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Improving the Speed of Calculating the Regulator

of Certain Pure Cubic Fields

By H. C. Williams

3/—
Abstract.   To calculate R, the regulator of a pure cubic field Q(\Jd), a complete period

of Voronoi's continued fraction algorithm over Q(\JD) is usually generated.   In this paper

it is shown how, in certain pure  cubic fields, R can be determined by generating only

about one third of this period.   These results were used on a computer to find R and
3 —

then the class number for all pure cubic fields Q(\Jp), where p is a prime, p= — l (mod 3),

and p < 2 x 10 .   Graphs illustrating the distribution of such cubic fields with class

number one are presented.

1. Introduction.   In several previous papers [3], [10], [12], [13] the problem

of the distribution of pure cubic fields with class number one has been studied.  The

main difficulty in obtaining numerical results has always been (and still is) the amount

of time needed to calculate the regulator of such a field.  The regulator of Qi\/D) is

usually much larger than that of QisjD).  For example, the largest regulator of Qi\/D),

for all D < 2 x 10s, occurs for D = 196771 [11] and is 1291.32, while, for D =

199109, the regulator of Qis/D) is 455713.75.

The only primes p such that ß(Vp) can nave class number one are those which

have the form 3r - 1 [5].  In [12] the case of p = 8 (mod 9) was investigated for all

p < 2 x 105.  The problem of dealing with Qiyjp) for the primes p = 2, 5 (mod 9) is

more difficult as their regulators tend to be about three times larger than those for

2(Vp) when p = 8 (mod 9) because their discriminants are nine times larger.   In order

to deal with this problem it was necessary to find a method which increased the speed

of regulator calculation for these fields.

In quadratic fields continued fractions are used to determine the regulators; see

[9], [11].   Also, instead of going through the entire period of the continued fraction

for \JD, it is sufficient to go no more than about one-half the period in order to cal-

culate the regulator.   In this paper we show that for certain pure cubic fields it is only

necessary to go about one third of the way through the period of Voronoi's continued

fraction algorithm for \/D to find the regulator of Qi\jD).  We also present some com-

putational results concerning pure cubic fields with class number one.

2. Simple Results Concerning Pure Cubic Fields. We first summarize some well-

known results on pure cubic fields. Let Z be the set of rational integers and put D =

ab2, where a, b E Z, (a, b) = 1 and a, b are square-free.   Let Qi8) be the pure cubic
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field formed by adjoining ô = s/D to the rationals ß.   If D = a2b and 5 = y/D, then

g(ô) = ß(5); hence, we may assume that a > b.

If D ^ ±1 (mod 9), then [1, 5, 6] is a basis of the ring of integers Q[8] of

(2(6), and the discriminant A of (2(5) is -27a2b2.  If D = ± 1 (mod 9), then [1, S, ß],

where ß = (1 + ad + ¿>ô)/3, is a basis of ß[5] and A = -3a2b2.  Thus, if JCj, x2, x3

G Z and (x¡ + x28 + x38)/a G ß[5], then a = 1 whenD £ ± 1 (mod 9) (Dedekind

type 1 field) and a = 3,xx= ax2= bx3 (mod 3) when D = ± 1 (mod 9) (Dedekind

type 2 field).

If a G ß(5), then a = (jct + x26 + x35)/jc4, where xv x2, x3, x4 G Z.  Define

the conjugates of a as

a = (Xj + x2u8 + x3co2S)/x4,      a" = (x¡ + x2co2ô + x3co5)/x4,

where co is a fixed primitive cube root of unity. We define the norm of a to be A(a) =

a a'a".   When a G Q[8], N(a) G Z.  If e G ß[5] and A(e) = ± 1, then e is a «n/r of

(2(5) and e = ±eJJ, for some n &Z, where e0 is the fundamental unit of (2(5).  We

assume e0 > 1 and define the regulator R of ß(5) to be R = log e0.

