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One-Sided Difference Approximations for Nonlinear

Conservation Laws

By Björn Engquist* and Stanley Osher**

Abstract. We analyze one-sided or upwind finite difference approximations to hyperbolic

partial differential equations and, in particular, nonlinear conservation laws. Second order

schemes are designed for which we prove both nonlinear stability and that the entropy

condition is satisfied for limit solutions. We show that no such stable approximation of order

higher than two is possible. These one-sided schemes have desirable properties for shock

calculations. We show that the proper switch used to change the direction in the upwind

differencing across a shock is of great importance. New and simple schemes are developed

for which we prove qualitative properties such as sharp monotone shock profiles, existence,

uniqueness, and stability of discrete shocks. Numerical examples are given.

I. Introduction. Consider a nonlinear hyperbolic conservation law in one space

variable

(1.1) u, +f(u)x = 0.

A typical solution of (1.1) has discontinuities across curves which separate

regions in which the solution is smooth. These discontinuities develop in general

even for smooth initial values. It is desirable to obtain a method for the numerical

solution of (1.1) which gives a reasonably good approximation for the smooth parts

but which also handles discontinuities such as shocks and contact discontinuities

correctly. A computed shock should have the right speed, be fairly sharp, and be

physically correct, i.e., the entropy condition should be satisfied across it.

Various equivalent characterizations of the entropy condition have been given in

the literature; see-e.g. [10]. Here we use the criterion that an admissible solution to

(1.1) should satisfy the inequality

(£) TtY + TxF^<0
in the sense of distributions where

F(u) = f sf(s) as.

This inequality is, of course, an equality in regions where the solution u is smooth.

For convex/ and piecewise continuous u, it is well known that (S ) is equivalent to

the geometric condition that all characteristics flow into a shock.

One-sided or upwind differencing techniques have been used in computational
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fluid dynamics for many years [19], [13], [17], [18]. Calculations have shown that

they are particularly efficient when a shock occurs at a location where the flow

changes direction or where supersonic flow becomes subsonic [7]. Errors in one-

sided approximations at the shock will then not be propagated to the smooth parts

of the solution and the computed shock profile stays sharp. The one-sided domain

of dependence of upwind differencing which is useful in shock calculations also

simplifies the numerical boundary conditions.

For several space dimensions the ADI technique, or dimensional splitting, is

generally used [19], [4]. Systems of hyperbolic conservation laws are traditionally

approximated by centered difference methods. In recent years upwind differencing

has been applied also to these problems [19], [14]. Different components of/ are

then differenced in opposite directions depending on the sign of the eigenvalues of

the Jacobian matrix of/.

Although one-sided methods have been extensively used, it was never obvious

how to implement the switch in the differencing when the sign of /' changed.

Nonlinear instabilities and convergence to nonphysical solutions (e.g. expansion

shocks) are reported in the literature [7], [9]. It was previously not known how to

design one-sided schemes which are guaranteed not to have these defects.

It is the purpose of this paper to present such a method which is of second order

away from stagnation points and discontinuities and first order at isolated stagna-

tion points. We will also show that there are no stable one-sided schemes with

higher order than two and prove qualitative shock resolution properties for the first

order method introduced in [4].

We designed this first order method for a scalar conservation law as a step in

approximating the time-dependent small disturbance equation of transonic flow.

(1.2) 2*,x = (K*x -\(y + l)<trl)x + *„,

where $ is the velocity potential, K and y are positive constants. The scheme

approximating (1.1) is

(1.3) »/+1 = «/ - £(A+ /-(«/) + A_/+(«/)).

For convex/, we define

/+(") = /(max(w, ¿7)),       /_(«) = /(min(u, «)),

where w is the unique stagnation point, i.e., f'(u) = 0. For general/, we first let

X(«) s 1    if/'(«) > 0,       x(«0 = 0   iff'(u) < 0,

and then define

/+(«) = f X(s)f'(s) ds,      f_(u) = f "(1 - x(s))f'(s) ds.
Jo Jo

The mesh function uf approximates u(x, t) at the mesh points (xp t"), Xj = jt\x,

t" = nAt. The operators A+ and A_ are respectively forward and backward

differences in space (A±wy = ±(uJ±x — uf)).

In [4] we proved that this scheme is nonlinearly stable (L2 norm nonincreasing)

for a class of functions containing f(u) = Ku — |(y + l)«2 which is the ap-

propriate / for our splitting approximation to (1.2). In fact, the scheme (1.3) is

monotone and hence, by the results of [1], [6], the solution uf must converge in L,
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and the limit solution has no nonphysical shocks. Both signs of /' are permitted

and, in domains where this sign is constant, (1.3) is the standard first order upwind

difference scheme. If, for example, uf <ü (for convex f) for all mesh points

involved, we have A_f+(uf) = 0 and the scheme is

(1.4) «$»+,-«;-^A+Ai{r).

The difference equation (1.3) is written in conservation form. Lax and Wendroff

[11] showed that to satisfy the integral form of the conservation laws it suffices to

approximate them by difference equations in conservation form. For example, the

well-known one-sided difference approximation to (1.2) of Cole and Murman [12]

sometimes gave incorrect shock speeds for limit solutions, until it was put in

conservation form [7]. All methods considered in this paper are in conservation

form and will thus produce approximations with the right shock speed.

We proved, in [4], existence and uniqueness of the solution approximating a

shock for the steady-state difference approximation (1.3). In the present paper we

continue this qualitative analysis and prove existence* stability, and monotonicity

of sharp discrete shock solutions of (1.3) for the time-dependent approximation.

