v(P).  Suppose, however, that for some Mx > M, we maintain

a list of all previously discovered P0 with M(P0) <MX and deg P0 <n, arranged in

order of v(P0), then M(P0).  Then, for m = m*, we need only search the list (by binary

search) for a PQ with v(P0) = k and M(P0) a \a(k, m)\2~m, for k = s,.... ft.  If a

suitable P0 is found, with P0(x) = Q(xr), then we need only test whether Q(±xr)

divides P.

If this is successful, we avoid solving P(x) = 0.  If u(P) = 1 or v(P) = 2 and the

roots outside the unit circle are complex conjugates, then the approximation to M(P)

is sufficiently accurate that P0 is usually located.  In other cases, the search may fail

and then P(x) = 0 is solved needlessly, but on balance this test has proved to be worthwhile.

i
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3(c) Selection ofRQfor Exhaustive Search. Recall Newton's identities:

(21) Sk+a1Sk_x+---+ak_xSx+kak = 0,

where Sk = ax + • • ■ + ak.  By Lemmas 3 and 5, we have

(22) Sk < [c{k, s)],

where

(23) c{k, l)=Mk + n-2+M-k,

(24) c{k, 2) = 2Mk'2 + n - 4 + 2M~kl2.

Thus, if _j, . . . , ak_ j are specified, then (21) shows that af. is restricted to an inter-

val of length 2[c{k, s)] ¡k.  For example, if n = 10, M = 1.3, we find from (22) and

(21) that we need only examine at most 32560 polynomials, a considerable improve-

ment over the number 1.5 x 1011 suggested before.

Applying Lemma 6 to the polynomial with roots ak, . . . , akn, which is valid if

k is even, shows that -Sk > n - 4 for k even implies s = 2, a fact which can be used

in all further processing of P.   Lemma 7 provides the additional bounds

(25) -S2k<-2S2/n+c{2k, s),

where [c{2k, s)] is not used since -la,-!2*1 need not be an integer.  This bound is very

restrictive if \Sk\ is near n.

Since P is reciprocal, the conditions (22) for k > h provide extra conditions on

ak,k <h.  It was found to be advantageous to use one of these explicitly:   using ah_x

= ah + x and combining (21) for k = h and k = h + 1, we find

n~ & + l)*i"h = -«i(«A-i + • ■ • + ah-is0
(26)

+ (-_-„-! +---+an_xS2) + Sh + 1,

which, if _j, . . . , ah_x are given, and ax ¥= 0, confines an to an interval of length

2[c{h + 1, s)]/{h 4- l)_j, often determining ah uniquely if ax > 2.

In addition to all the above, the bound \ak\ < b{k, 0, s) is occasionally a further

restriction.

It should be clear how R0 is constructed.  In principle, one constructs each P in

R0 individually then processes it as in 3(a) and 3(b). We in fact allowed the processes

of 3(c) and 3(a) to interact somewhat in that the a{k, m) were calculated as soon as

enough information was available to determine them.  For example, if n = 16, then

ax, . . . , a6 already determine a{k, 1) for k = 1, 2, 3 and _(1, 2) independent of a1

and as. Thus it may be possible to reject all P with a certain initial segment of coef-

ficients.

4.  Discussion of the Polynomials Found.   For even n < 16, all reciprocal poly-

nomials of degree n with measures < M were found, where M = 2 for n = 4, 6, 8 and

10, M = 1.5 for n = 12 and 14, and M = 1.3 for n = 16. An idea of the computation



1370 DAVID W. BOYD

involved is given by the CPU time in seconds on the AMDAHL 470 V/6-II at the Univer-

sity of British Columbia:

n M time number found

10 1.3 1.235              7

10 2.0 11.694          185

12 1.5 16.108            43

14 1.5 191.245           93

16 1.3 827.884           14

For n = 10, . . . , 26, all polynomials with H{P) = 1 and M{P) < 1.3 were found.

The times in seconds for n = 16, 18, 20, 22, 24, and 26 are 4.496, 13.799, 42.010,

131.236, 396.384, and 1232.219 respectively.