If 3 |D, put S = IAI/27; otherwise, put S = |A|/3; thus, if D ^É 1 (mod 9), then

915.  We note that if s is any rational prime divisor of S, then the ideal [s] = 33,

where g is a prime ideal, and the norm of g, /V(8), is s.  From this observation we de-

duce

Lemma 1.  If a 6 ß[o] andNia)\S, then a3/A(a) G Q[6].

/Voo/   Follows easily by noting that, since 7V(a)|5, we must have [a3] =

[Nia)].

Lemma 2.  Let xlt x2, x3 GZ and a = (x¡ + x28 + x35)/a G ß[5].  If t\S

and f3|Af(a), then t\(xl, x2, x3).

Proof.   If s is a prime divisor of 5 and* s"\ \t, then s3" I A^(a) and a = 0

(mod 33").   Thus, a = 0 (mod [r]) and the result follows.

Lemma 3.  Let d = d1d2, where dx, d2 G Z, dl \a, and d2 \b.  If d2 \N(a) when

a = (xl + x28 + Xj8)la G Q[8], then d\xv dx \x2, d2 \x3.

Proof.   Follows easily on noting that d\ab, d is square-free, and a37V(a) = x\ +

ab2x\ + a2bx\ - 3abxlx2x3.

Our final result of this section is

Lemma 4.  Let a = (x, + x28 + x38)la G Q[8], where jcp x2, x3 EZ and

(xv x2, x3)\o. If 27iA(a), r G Z, |r| < A(a), and ra = N(a)y, where y G ß[5],

rnen r = 0.

Proof.   Let 7 = (g¡ + £25 + g38)/a.  We must have rjc,- = N(a)g¡ (i = 1, 2, 3)

and, since (xv x2, x3)\a, we get N(a)\or.  If a = 1, we have N(a)\r; hence, r = 0.

•We denote by pa\ \a the fact that pa\a and pa+1<ïa.
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If a = 3 and N(a)\r, then 3\N(a) and r = kN(a)/3 with k G Z and (k, 3) = 1.  Since

r3 =N(a)2N(y), it follows that 27|Ar(a), which is not possible.

3.  Relative Minima.   Let a G ß(5) and consider the ordered triple

.      /    a - a     a + a   \

where i2 = -1.   Since A is uniquely determined once a is known, we often identify

A with a and write A « a or a ^ A, where the lower case letter refers to the element

of ß(5) and the upper case letter to the corresponding ordered triple.  Let p, v G

ß(5) and let

R = {A\A z* x + yp + zv, x, y, z E Z}.

R is a lattice with basis [1, p, v].

We say that 0 ^ 0 G ß(5) is a relative minimum of R if 0 G R and there does

not exist 4> G R such that <p =£ 0, |0|< |0| and <¡>'<¡>" < 9'9".  If 0 and $ are relative

minima of R with 0 > <p, we say they are adjacent relative minima of R when there

does not exist * G R such that \p # 0, 1\p\ < |0| and <//>" < 4>'<f>".  If 0,- « 0. G R

(i = 1, 2, 3,. . . , M, . . . ), 0/+1 > 6¡, and 0¿, 0Í+1 are adjacent relative minima, we

call the sequence

0j,02,03,. ..,©„,...,

a chain of relative minima. If &¡ precedes 0- in such a chain we say that 0,- is less

than 0-. If <ï> is any relative minimum of R and 0 > 0,, then 4> = 0k for some k.

For a more detailed description of these ideas see [4], [7], [13].

In [8] Voronoi presented a method of finding a chain of relative minima when

0j =(1,0, 1) is a relative minimum of R.  This technique is simply a means of find-

ing in any such lattice a relative minimum 0^ adjacent to (1,0,1). Here we shall concern

ourselves with finding ®g * 9g such that 9g > 1. Let Rj = R and let 0^} « $(l) be the

relative minimum adjacent to (1, 0, 1) in Rj with 9gx * > 1.  Embed 1, 9(1^ in a basis

of Rj and let this basis be [1, e^, ehl)\.  Let R2 have basis [1, 1/0<1}, 9h1)l9g1)].