It is simple to extend the first order one-sided approximation A+/ and A_/ to

second order ones (A+ — \-A\)f and (A_ + ^A2.)/. If we let Uj(t) approximate

u(xj, t), the first attempt for a second order time-continuous analogue of (1.3) is

(1-5) 1» = -¿((A+ - ï^V-W + (A- + ^2-)Uuj)).

It is possible to design a linearly stable scheme based on (1.5) via a Lax-

Wendroff type time-discretization. However, the resulting scheme has severe de-

fects. It produces nonmonotone discrete shock profiles with overshoot in numerical

tests. We shall also prove that steady monotone shock solutions do not exist for this

scheme.

We propose instead the following scheme for the time-continuous method of

lines approximation to (1.1)

±-((a.+ /_(«,) -lA+(/'_(z,)A+«*))

+ (A_f+(Uj) +^(f'+(wJ)A_uJ))),

max^, uj+x)    if Uj_x < Ü,

ü if Uj_x > ü,

min(uj, «,_,)    if uJ+x > ü,

ü if uJ+x < ¿7,

for/ = 2, . . . , N - 2 with u0, ux, uN_x and uN given.

This scheme is fully one-sided and uses the minimum number of mesh points

(three) away from the stagnation point it. It is of second order accuracy away from

ü and at least of first order near «.

(1.6)     dt

where
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We use the energy method for proving the stability of the scheme (1.6). For a

class of functions/, including/(«) = Ku - \(y + l)u2, we have the strong estimate

ll«(r)||2 < ||«(0)||2.

Here i |j denotes the usual discrete L2 norm either for periodic functions or for the

whole real line. An analogous result for more general boundary conditions can be

obtained.

For this class of functions /, we can also show that any limit solution of (1.6)

must satisfy the entropy condition.

Time differencing of Crank-Nicholson type preserves both the unconditional

stability and entropy properties and there is strong numerical evidence that a

second order explicit Lax-Wendroff time differencing also is stable for CFL

number close to the linear stability bound which equals 2. This time-discretization

is given in Section 5.

We shall also show the somewhat surprising result that the only steady solutions

to this second order scheme which agree with a shock as x —> ± oo exactly equal the

shock except for at most two points. Moreover, each such profile is monotone with

no overshoot. These steady shocks are hence resolved exactly, using our second

order scheme (1.6) just as they are for our first order scheme (1.3).

The order of accuracy of the scheme (1.6) is optimal. A one-sided method of

lines approximation to the simple equation

(1.7) u, = aux

for a > 0 must have the form

9",       a a   ¿,

(1-8) IF "ÂÏL+*"Â74?0 *■*+*•

It is of order of accuracy q if, for smooth functions \b(x),

(1.9) ¿L+^ = **(*> + °((A*)?)-

We will show that an approximation (1.9) cannot be of more than second order of

accuracy if it is stable, i.e., if

l|M(r)n2 < c(r)||M(0)||2.

The most compact stable second order approximation is given by L+ = A+
- W+-

The analysis proving this saturation result is given in Section 2. The analogous

result for explicit time differencing was proved earlier by Gilbert Strang [15]. The

two proofs are based on different principles.

In Section 3 we analyze the second order scheme (1.6). We prove the sharp shock

profile, nonlinear stability, and entropy results. A somewhat simpler upwind

centered, but not strictly one-sided, scheme is also studied and shown to have all

the above mentioned desirable properties for arbitrary convex/.

Discrete shocks to the first order accurate approximation (1.3) and to more

general monotone schemes are analyzed in Section 4. We also discuss the modified

parabolic equation mentioned in [5] and show that discrete shocks for our scheme

are generally "closer" to solutions of the hyperbolic equation (1.2) than to solutions
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of this parabolic equation, which contradicts a frequently made conjecture. Our

scheme is also shown to contradict estimates on width of transition of discrete

shocks in [5]. However, our truncation error leads to a parabolic equation whose

viscosity vanishes at sonic points of f(u). The conjectures may be valid for strictly

parabolic approximate equations. We also explore briefly the numerical resolution

of linear and contact discontinuities.

Finally Section 5 contains results and comments upon some numerical computa-

tions.

II. Accuracy in the Smooth Parts of the Solution. When the solution of a

nonlinear differential equation is smooth, the convergence of the corresponding

difference approximation is, in general, guaranteed by consistency and linear

stability [15]. Good stability properties for the linearized equations are necessary

but not sufficient for a successful nonlinear method.

We shall analyze the relation between stability and order of accuracy for

one-sided approximations to the model problem

u, = aux,       -oo < x < oo,    t > 0,

(2.1)
u(x, 0) = <p(x),

with a > 0.

We first consider a time-continuous method of lines approximation to (2.1). The

solution of (2.1) is approximated by «,(/), (uj(t) ~ u(xp t)). The general form of a

one-sided approximation of (2.1) is given by the system of ordinary differential

equations

9",       a a    '
(2.2) *" = ¿iL+Uj = ^ *?o ttkUj+k'       ' > °'

Uj(0)-<p(xj),      7 = 0, ±1, ±2,-

The CFL-condition implies that (2.2) can be stable only if a > 0. Analogously,

the one-sided approximation

p
L_uj = 2   «*«,-*

*-o

corresponds to negative a.