The tables in Section 6 contain the noncyclotomic factors of a subset of the

polynomials just mentioned, normalized so that the first nonzero ak with k odd has

ak > 0.  The column "number found" in the above table gives the total number of

polynomials normalized in this manner which would appear in a complete list.

Using the fact that M{PXP2) = M{PX)M{P2), and the fact that we know all recip-

rocal polynomials of degree at most 16 and of sufficiently small measure, it is easy to

decide whether any of the polynomials are reducible.  From our data, we can rule out

possible factorizations of the form P = PXP2 with Px and P2 being reciprocal and non-

cyclotomic.   Using Smyth's result on nonreciprocal polynomials, we can rule out non-

reciprocal factors P0 of P, provided M{P) > Q2Q = 1.7548 . . . , since if a nonrecip-

rocal PQ divides P, then so does its reciprocal.  It turns out that, after cyclotomic fac-

tors have been removed, the only reducible polynomials which remain have v{P) =

n/2 and factor in the form PqPq where P0 is nonreciprocal and P¿* is the reciprocal

of P0 normalized to be monic.

Among the P of small degree there are a number of remarkable occurrences.  For

example, the following polynomials, all with v{P) = 2, have the same measures:

(i)   M = 1.7467934983,   Px = 1   2  2   1   2  2   1, deg Px = 6,

P2 = 1   1   -1   -1   1   -1  -1   1   l,degP2=8,

(if)   M = 1.7709445842,   Px = 1   10-201   l,degPx=6,

P2 = 101212101,

P3 = l  2  1-2-3-2121,

degP2 =degP3 = 8,

(iii)   M = 1.8789962005,   Px = 1   1   -1   -3   1   3   1   -3 -1   1   1,
fj = l   12 0-2-3-202  11,

P3 = 12234343221,

all of degree 10,
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(iv)   M= 1.4986652983,   Pt= 1   1  -1  -1  2 0 -3 0 2  -1   -1   1   1,
P3 = 1   2  2   1   -1   -3   -3   -3   -1   1   2  2   1,

P2 = 1   12223332221   1,

all of degree 12,

where we have used a notation whose meaning should be obvious; or see [2].

The triples of the same degree in (iii) and (iv) are most easily explained.  If one

writes P/3) for the polynomial whose roots are the cubes of the roots of P, then it can

be verified that, in either (iii) or (iv), each Pk has the same P,3^. up to the symmetry

x —► — x.  In each case, if oj is a primitive cube root of unity, then

(27) Px (cox)P1(co2x) = P2(x)P3(-x),

so the surprise is simply that the left member of (27) is reducible over the rationals.

The explanation of (i) and (ii) is somewhat more involved.  We first observe that

if v(P) = 2, then M(P) is the largest root of the polynomial Q whose roots are „,-_•,

with i </, so deg _ = (").   When P is reciprocal, h = n/2 of the roots of Q are equal

to afar' = 1, hence M(P) is a root of P[ 2 ' (x) = Q(x)/(x -l)h, the 2nd compound

of P, which has degree n(n - 2)/2.  Note that for n = 6, 8 the degree of P'2 ' is 12

or 24, respectively.

A simple calculation then shows that, in example (i),

(28) P22l(x) = P[2l(x)P1(x)2,

while, in example (ii),

(29) P\2 ' (x) = P\2 ](x) = P[2](x)Px(ix)Px(-ix).

In example (ii), there is additionally

(30) P2(x)P2(-x) = P3(ix)P3(-ix).