We see that (1, 0, 1) is a relative minimum of R2 and find the relative minimum 0^

« 0^2) > 1 adjacent to (1, 0, 1) in R2.   We continue this process by defining R/+1

to be the lattice with basis [1,1/0g*>, 0^/9^], where 0£o « 0^° > 1 is the relative mini-

mum adjacent to (1,0, 1) in Rf and [1, 9gl), 0^] is a basis of R,-. It follows that ©„ *

9n, where

k = n of-
1=1

If [1, p, v] is an integral basis of ß[5], then we see that (1,0, 1) is a relative

minimum of R and so is E «* e, where e is any unit of ß(5).  Thus, since this algo-

rithm gives us a method of finding all relative minima 0 such that 0 > 1, we see that

it can be used to find e0.  Let

9gr) = (njj + m25 + m35)/ar,      0j>> = (n, + n25 + n35)/ar,
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where mv m2, m3, nv n2, n3, ar&Z, ar>0 and g.c.d. (ar,mv m2, my nv n2, n3)

= 1.   If we put er = m2n3 - n2m3, by Theorem 3.1 of [13], we have NiOr)

= o2/\er\o. Thus, if r (> 1) is the least integer such that a2. = \er\o, then e0 = 0f.

However, in many cases we need not go so far as the point where Af(0r) = 1 in

the calculation of the 0„'s in order to find e0.  In fact, for D = p, 3p, 9p (p = 2, 5

(mod 9)), we will show that we can find e0 by using a certain special relative minimum

of R.  This relative minimum is the first relative minimum 0fe « 0k in the chain start-

ing with 0j = (1, 0, 1) such that A(0k) = 3 or 9; that is, such that a\ = 3\ek\ or a\

= 9|efc|.  In the next section we will show how this can be done, but we first require

the following simple results concerning relative minima.

Lemma 5.  If® ^ 0 and 4> ̂  0 are relative minima of R and 0 > 0 > 0, then

93/Ni9) > 03/A(0).

Proof.   Since 0 is a relative minimum of R and 0 < 0, we must have 0'0" <

0'0".  (If 0'0" = 0>", then 0 = ±0 [4, p. 274].)  Thus, (0'0'T1 > (0'0'T1 and

02/0'0">02/0'0">02/0'0".

Lemma 6.  Let R have as its basis an integral basis o/ß[5] and let 0 =» 0, $ *»

0 be relative minima of R such that Ni<j>), A^(0) =¿ 1, W(0) =£ N(<¡>). If 9 > 0, A^(0) \S,

and $ is the least relative minimum such that 0 > 1 and Ni<f) \S, then 03/A(0) = e0.

Proof.   Since 0 > 1, there must be some nonnegative integer n such that

e»0<<p<e"0 + 1.

If we put 0 = eo"0, we have 1 < 0 < e0 and N(\p) = N((j>).  By definition of 0, we

must have 0 < 0; hence, n = 0 and 0 < e0.

By Lemma 1, 03/V(0) G ß[5] and N(<p3/N(<p)) = 1; hence, e£ = (p3/N(<¡>) for

some n.   Since 0'0" < 1, we have 0 > A(0) and 03/7V(0) > 1 ; thus, n > 0.   Since

A(0) > 1 and 03/Ar(0) < e3,, we can only have n = 1 or 2.   If x = e^O, where 1 <

X < e0, then Af(x) IS and er0 = x3/^ix)-  Since r can only be 1 or 2 and 0 < x by

definition of 0, by Lemma 5 we must have n = 1.

4.  The Main Results. In order to prove the results given in this section we re-

quire

Lemma 7.  Ifxv x2, x3 G Z, a = xx + x28 + x38, \a\ < tl, \a'\ < t2, then

3|*j|, 35|x2|,35|jc3| < tx + 2t2.