We will assume the method to be consistent with (2.1) which implies

(2.3) 2   ak = 0, 2   kak=l.
k-0 k~0

The difference operator L+ can then be written

(2-4) L+ « 2   tó,
fc-i

with /?, = 1. The relation between {ak) and {>8fc} is given by

(2.5).P--
ax = ßx-2ß2+-(-lYßp,

a0=-ßi + ßi-+(-l/Ä.
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As in the introduction, we call the approximation (2.2) stable if there exists an

estimate

(2.6) I«(0II2-a*2I«/0I2<c(/)||u(0)||2,

where C(t) is a function which is bounded independently of Ax and u. It has the

order of accuracy q if, for smooth functions $(x),

1

Ax
L + t(x) - *x(x) + 0(Ax").

We now present a saturation result which states that there are no stable

one-sided methods of arbitrary order of accuracy.

Theorem 2.1. Stable approximations of type (2.2) can be of at most second order.

Moreover, there do exist stable second order approximations and the most compact

(smallest p) is given by ßx = 1, ß2 = -{- for p = 2 in (2.4).

Proof. We Fourier transform the differential difference equation (2.2) (2.4) in

space. From Parseval's relation, the stability condition (2.6) is equivalent to the

inequality

(2.8) Re
Ax

2 ßk(e» - iy
k=\

<  C, -IT  < 9  < IT,

for some constant C. Since C is independent of Ax, the stability condition (2.8) can

be written

(2.9) Re 2 A(k - i)A
k = l

< 0   for |K| = 1.

Following Dahlquist [3], the unit circle |k| = 1 is mapped onto the imaginary

axis, Re z = 0.

(2.10) z(k) =
1

k(z) =
+ 1

K +   1  ' V   ' Z  -   1  '

From (2.9) and (2.10) we get the stability condition

1 = -
2z

z - 1

(2.11)        Re[£,(z)] < 0   for Re z - 0,       Bp(z) = 2   &("T^l) ■

The function Bp(z) is analytic for Re z < 0, and for large |z| it is of the form

(2.12) Bp(z) = ß+0(\z\~%       ß= 2 (-2)*&.
k-l

When (2.11) is valid, the constant ß cannot have a positive real part. The maximum

principle for the harmonic function Re[Bp(z)] implies the equivalent stability

condition

(2.13) Re[5„(z)] < 0   for Re z < 0,

since Bp(z) ^ constant.
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Assume now that the order of accuracy is higher than two. We have

Ax .+*(*) = ß^x + ^*xx + ^-^

+ ß2(Ax^xx + Ax\xx) + ß3Ax\xx + 0(A*4)

and hence

(2.14)

Ä-l, ß2 = -^, &- j,
2

w-T^-iíT^r^íí^)'*^

(2.16)

= 2z+|z3+ 0(z4).

Define f = z"1 and Gp = ^(z)"1. The rational function Gp then has the analogous

properties of (2.13)

(2.15) Re[ Gp(S)] < 0   for Re f < 0,

Gp(n = ̂ (rr1 = (2r' +fr3 + o(n)_1

= K-|r' + o(r2)=u+ *„«)•

The function g is analytic for Re f < 0 and

Re[g/,a)]^Re[G/n]    forRef^O,

^(f)-»0   for|£|-»+oo.

Hence we can use (2.15) and the maximum principle for the harmonic function

MgP(0] to show

(2.17) Re[g,(f)] <0   forRef<0.

From (2.16), we have gp($) = ~l$~l + 0(?~2) which contradicts (2.17), and the

first part of the theorem is proved.

For the second part, we need to show that (2.11) is valid for ßx = 1, ß2 = -j,

ßk = 0, k > 3.

Re tV^ÎH 2/a(l — 2ia)

(1 - i«)2

4a4

(for z = ia, a real)

(1 + a2)
2ï2

<0.

Hence, the scheme is stable and it is easy to see that it is of second order accuracy.

There is no second order method with p = 1 and the second order p = 2 scheme is

unique.

There are several analogies between this theorem and Dahlquist's saturation

result for A -stable linear multistep approximations to ordinary differential equa-

tions [2], [3].



328 BJÖRN ENGQUIST AND STANLEY OSHER

Remark. It is easy to construct one-sided difference formulas of any order of

accuracy if the constraint of stability is neglected. The difference approximation

is of ptl\ order, but, as we have seen, it is only useful for/) = 1 and/» = 2.

The accuracy of a time-discretization of (2.2) cannot be more than of second

order in Ax if the scheme is consistent and uniformly stable in Ai as Ai —> 0. Any

solution of (2.2) for fixed Ax can be approximated arbitrarily well by the difference

scheme, and hence there can be no stability estimate if there is no bound on the

solution of (2.2). Compare also the saturation result for explicit methods by Gilbert

Strang [15].

For the special and purely theoretical case of a fixed ratio aX = aAt/Ax = 1, the

Euler  time-discretization with  L+ = A+   gives  the  infinitely accurate method

K/'"+I) = «,+ ,('")■

The stability analysis for difference approximations of the simple equation (2.1)

is far less complex than the corresponding analysis for the approximations of the

nonlinear problem (1.1) which we perform in the next section. Since the linear

analysis is useful as a necessary condition for more general problems, we will

briefly consider some standard time-discretizations of (2.2).

(2.19) uf+i = (1 + aXL+)uf   (Euler),

(2.20) uf+l = uf-1 + 2aXL+uf   (leap-frog),

(2.21 ) uf+' = ( 1 + aXL + + ^L a2+ \ uf   (Lax-Wendrof f ),

(2.22) ( 1 - -^ L+\ uf+ ' = Í1 + -y L+) uf    (Crank-Nicholson).