One moral of the above is that M(P) does not determine P up to the obvious

transformations P(x) —► P(±xs). In fact, it is quite possible for a nonreciprocal Px

to have the same mesaure as a reciprocal P2.  For example, if

Px(x) = (x-a) (x-ä) (x - ß) (x - ß)

has |a| > 1 > |(3| = |a|~ !, but is nonreciprocal, so ß =£ a"!, 5_1 , then M(PX) =

I eel2 is the unique root outside the unit circle of a reciprocal polynomial Pj2 ' of

degree (4) = 6.   For example, if Px = 1   0  0   11   withM(PX) = 1.401268368,

thenP'2, = l  0-1-1-10   1, so that P2(x) = P[2](-x) hasM(P2) = M(PX)

as we verify from our list.  This explains the following coincidence of measures:

(v)   M = 1.9635530390 = (1.4012683679)2, attained for

P3 = 1 2-1-3-1 2 1,    n = 6, v(P3)= l,and

P4 = 1 1 0 1 3 1 0 1 1,      n = 8, KP4) = 4.

For here we have P3(x) = P2(x1/2)P2(-x1/2), while P4(x) = P^Pjfix).
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5. Nonexhaustive Search.   As was mentioned in [3], the set {M(P):  P non-

reciprocal} has at least two limit points smaller than 0O = 1.3247 . . . , namely

\, = expij1 Ç loglf+ fz-! +z + 1 +Z-1 +r1z + r1\dsdt\

= 1.255425 ...      (T - e2™, z = e2™'),

and

X2 =expij1 f1 log If + z + 1 +Z"1 4-f-I|_s_f}   = 1.285734-

These are the unique limit points of the following sets of polynomials:

Px(x) = x2h + ax2"'"1 + bxh+m + cx" + bx"'"1 + ax" + 1,

and

P2(x) = x2" + axn+m + bx" + ax"-m + 1,

respectively, where m and h are relatively prime and a, b, c are either 1 or —1.

Thus all but a finite number of such Px and P2 will have M(P) < 1.3, and it is

of interest to examine those with, say, M(P) < 1.25.

We examined all of these for h < 25. None had measures less than ax. Among

the Pj have been found the smallest known values of M(P) for fixed v(P) > 4. For

example, the following degree 36 polynomial has v(P) = 4, and M(P) = 1.2294828102:

P = 1  1   1 0 0 -1 -1 -1   0 1  1  1 0 -1 -2 -1 0 1   1  1 0

-1-2-101110-1-1-100111.

This is a factor of x44 + x35 -x31 -x22 -x13 + x9 + 1.

Another more extensive family which was investigated for h < 20 is the set of

polynomials of the form

P(x) = (x2h + X -x2"-k -x*+*+1 +x"-*+xk+l -l)/(x-l).

Since L2(P(x) (x - 1)) = 61'2, these all have M(P) < 1 + 21/2 by Gonçalves' in-

equality (16). All known small Salem numbers (v(P) = 1) are measures of members of

this family [2].

6. Lists of Polynomials. The composition of the following tables is described in

Section 4. For degrees > 18, only the first half of the polynomial is listed, as in [2].

Only one of the polynomials listed is reducible, namely 11—1—3—111 =

(1 0 -1 -1)(1 1 0 -1), as discussed in Section 4. In case n > 18, M(P) < 1.27

and H(P) > 1, the number in parentheses following the degree is the smallest degree of

a reciprocal Q of even degree with H(Q) = 1 of which P is a factor.
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Table 1

All irreducible reciprocal polynomials P of degree n

and measure M(P) <M0,for 4 < n < 16.

4, M =2
o

Measure Polynomial

1.7220838057
1.8832035059

11-111
12  12   1

6,  M    =  2
o

Measure Polynomial

1.4012683679
1.5061356796
1.55603C1913
1.5823*71837
1.6355731299
1.7467934983
1.7548776662
1.77C9445842
1.7816435986
1.7942797448
1.8310758251
1.6392867552
1.8948181172
1.9468562683
1.963553C390
1.9748187083
I.ÍE77931668