Proof.   Since

3Xj = a + a + a",    38x2 = a + co2a + coa",    35x3= a + coa' + co2a",

we have

3^1, 35b{2|, 35|jc3| < |a| + |a'| + |a"| = |a| + 2|a'| < r, + 2r2.
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We now give a theorem which is analogous to the well-known result that if (x, y)

= 1 and x2 - Dy2 = N, where |A| < \JD, then x/y must be a convergent in the con-

tinued fraction expansion of \/D.

Theorem 1. Let R have [1,5,5] as a basis and suppose a = xx + x28 + x38

> 0, where xv x2, x3&Z and ixv x2, x3) = 1. If Nia) < \JD, then A («a) must

be a relative minimum of R.

Proof.   If A is not a relative minimum of R there must exist T G R such that if

y « r, then 0 < y < a and 77" < a'a".  Let p = A(a)7/a.  If P « p, then P G R.

Further, 0 < p < A^(a) and p'p" = Ip'l2 < Nia)2 ; thus, if p = r, + r25 + r35 (rv r2,

r3 G Z), by Lemma 7, we have \rx I < A(a), ô |r21< Nia), 5 |r3 \ < Nia). Now 5 > 5

> A(a) and therefore r3= r2 = 0.  By Lemma 4, it follows that p = 0, which con-

tradicts the assumption that 7 =£ 0; hence, A is a relative minimum of R.

Corollary If D t ± 1 (mod 9), D > 93 = 729 and 0fc « 0k is the least rela-

tive minimum such that 0k > 1, A(0fe) ¥= 1, and A(0fc) 19, then e0 = 03./A(0k).

iVoo/   Put 0 = 0k when A(0fc) = 3; otherwise, put 0 = 02c/3.  By Lemma 2,

0 G ß[5] ; hence, if $ « 0, then 4> G R and A(0) < \JD.   Thus, <ï> is a relative mini-

mum of R.  The corollary follows from Lemma 6.

Note that the above theorem gives us a method for finding all of the solutions

of the Diophantine equation

Nia) = x\ + ab2x\ + a2bx\ - 3abx1x2x3 =N,

when N < \/ab2.  We need only use Voronoi's algorithm to find all 9r such that A(0r)

= A.   It is necessary to check this only through the first period of the algorithm; for,

if N(6r) = N and 0r > e0, then Af(ej,0,) = N and 1 < ¿$r < e0 for some integer t.

We can improve the result of the corollary of Theorem 1 by using the corollary of

Theorem 2.  Let R have as basis an integral basis of ß[5] and suppose a =

(Xj + x28 + jc35)/a G ß[5], where xv x2, x3^Z and (xv x2, x3) \a. IfN(a)\S,

A(a) = 3Tmn2, m = mxm2, m1\a and m2 I b, then A (« a) is a relative minimum of

R when 5 > 3nm2n and 8 > 3r,m1n. Here

!0,      D 4 ± 1 (mod 9) and r = 0,

1,      otherwise.

Proof.   As in Theorem 1, if A is not a relative minimum of R, there must exist

7 G ß[5] such that 0 < 7 < a and 77" < a'a".  Put p = N(ayyla G ß[5].   If p =

(rj + r25 + r35)/o, then, since 0 < p <N(a) and Ip'l < A(a), we have \rx\, 8\r2\,

8\r3\ < oNia).  Since N(p) = Nia)2Niy), we see by Lemma 2, that n | (rv r2, r3);

also, Nip/ri) = 32Tm2nNiy) and m\rlt mx\r2, m2 |r3,by Lemma 3. Put rx =mntl, r2 =

mxnt2, r3 = m2nt3; we have 5|r2| < o3Tm2n, 8\t3\ < o3Tm1n.

Case 1.  t > 0.   If o = 3, then 3 ̂ iS*; thus, since 31S here, we must have D ^

± 1 (mod 9) and a = 1.   If t = 1, we have t2 = t3 = 0; if t = 2, then 31 (f,, t2, t3)

(Lemma 2) and r2/3 = f3/3 = 0.   In either case we have r2 = r3 = 0 and \rx \ <Nia).
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Case 2. t = 0, D # ± 1 (mod 9).  Again a = 1 and r2 = r3 = 0.