We will call the schemes stable if there exist an estimate

||«"|| < C(nAt)\\u°\\

for the one-step schemes and an estimate

||«-|| < c(«A/)(||«bll + II«1!!)

for (2.20).

Theorem 2.2. For L+ = A+ - \A2+, the schemes (2.19) and (2.20) are uncondi-

tionally unstable, (2.21) is conditionally stable for 0 < aX < 2, and (2.22) is uncondi-

tionally stable.

Proof. The von Neumann stability condition is necessary and sufficient for the

scalar one-step methods. It is necessary for the stability of the two-step scheme

(2.20). Thus, in order to prove the theorem, we need only to determine the

amplification factors c(9).

For the scheme (2.19), the amplification factor, i.e., the Fourier transform of the

difference operator (1 + aX(A+ — 5A+)), is

(2.23) c(9) = 1 + aX(is(l + 2r) - 4r2),       \c(9)\2 = 1 + (aXßf + 0(9%

where s = sin 9 and r = (sin 9/2)2.
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For (2.20), c is given by

cX2(9) = a ± Vl + a2 ,       a = aX(is(l + 2r) - 4r2),

(2.24) >
k2(0)|2 = i + ^V + o(*5).

For (2.21), c is given by

c(9) = 1 + aX(is(l + 2r) - 4r2) + (aX)2(4r2 - 2irs - 2r),

25)   \c(9)\2 = 1 - 4aX(l - aX)2(2 - aX)r2,       \c(9)\2 < 1    for 0 < aX < 2.

For (2.22), c is given by

1 +^(»(1 +2r)-4r2)

(2.26) c(9) =-\-,       \c(9)\ < 1.
l-^(is(l+2r)-4r2)

III. Entropy Production, L2 Bound, and Sharp Shock Profiles for the Second

Order Scheme. In this section we shall consider the initial value problem for the

conservation law

(3.1) u, + (f(u))x = 0,       «(x, 0) = u0(x).

Our numerical results will mainly concern/in the class 6 = {/ £ C3 \f"(u) >

0 with a unique ü such that/'(i7) = 0}.

We seek to construct differential-difference approximations to (3.1) having the

following properties:

(a) Second order accuracy away from the sonic point w, at least first order

accuracy at U.

(b) Fully one-sided and using the minimum number of mesh points (three) away

from the sonic point.

(c) Nonincreasing L2 norm for all solutions.

(d) Limit solutions which must satisfy the entropy condition.

(e) Sharp monotone profiles for zero speed shocks.

As in the introduction, we let Uj(t) approximate m(x,, t).

In order to construct a one-sided scheme, we follow [4] and define

/-(«)=/(«)   if " < ",

J_(u)=f(U)   iiu>U,

7+(«)=/(«)    if«<",

/+(«)=/(")    if " > "•

In [3] we constructed a first order accurate scheme having the properties (b)-(e)

as follows:

(3-3) ^ = - ¿(A_/+(«,) + A+f_(uj)).

A natural second order one-sided generalization, in view of the linear stability

results of the last section, is

(3-4) TÍ = -¿c"[(A+ -X)/-(«,) + (A_+|A2)/+(M,)].
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We have been unable to prove nonlinear stability (or instability) for this scheme.

However, in Remark (3.1) below, we shall prove that steady monotone shock

solutions of (3.4) do not exist, there must be overshoot. (We also construct all

steady solutions to (3.4).)

We propose instead the following scheme:

(A-Mn)-Ha.(A(»}Wj*))]'

where

Wj =

max(«,, uJ+,) if Uj_, < u,

Ü if Uj_x > U,

min(w,, Uj_,) if uj+, > m,

« if Uj+l < it.

We expand upon the properties (a)-(e) which (3.5) will be shown to have

(a) Smooth solutions to (3.1) satisfy (3.5) with error 0((Ax)2) as Ax —»0 at any

point (x, /) for which u(x, t) ¥= «. The error is at most O(Ax) if u(x, t) = ü and

improves to 0((Ax)2) if f"(u~) = 0.

(b) If Up Uj_x < Ü, then the right side of (3.5) involves only u¡, uj+x, and uj+2.

Similarly if «,, uJ+, > U, then only u,, Uj_x, and Uj_2 are involved.

(c) Solutions to (3.5) satisfy the a priori estimate for any t > 0:

2 uj(t)Ax = won?. < ||W(0)||2.
j

(d) If Uj(t) converges boundedly a.e. to u(x, t) as Ax -» 0, then m is a weak

solution of (3.1) satisfying the entropy inequality

(3.6) ifs""«
where

F(u) = f" sf'(s)ds.•'ü

(e) The only steady solutions of (3.5), satisfying

lim Uj = uR, lim   u, = uL,
j-*aa 7->-oo

with/(«Ä) = f(uL) and/'(wL) > 0 >f'(uR), are of the form: For some/0

Uj=UL,        j </0,

Uj =uR,        j >j0+ 1,

and uJa e (u, uL], uJo+x G (uR, u], with

f(Uj) + f(uJo+x) = f(uL) + f(u).
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The profile thus looks like
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-•—•-

-•—•—•-

We have

Theorem 3.1. Properties (a), (b), and (e) above are valid for any f G Q while

properties (c) and (d) are valid for f G ß having the additional property

(3.7)

(i)    f[-l+2{^-^Y'(s)ds<0   ifu<v<ü,

(ii)    f{-l+2{^^Y'(s)ds<0   ifü<u<v.