1.9962080000

0-1   I
1 0   1
1-1-1
0-1   2
2 2 3
2 2 1
1-1-3
1 0-2
1-1  0
0 2   1
2 0-1
1 2 3
0 1 2
1-1   1

1 2-1-3
12 12
1 0-2 3
1   1   1-1

-1   1

0 1
1 1
2 0
0
2
1
1
1
1
2
1

1
1
1
1
1
1
1
1
1
1

2 1
1   1

Measure

M0 -   1.75

Polynomial

1.28C6381563
1.3599997117
1.3672228038
1.3700868743
1.4250052678
1.4579874796
1.4762823965
1.4874679383
1.5230602489
1.5396161220
1.54719Í9656
1.5682443656
1.6C544S6288
1.61853059 86
1.6241479659
1.6400340873
1.6575497181
1.661C47762C
1.6849101527
1.685C319934
1.6935073826
1.7C42442644

I.7467934983

1 1
1 2
1 1
1 2
1 1
1 1

0 1-1
1 2   1
0 1   1
1 0-1
0 1   1

1   0
1 1
c
c
1

3
2

1 C-l
2 1   1

0

1
0

1
1
0
2
1

1 1   1
2 1   1

2   1
1 1
2 1
1   1

0-1   0-1
2   111-
1   1
1   1
1   0

2   1
1   1
0   0'

I 1
1 1
1 0
1 1-

1-1-2-1
0 1-11
1 1-1   1
1-1   1-1-

1   1
C  1

1   1
1   1
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Table 1 (continued)

n =  10,  M    =1.5
o

Measure v Polynomial

1.17628C8183 I 1    1   C-1-l-l-l-l   0   1   I
1.2163916611 I ICO   0-1   l-l   0   0   0   1

1.2303914344 1 10010101001
1.2612309611 1 1   C-l   0   C   1   0   0-1   0   I

1.2672338594 2 10110101101
1.28358236C6 2 1100   0-1   C0011
1.2934859531 1 10-11   0-1   0   1-10   1
1.3C43637617 2 110-1000-1011
1.3373132102 1 110001C0011
1.35098C3377 I 110   0-1-1-1   0  0   11
1.3619551623 2 1C001110001
1.3689986768 2 10   0    1   0-1   0    10   0   1
1.3636365634 1 I   I   0   I    1    1    1    1   0   1   1
1.3984561816 2 11222322211
1.42599251C7 2 12   2   10-101221
1.43100C9591 1 I    l-l-l   0   1   0-1-1   1   1

1.43140463 76 2 1111   0-1   0    1   I    1   1
1.44E423C402 1 12221112221
1.4723531176 1 1   1   0   0-1   C-1   0  0   1   1
1.4723872015 2 10111011101
1.4796086733 1 1   0-2   2   1-3   1   2-2   C   1
1.480408EC56 2 11233333211
1.4824156382 2 111C1C10111
1.4938778456 2 1   0-1   1   1-2   1   1-1   C   1

=   12,  M    =   1.4
o

Measure V Polynomial

1.22778Í5Í67 2 111   0-1-1-1-1-1   Olli

1.2407264237 I 1    1   I    1   0   0-1   0   0   1111
1.251C466172 2 110   0   O-l-l-l   0   0   0   I   1

1.2643938547 2 10100   1-1100101
1.2126163651 2 1011121211101
1.3019549435 2 11   0-1   Olli   0-1   Oil

1.3C22686C51 1 1100011100011
1.3C4433Î627 2 10   0   1-1-1   1-1-1   10   0   1
1.3101213237 2 1221111111221
1.3159144319 1 10   0   0-I   l-l   1-10   0   0  1

1.3221661921 2 1000011100001
1.3349522567 2 1100001000011
1.3434948981 2 10-11   0-1   1-1   0   1-10   1
1.37C2684012 1 I   0-1   1   0   C   0   0  0   l-l   0   1

1.3776747894 1 1   0-1   0   0   1-110   0-101
1.3877955034 2 1010110110101
1.3887530310 2 10001   l-l   110001

1.3977398823 2 1222333332221
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Table 1 (continued)

n =   14,  M    =   1.33
o

Measure Polynomial

1.2000265240
1.2026167437
1.2Í5G93S1Í8
1.2651220724
1.2672964425
1.2780430161
1.26C123C273
1.2901780368
1.2915627600
1.2930726883
1.2973963168
1.3CC1931434
1.3078649611
1.3122008728
1.3126595949
I.3120725655
1.31757559Í3
1.3181975044
1.319C992671
1.3199391059
1.3211C16483