Case 3. r = 0, D = ± 1 (mod 9).  Here o = 3 and r2 = r3 = 0.  Since p G ß[5]

and r2 =r3=0 (mod 3), we must have rx = 0 (mod 3); hence, p G Z and p < N(a).

The theorem now follows from Lemma 4.

Corollary.  Let 0k (^ 0k) fee the least relative minimum of R such that 9k

>l,N(0k)¥=l andNi9k)\S.   Write Ni0k) = 3Tmn2, where n = nrn2 and nx\a,

n2 | b. Suppose that 8 > 3vn2m, 8 > 3nnlm.   Then e0 = 0k/A(0k).

Proof.   Put 0 = 0k/n when t = 0, 1 and put 0 = 0k/3n when r = 2.   By Lem-

ma 2, 0 G ß[5] ; also, #(0) = 3"nz2n (v = 0, 2, 1 when t = 0, 1, 2 respectively).

If 0 = (/, +/25 +f28)/a, pß\ifvf2, f3) and pP*:o, then p3 |5, which is not possible

as S is cube-free; thus, by the theorem ^ « 0 is a relative minimum of R.

Since 0k0k < 1, we have N(0k) < 0k and, consequently, 0 > 1. Further, Ni\p)\S

and Af(0) i= 1; thus, 0k < 0 by definition of 0k.    By Lemma 6, it follows that e0

= 03/A(0k).

We see now that the restriction that D exceed 729 in the corollary of Theorem 1

can be replaced by the restriction that D > 27.   Barrucand and Cohn [1], [2] have

shown that if D = p, 3p, 9p, where p = 2, 5 (mod 9) and p is a prime, then N(u) =

3 always has a solution with a G ß[5].  Thus, from Theorem 2, we see that if D >

27, then A (« a) must be a relative minimum of R and this means that there must

exist 0k G R as specified in the corollary.  Hence, in the above cases, we can use

Voronoi's algorithm to search for the least 0k such that A(0k) = ak/kk| is 3 or 9.  We

then have e = 93k/Ni9k) or

k-l

R=\oge0=3 log 0k - log Ni9k) = 3 £ log 0« - log(a2/kk|).
i=i

5.   Computational Results.   In [13] Voronoi's algorithm was modified for im-

plementation on a computer.   The amount of time needed to find the basis [1, 9gl+ ',

9{hi+1)] of R/+,, once the basis [1, 0<°, 0*,°] of R,. has been determined, is about

200 p seconds on an AMDAHL 470/V7 computer.   In spite of this speed, however, it

is still very expensive to calculate R when D = p, 3p, 9p and p = 2, 5 (mod 9).   This

is simply because, for such values of D, we have D ^ ± 1 (mod 9) and the fairly likely

possibility that the class number h of ß(5) is one.  Since

irjiyMi
h = ^R—>

where 3>(s) is the Artin ¿-function given by f^(i)/f(s), where K = Q(8) (see [3] ) and

4>(1) = 0(log|A|) (Barrucand, private communication), we have R = D(VlA|log |A|)

when n = 1.   Also for two D values Dv D2 of about the same size such that Dx =

± 1 (mod 9) and D2 ^ ± 1 (mod 9), we expect that A2 > 9At and the regulator

tends to be 3 times longer for D2 than for Dx.

In Table 1 we show how large the values of R can get to be.   If D appears in

the table, the regulator R(D) > R(d) for all d such that 10s < d < D, d = p, 3p,

9p, and p = 2, 5 (mod 9).   Also, the value of k comes from e0 = 0k/N(0k).
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D

104369
105981
107717
107843
108347
112601
116507
117389
119783
127301
129011
141387
141653
143291
143879
161043
173139
184631
192317
195161
199109

R(D)

227943.625
229038.437
230024.187
233824.437
234699.062
248248.875
259221.500
273369.250
280993.375
286446.812
287450.687
299283.437
306025.437
315992.125
361610.312
384876.562
394103.250
422310.000
431283.062
450992.375
455713.750

67135
67653
68201
68930
69339
73172
76585
80591
82874
84377
84996
88025
90313
92996

106989
114190
116390
124385
127155
132909
134645

By making use of the results of Section 4 we were able to triple the speed of

our regulator program when D = p, 3p, 9p (p = 2, 5 (mod 9)).  This program was

used to calculate the regulator for Qi\Jp) when p = 2, 5 (mod 9) and p < 2 x 10s.