We note that if f"(u) is piecewise constant, having a jump only at u = ¿7, it

satisfies (3.7).

We can construct a scheme having properties (a), (c), (d), (e) for arbitrary/ G Q,

but which is not fully one-sided. However, it is upstream centered (see, e.g., [16],

[17]) which helps explain why it also has the steady sharp shock profiles of property

(e).

The scheme is

(3.8)
+ (A_f+(uJ)+\AXf'+(o>4)Auj))},

where this time

Çj = max(u,_„ Uj, uJ+x),       w, = rnin(u,+ 1, Uj, «,-_,).

We now have

Theorem 3.2. Solutions of (3.8) satisfy properties (a), (c), (d), (e) above for

arbitrary f G Q. However, property (b) becomes: if u}, uJ_l < ¿7, then the right side of

(3.8) involves only Uj_x,Uj,uj+x, and uJ+2. Similarly, if UjUJ+x>ü, then only

ui+v uj-> uj-v and Uj-2 are involved.

Finally we have

Remark (3.1). There exist no monotone steady solutions to (3.4) satisfying

lim,._ uj = uR, lim,^ Uj - uL, with f(uL) = f(uR) and f'(uL) > 0 >f'(uR).

Any steady solution must have overshoot.

Proof (Theorems (3.1), (3.2) and Remark (3.1)). We begin with the accuracy

result, part (a) of both theorems, which is surprisingly complicated to prove.
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Taylor's theorem gives us, for smooth functions Uj(t) = u(xj, t),

(a) A+ /_(«,) = Ax/:(k,K(x,)

-fJ+\s - Xj+x)[f:(u(s))(ux(s))2+ + f'_(u(s))uxx(s)] ds
xj

(3.9) and

(b) AJ+(Uj) = Axf+(Uj)ux(Xj)

- P (' - *,-.)[/:(«(*))K(*))2 + f'+(u(s))uxx(s)] ds.
Xj-l

Add and we obtain, for smooth solutions of (3.5)

3«,

(3.10)

^L + f(u(Xj))ux(Xj)

¿[/**'(' - xJ+l)(f:(u(s)%ux(s)) +f'_(u(s))uxx(s))ds
L   Xj

+ {A+(f'_(Zj)A+Uj)

P (* - Xj_x)(fl(u(s))u2(s) +f'+(u(s))uxx(s)) ds
Ax

-K(A(>",)A-«,).

We wish to show that the right side of (3.10) is 0((Ax)2) as Ax -» 0 if u(xf) =fc ü or

if u(xf) = ü and/"(t7) = 0, and that it is 0(Ax) if u(xf) = ¿7 and/"(¿7) ^ 0.

If either the first or second case is valid, then/_,/+ are both C2 and piecewise

C3, so we may integrate by parts once more obtaining

^L + f(u(Xj))ux(Xj)

(3.11)

-Ax

+ 2 Ax

r(u(Xj))u2(Xj) + f_(u(Xj))uxx(Xj) - __A+(/:(z,)A + M,)
(Ax)

n(u(Xj))ux(Xj) + f'+(u(Xj))uxx(Xj) - _l_A_(/;(vv,)A_W,)
(Ax)

H^-|[/-'(«W)*) + f-(»(s))uxx(s)] ds

? ■AT^~Íl/:(m(j))m*2(5) +AW'KW] *•
Xj-\

The contribution from the two integrals is easily shown to be 0((Ax)2). We thus

need only show that

(3.12)   f:(u(Xj))u2x(Xj) + f'_(u(Xj))uxx(Xj) - -J_A+(/:(zy.)A+My) = O(Ax)
(Ax)

and analogously for/+.
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We shall show

(a) f:(u(Xj))u2(Xj) - -±-z(K f'.(Zj))A+Uj = O(Ax)
(Ax)

(3.13) and

(b) f'_(u(Xj))uxx(Xj) - -i-/:(z,+1)A2+«, = O(Ax).
(Ax)

Adding these will give us (3.12).

Part (3.13)(b) follows because A\uj/(Ax)2 = uxx(xf) + O(Ax) and f'_(zj+x) =

f'_(u(Xj)) + 0(Ax). For part (a), we need

r:(u(Xj))ux(Xj)-—- = o(Ax).(3.14) ux(Xj)

Now if u is monotone on (x,, xJ+2) and u(xf) =^¿7, then either i, = u(xf) and

zJ+x = u(xJ+l) or Zj = u(xJ+x) and zJ+x = u(xj+2). In either case, (3.14) is obviously

valid. If m is not monotone, then ux vanishes somewhere in this interval and (3.14)

is valid with 0((Ax)2) as right-hand side. If u(xf) = ü, then/"(¿7) = 0 and the result

follows simply.

It remains to show that the scheme is first order accurate at sonic points when

f"(u) ¥= 0. Then /_ and /+ are C1 and piecewise C3 with a jump in /" at u = ¿7.

Equation (3.10) is still valid, and/:(z,) = fL(zJ+x) = f+(wj) = f'+(Wj_x) - 0 and the

integrands are each easily seen to be 0((Ax)2), so the result follows.

For the scheme (3.8), we merely replace Zj by ^ in (3.10), (3.13), and (3.14), and

the result follows with no difficulty.