1.3243396769
1.3254615791
1.3294927969

1
1
1
2
1
2
2
2
3
3
2
2
3
2
2
3
3
1
3
2
1
3
2
2

0  0
0-1

1   C-l

1-1   C  0-
0  0  0  0

0-1  0
1 1 1
0  C-l-
0-1-1-
0  0  0-
0   1   0-
1-1-1-

1 1

I   0-1

1 1

0-1 C 0
1 1 0-1
0 0 C 1
0   0-1-I
0 10  0
1 C-l c
0   0  10

10 0-1
10 0 0
1   0-1
1 1 1
1-1   0
I-1-1
10   0
1  0  1
1-1-1-1
1 0 C-l
l-l 0 1
1   1   0
1-1-1
1  0  0
0  0-1

1   0
0-1
1-1

0 0
1 I
C 0
1 0
0-1   0
1-1-1
1   1   0
0  0   1

1-1
0  0
C-l
0  0-

1
0
0

0

1   0
1-1
1  0
l-l
1 0
1 1 0-1
1 0-1-1
10 0 1
10  10

n   =   16,  M    =1.3
o

Measure Polynomial

1.224
1.235
1.236
1.243
1.248
1.251
1.252
1.2 57
1.266
1.281
1.289
1.293
1.297
1.298

2789072
2567C56
3179318
4776187
C136C63
7324113
6286630
3166256
6775265
3411294
59C1C23
493 1125
C647745
0322543

0-1-1
0  0  c
0 0   0
0-1-1
1 1
1   0
1  1

1   0-1
1 I 1
I 0-1
I 0-1-1
110 0
0 0 10
0  0   l-l

0 111
1 0  0-1
C   0   0-1

■10   11

1-1-1-1-
0 0   0-1
10   0   1
1 1 C-l
0-1-2-2-
C-l 0 1
0 10 0
0 10 0
0 0 0 1
0   0-1   1-

1   1   0-1-1
0 0-1  0  0
C   0   0  0   0
1 G-l-l-l
l-l-l
0 0 0
0 0 1
0 1
2-1
O-l
0 1
0   1
0 0
1 0

0 1
0 0

1 0 1
1 0-1
0 1 1
0 0-1
0-1-1
0 0 0
0 0 1
0-1   1
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Table 2

All irreducible reciprocal polynomials of degree n, 18 < n < 26,

which divide a reciprocal polynomial of height 1

and even degree at most 26, having measure at most 1.27'.

IB
18
18
18
18
18
18
18
18
18
18

Measure

1. ie83681475
1.2013961862
1.21944Í6759
1.2197208590
1.2255034241
1.23134277C0
1.24C77C6350
1.244617C590
1.2527759374
1.2562211544
1.2663343250

First half of polynomial

1   0  0-1-1-1-1
0  0-1  0-1  0-1

0-1
0 0
1 0
1   0

0-1-I-I
C   C   C   0
0 1
C-l
0 1
0 1
0  0

0-1
1 0
0 0
C-l
0-1

0-1-1   0
0  0-1-1

0 0 1
0-1-1
0 0-1
0  0-1
l-l 1
0 0  1
l-l 1
0 0   1
0  0-1

2C
20
20
20122!
20
20
20
20
20
20
20
20
20
20
20(24)
20
20
20(221

1.2128241810
1.21459Í70C8
1.2183963625
1.2269927582
1.2326135486
1.2461061427
1.24Í6762715
1.25333065C2
1.25363ÍÍ6Í7
1.2547004271
1.2562936626
1.2598494325
1.26136C9576
1.2625097625
1.2625647407
1.2639456564
1.2687376481
1.2693314268