The class numbers of all these fields were subsequently calculated by making use of

the Euler product method mentioned in [3].

Denote by Sa b(x) the set of all rational primes of the form a + bt which are

less than or equal to x, and denote by Hx(a, b; x) (H2ia, b; x)) the number of primes

in Sa bix) such that the class number of ß(Vp) iQ(y/p)) for p G Sa bix) is one.  Let

7r(o, b; x) = \Sa bix)\.  In Table 2 we present some values of 7r(a, b; x), H2ia, b; x),

and H2ia, b; x)/nia, b; x) for b = 9 and a = 2,5.   For some numerical results and

references concerning Hx(a, b; x) see Lakein [6].   Further references can be found in

[10].

In Figures 1, 2, 3 below we show how the ratio H2(a, b; x)/ir(a, b; x) varies as

x increases to 2 x 10s.  The results illustrated in Figure 3 have been discussed in

[12].   Figures 1 and 2 seem to reveal a difference between the behavior of H2(2, 9; jc)

and that of //"2(5, 9; x).  Why this difference should exist is not understood.  It may

be that H2i2, 9; x)/rr(2, 9; x) is slowly increasing in the mean and that

//2(5, 9; x)lit(5, 9; x) is slowly decreasing so that ultimately this initial distinction will

disappear for very large x.  In any event it would certainly appear that both of these

ratios are decreasing sufficiently slowly to be consistent with the belief that there exists

an infinitude of each type of field having class number one.
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Table 2

7y(2,9;x) H,(2,9;x)
2

H2(2,9;x)/Tr(2,9;x) 7r(5,9;x) H2(5,9;x) H2(5,9;x)/tc(5,9;x)

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

24000

26000

28000

30000

32000

34000

36000

38000

40000

50000

60000

70000

80000

90000

100000

110000

120000

130000

140000

150000

160000

170000

180000

190000

200000

51

95

131

169

207

243

281

319

349

382

418

449

480

515

546

576

610

638

672

705

855

1016

1154

1301

1447

1596

1742

1881

2022

2176

2318

2462

2601

2737

2867

2994

21

37

53

69

81

95

108

130

136

150

158

172

181

195

203

222

235

243

251

263

329

392

437

495

555

618

683

734

786

860

918

986

1042

1095

1150

1200

.4118

.3895

.4046

.4083

.3913

.3909

.3843

.4075

.3897

.3927

.3780

.3831

.3771

.3786

.3810

.3854

.3852

.3809

.3735

.3730

.3848

.3858

.3787

.3805

.3836

.3872

.3921

.3902

.3887

.3952

.3960

.4005

.4006

.4001

.4011

.4008

53

93

135

170

209

242

277

312

345

380

411

450

479

513

545

577

614

647

673

709

866

1012

1157

1308

1455

1597

1734

1882

2026

2169

2304

2440

2572

2720

2861

2988

22

34

54

71

87

96

115

131

146

160

174

196

209

225

242

257

266

281

291

314

381

441

502

568

631

683

750

816

888

943

1000

1067

1127

1185

1245

1293

.4151

.3656

.4000

.4176

.4163

.3967

.4152

.4199

.4232

.4211

.4234

.4356

.4363

.4386

.4440

.4454

.4332

.4343

.4324

.4429

.4400

.4358

.4339

.4343

.4337

.4277

.4325

.4336

.4383

.4348

.4340

.4373

.4382

.4357

.4352

.4327
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