Next, we obtain the L2 estimate, part (c), for both schemes. Multiply both sides

of (3.5) by m,Ax and sum, arriving at

-^ii«ii2 = - 2 [«A /-(«,) -i«yA+(/:(z,)A+I/,)]

Now,

[I] = 2 (fu"J+'(s - »j)m äs + ^A+(/:(z,.)A+M.))

(3.16) = \ S ((A+u,)2/:(«,+ 1) - f*\s - UjffKs) ds

(A_M,.)(A+«,)(-/:(z,))),+

where we added 2/¡*+' sf'_(s) ds = 0, integrated by parts on the first term, and

summed by parts on the second.

Next, we apply Schwarz' inequality to the last term, switch orders of summation,

and use the fact that/Xz,) < 0 to arrive at

(317)     2(a_«,)(a+«,)(-/:(z,.))

< 12 (Kuj)2(-r_(Zj+x)) + \ 2 (a+«,)2(-/:(z,)).
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This tells us

[i]<ï2(A+«,):

(3.18)

2/:("y+1)-/:(z,+1)-/:(*,)

uJ + ,   (S -  Uj)2

"ifJ U.

f"(s) ds

(A+"/

If either uj+x > Uj, or ¿7 < uJ+x < up the integral appearing above is nonpositive

because of convexity, so we need only show the inequality

(3.19) 2f'_(uJ+x) - /l(z,+1) - f'_(Zj) < 0.

Since Zj,zJ+x > uj+l, (3.19) follows from convexity. Next, we consider the case

Uj+X < ¿7 < Uj. We then must verify

(3.20)

or

(3.21)

or, finally,

(3.22)

/:(",+,)+/ •'tí

ü    (s - u,)
-,—Jirf:(s)ds<o,

u,+t   (A+Uj)

ü    (s - uff
(fL(uj+l) - f'_(u)) + f "~   1-iLjzis) ds<0,

J ta.   .    . I    \ 4 I     I«,+1   (A+Uj)

s: (s - Uj)2

(A.«/

- 1 f"(s) ds<0,

which is true by convexity.

The last remaining case is uj+, < Uj < ¿7. Then, if zj+, > Uj (which means

Uj+X > uf), we have the estimate

/■u,    (s — u¡)

f'_(uJ+x) - f'SUj) +   f        y--g-/_"(5) OS
•V.   (A+M,)2

(3.23)

-'Cfâ'-'H***
by convexity. Otherwise, we have a,+, < Uj < 0, and we need to estimate

"j   (s - ujf
f'_(Uj+x)-f'_(Uj) + 2fJ   K--Jfr(s)ds

(3.24)

*♦'   (A+w,)

-2f
2(* - u,)2      t

(A+«,)2

/_-(*) ds<0,

by our special hypothesis.

The proof that [II] < 0 follows analogously.

To prove stability for (3.9), we proceed in the same way with z replaced by £ in

(3.18). Since ^ > Zj and £+, > up convexity gives us the desired estimate.
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In order to prove (d), the entropy inequality for limit solutions, we let p(x, /) G

Cq(R X R+) be an arbitrary nonnegative test function. We shall show that

solutions to (3.5) satisfy the inequality

J

dt Pt(*j> 0
uj(t)      (A_o(xj,t))

Ax
F(uj(t))

(3.25)

< 2 Ax [    dt
00 m (A+p(xj' '))

Ax
A t    /      \     . f-(Zj+l)   .

«,+ A+ /+(",) + uj---A+uJ+x

.    "j+MWj)*-«J   .    1 ,. v2„ , .

-(A+M,)7:(zy+1)

Then, as Ax —► 0 if u(Xj, t) -» u(x, t) boundedly a.e., the above right side -* 0 and

the left side -» - ff(p,(u2/2) + pxF(u)) dx dt by the Lebesgue dominated conver-

gence theorem. Since p > 0 is arbitrary, inequality (3.6) is immediate.

To obtain (3.25) we multiply (3.5) by p(x,, t)UjAx, sum and integrate, then add

(3.26)
-w°*^>w»Ax

= 2 Ax/
00 , p(xp {) ruJ+i „

dt
Ax

to both sides, arriving at (suppressing the t dependence)

Left side of (3.25)

rv« ds

= 2pU) P+\s - Uj)f'_(s) ds-r{UjA+(f'-(Zj)KUj)
J ta

(3.27) + 2p(*,)[ P+'(* - uJ+x)f'+(s) ds - \ujA_(f'M)A_Uj)

+ 2(A+p(x,))M>+1A+/+(«,)

-[i]P+[«L+[«!];•

We shall call all o(l) terms [III]*, numbering them as they arise. Integrate and

sum by parts in [I]p arriving at

p(xj)
[i], = 2 ^[(W-ttv«) - Pl{s - u$m *

(3.28) + (A_Uj)(A+Uj)(-fL(Zj))

+ 2
(Aj»(x,))

U,-lf'-(Zj)à+Uj.
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Call the last term above [HI]2. Schwarz' inequality gives us

(A_Uj)(A+Uj)(-f'_(Zj))

(Kujf<2 [p(Xj)(-f'_(Zj)-f'_(zJ+x))}

(W„

= 2 (A,",)

/:(z,.+1)a+p(x,)

2

-p(Xj)(-f'_(Zj)-f_(Zj+l))+[myp.