2
2
2
2
1
2
2
1
2
2
2
2
2
2
4
3
2
2

110 0 11 0-1-1-1-1
11111 C-l-1-1-1-1
1 10-1000-1001

0 2 l-l-l 0 1
0 110 0 11
0-1-1-1 0 0 1
0 0 C-l-1-1-1
0 10 0 0 0 0

0-1-1-1-1-1
10 110 1
0-1 0

1 1-1-2
1 1 0 C
1 1 1
1 1 1
1 0-1

1 1
0 1
C 1
0 0
0 0
C-l
2 2

10 0
0 0
2 2

0
0
0
0
0
1-10 0

1-1-3-3-2 0 2 3
10 0 0 10 0 1
10 0 0-100-1
1 O-1-l-l-l-l-l

0 1 1
C 0 0 0 0 1
1-1 0 0-1 1

0 0-1

22
22
22
22
22
22
22
22
22
22
22(24)
22
22
22
22
22
22

1.2C5C198542
1.2295664566
1 .2356645804
1.2446C24455
1.2451611363
1.2456023171
1.2486111657
1.2504618711
1.252721C2C1
1.2541425192
1.257259C685
1.2Í94336C68
1.26C2839589
1.2602842369
1.2615262661
1.26246C5759
1.2640511961

2
3
1
2
3
2
3
3
2
3
3
2
3
1
3
3
3

0 I 0 0 1-1 1 0 0 1-1
1 0-1-1-1-1-1 Olli
0-1 1 0 C 0-1 10-11
001 000000 0-1
1 0-1-1 C 1 1 0-1-1-1

1 O-l-l-l-l C 1 1
0 0-1-1-1-1 0 1 1

0-1 0 0 0 0 1 0 C 0-1
001CC001001

COCCC010-1
0-1-2-2-1 Olli
C1C000001
1-10 0-10001
1 1 C 0 O-l-l-l-l

1 0-l-l 0 1 0-1-1 0 1
1 I 0 O-l-l-l-l 0 0 1
OOOOOOOO 0-1 1

1
1
1
1
1
1 1 1
1 1 0
1
1
1 0-1
1 1 1
I C-l
10 0
110
1
1
1
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Table 2 (continued)

Measure First half of polynomial

24
24
24
24
24
24
24
24
24
24
24
24

1.21665515C3
1.2190575078
1.2344438349
1.2537437612
1.2541043056
1.2544917819
1.2562017318
1.2576061050
1.26C1C354C4

1.26162239C4
1.264633C8C3
1.2665387000

2
2
2
2
2
2
2
4

1
2
2
2

1 0 0 C 0 I 0-1 0 0 0 0-1
110-1-1-1-1-101111
1 0 0 0-1 0-1 1 0 C 1-1 1
1 1 1 I 1 C 0 0-1-1-1-1-1
1 1 0-1-1 0 0 0 I 1 0-1-1
10 0 1-10 0-100001
11100COCO C-1-1-1
1 1 1 0-1-1-1 0 0 0 0 0 1
1 1 0 0-1-1 0 111 0-1-1
1 1 1 1 0 0-1-1-1-1 0 C I
I C-l C C 1 0-1 0 0 1 0-1
1 1001 10-1-10 10-1

26
26
26
26
26
26
26
26
26
26
26
26
26
26

1.2237J74549
1.2260926945
1.2345003369
1.2375C46212
1.2402541787
1.2476C67C26
1.2488187537
1.2494993332
1.2573832167
1.26C76502 82
1.2613475293
1.2630381399
1.26523C67C5
1.2683338900
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1110  0-1-1-
0 0 1 0 C 0
0-1 1 0-1 1
C-l   0  C   1
1 0-1-1  0

I   C   1   0

1-1
C 0
0-1
C-l
0-1
0  0

0
0
0 C-l
0-1 0
C-l 0
0  0-1

1   0-1-1   0  0-
0   0  0   C   1   0

1-1
C  0

0-1-
0  0

0 1
0 1
0 1
0-1
0-1
0  1

1-1-1
0-1-1
0 0 1
0-1-1
0 0-1
0 0-1
1 0-1
0  0  1
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