Thus we have

[i]P<2^W
(3.29)

2/:(u,+1)-/:(z,)-/:(z,.+1)

r"j*i( s - uA2
■["'];+[■«]:■

It is also easy to show

P(Xj)m, < s
(3.30)

where

(3.31)

-2f'+(Uj) + f'+(wj) + f'+(wJ+l)

• uJ+l(s -  UJ+lf-s A+Uj
-f'i(s) ds + [«!];+[«it

rml«     ^ A+P(xy)[ni]p = 2 —2—Uj+Mwj)à-Uj>

[iii]; = 2^(a+m,.)2/;(>v,+1).

The first term in brackets in both (3.29) and (3.30) has already been shown to be

nonpositive. Thus, (3.25) follows from (3.27), (3.29), (3.30), and (3.31).

The proof of part (d) for solutions of (3.8) follows in the same fashion.

Next, we prove part (e) of both theorems and the related Remark (3.1).

Summing (3.5) from -oo to/ shows us that steady solutions satisfy

(3.32)  /_(«,+ ,) -ySzj+x)A+uj+l +f+(Uj) +{f'+(Wj)A_Uj=f(U)+f(uL).

Let /„ be such that u, > ¿7 for / < /„, uJo+x < U. Then, for / < /„ - 1, (3.32)

becomes

(3.33)

or

f(uj) +{-f'(Wj)A_(Uj)=f(uL)

2(f(uL) - Auf))
A_Uj =

/'(",)
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Thus, if for some /', < in — 1 we have u, > uL, then A «, < 0 or uL < u¡ <«,_,.

Repeating this gives us uL < Uj; < uy if v < /,, which is impossible. Similarly,

Uj < uL is also impossible; thus Uj=uL for/ < /0 — 1.

Next, we claim uj<s+2 < U, for suppose this is false. Then (3.32), for/ =/0 + 1,

gives us

(3.34) /.(«)+/.(") = /-(") +f(uL)

or

/+(¿7)=/+(0,
which is a contradiction.

We also claim Uj < ¿7 if/ >/0 + 2. Suppose there is/, >/0 + 2 for which m, > ¿7

while m, < ¿7 for /„ + 2 < / < /,. Let / = /, - 1 in (3.32). Then we have (3.34)

which is a contradiction. It now follows that Uj = uR for/ >j0 + 2 in the same way

that it was shown that Uj = uL for j < /„ — 1, and (3.32) is valid for all/ except

/ = /„. For this value we have

(3-35) f_(uj0+,) + f+(uj) = /(¿7) + f(u%

and for each uja G (¿7, uL], there exists one uJo+x G (uR, ¿7] solving this. Thus part

(e) of Theorem (3.1) is proven. The same proof works for Theorem (3.2).

To prove Remark (3.1), we examine steady solutions of (3.4) which must satisfy

(3.36) f_(uj+x) - \A+ f_(uJ+x) + f+(uj) + í-A_f+(Uj) = f(ü) + f(uL).

Define/0 as above. Then, for/ < /0 - 2 (notice, not/0 - 1), we have

(3.37) f+(Uj)+ \A_f+(Uj)=f(uL)

or

2(f(uL) -f(Uj))
A u,=

1       (AJ(uJ))/A_Uj j

So, as above, w, = u for/ < j0 — 2. We again claim uJo+2 < u, because if not, we

may take/ = /„ + 1 in (3.36) giving us

(3.38) -K/K+3) - /(«)) - ï(f+(»j) - /(«)) = f(uL) - /(«),

but the left side is nonpositive and the right side is positive, another contradiction.

We suppose there exists/, >/0 + 1 for which Uj > U, while Uj < ü for/ + 2 < / <

/,. Letting/ =/, — 1 in (3.36) gives us (3.38) with/0 replaced by/, — 2, giving us

the same contradiction. Thus, we have

Uj=uL,      /</0-2,

(3.39)
Uj=uR,      j>j0 + 3,

and it remains to solve (3.36) for/ = /„ - 1,/q, and/0 + 1.

We may normalize so that i7 = 0 = f(u). These equations become

(a) y+(uJo-i)--2f-(uJo+i)-y(uL),

(3.40)       (b)    -A/+K-.) + !/+(«,„) + ïf-(%+ù - ïf-(uJo+2) = f(uL),

(c) -i-fAUj)+y-(\+2)=y(uL).
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In order that a discrete shock exist, we need a solution to this with uJo_ „ u¡ > ¿7;

Ujo+x, uJo+2 < ¿7. Solving this system of equations in terms of f+(uJo_x) and f(uL)

gives us

/+K)= \A«L) -3/+K_,),

(3.41) /-(«,„+.)— 3A«L) + 3/+(^0_,),

/-K+2)=f/(«L)-/+(«,0-,).

The following inequalities are easily shown to be necessary and sufficient for

existence of a solution:

\f(uL) >/+(«,.-,) >/(«L),     f/C«*) >/+(«,„) > 0,

!/(«*) >/_(«,„+,) > 0, \f(uL) >f_(uJo+2) >f(uL).

Thus there must be overshoot. Prescribing uJo_x in the interval [uL,f+(\f(uL))]

gives us a unique solution.

IV. Discrete Shocks for the First Order Scheme. In this section we shall analyze

discrete shocks and contact discontinuities for the first order accurate monotone

difference approximation to (3.1) of the form

uf + l = uf - X[A+f_(uf) + AJ+(uf)} = G(«/+„ uf, uf_x)

= uf - X(h(uf+i, uf) - h(uf, «/_,)),
(4.1)

where

/+(") = f X(s)f(s) ds,       /_(«) = ["(I - x(s))f'(s) ds,
Jo Jo

for

X(u) = 1    if/'(«) > 0,

X(u) = 0   if/'(")< 0,

with the CFL condition A|/'(«)| < 1.

We shall prove existence, stability, monotonicity, and an ordering principle for

discrete shock solutions of (4.1) following [8]. Jennings' results in [8] apply only to

strictly monotone schemes, i.e., if

(4-2) uf+l = G(uf+k,...,uf_,),

then GM > 0 for p =-/,..., k. Our scheme is only weakly monotone, i.e., Gu > 0;

thus we need to use some of its special properties in order to prove these results.

Another difficulty is the existence of numerous errors in Jennings' work. In

particular, his stability proof has to be completely redone. A new proof was

recently obtained by James Ralston; we shall give it below (Jennings' existence

proof was also cleaned up by Ralston with some minor modifications; we omit the

details).

Our difference scheme will be shown to approximate steady shocks with infinite

resolution and also to approximate a wide class of moving shocks with infinite

resolution in front of the shock. What is perhaps more surprising is that contact

and linear discontinuities can also, in some cases, be resolved exactly, thus

contradicting much numerical evidence, e.g. [5].
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Finally, we analyze the truncation error equation for (4.1). It has been conjec-

tured in several places, e.g. [5], that solutions to difference schemes are closer to

solutions of the truncation error equation than to solutions of the hyperbolic

conservation law (3.1). We shall show that this is sometimes false for (4.1) using the

discrete shocks discussed above. We also show that previously conjectured esti-

mates [5] for the spreading of discrete shocks are not valid in this case.

A discrete shock solution of (4.1) moving with speed s satisfies the difference

approximation

(4-3) Uj_sX= G(uj+x,Uj,Uj_x).

The minimal domain on which (4.3) makes sense consists of functions defined on

the linear span over the integers of tj = sX and 1. Call the closure of this set £ . If tj

is rational, £,, is discrete, if tj is irrational, then £n is the entire real line. £,(£,,) is

the space of absolutely integrable functions on £^ with the usual measure. Let the

solution of (4.3) satisfy

(4.4) (a)      lim   m = uL,        lim m = uf,
j-*-O0 j-KX>

the Rankine-Hugoniot relation

(b)   s(uR - uL) = f(uR) - f(uL),

and Oleinik's condition E

M    f(»)-Äu«)  ^f(uL)-f(uR)
(C)       -R- < -Z-R-

U - UK U    - «

for u strictly between uR and uL.

Our first result concerns existence and ordering of discrete shocks. For conveni-

ence only, we shall take uR < uL in what follows.

Theorem 4.1. If |tj| < 1, then for each u0 G (uR, uL) there is a function continuous

on £,, taking on the value u0 at j = 0 which satisfies (4.3), (4.4) and which is a

monotone nonincreasing function of j. These shocks obey the following ordering

principle: if s ¥= 0, or if s = Ofor convex f G G, then, ifu0 > v0for two such discrete

shocks, it follows that u} > Vjfor allj.

We next have a stability result for discrete shocks.

Theorem 4.2. Suppose tj ^ 0 is rational, or tj = 0 and / G 6, and the initial

function {Uj} has the properties

(a)2,>0l«,°-"Äl<°°,
(b)2J<0\u?-uL\<cc,

(c)ujG[uL,uR] for allj.

Then the sequence

uf+l = G(uf+ „ uf, uf_,),       n = 0, 1, ...,

converges as n —* oo to the discrete shock u, satisfying 2 («, — uf) = 0.

We also have sharp shock profiles without overshoot as follows.
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Theorem 4.3. (a) Suppose the shock speed s > 0 and f'(uR) < 0. Then the

monotone discrete shock solution to (4.3), (4.4) has the property that there exists j0

with Uj = uR for j >/0. In fact, if u0 is such that /'(«) < Ofor all u G [uR, u0], then

/0 < 1 - sX.

(b) If s < 0 andf'(uL), then there exists j0 with Uj = uL for j < /0, and iff'(u) > 0

for all u G [uR, uL], thenj0 > -1 + sX.

(c) If s = Ofor convex f G 6, then there exists j0 with Uj = uL for j </q, Uj =ur

forj >/o + 1, and uJo, uJo+x solve/_(w,0+1) + /+(«,„) = fiuL) + f+(uL) with f'_(Uj)

= 0 = f'+(uJo+x).

In order to prove the stability result, we shall need the following result of

Ralston.

Theorem 4.4 (Ralston). Suppose tj is rational and the initial function [uf] has the

properties of Theorem 4.2. Then, for a strictly monotone scheme, the sequence

uf+i= G(uf\k,...,uf_k)

converges as n —> oo to the discrete shock Vj satisfying 2 (Vj — uf) = 0.

Before proving these theorems we present the following remarks.

Remark (4.1). The existence part of Theorem 4.1 can be generalized to any

weakly monotone scheme
,,n+l _  t^l,,n ,.n   \
Uj      - G(uj+k, . . . , Uj_,),

having   the   property   that   for   any   e > 0   sufficiently   small there   exists   a

G'(uj+k, . . . ,Uj_,)  such  that  the  resulting  scheme  is  strictly monotone  and

G'(uJ+k, . . ., «,_,)-» G(uJ+k, . . . , Uj_,) as e \ 0. For example, the well-known

Lax-Friedrichs scheme

<+1 = |(wAi + »J-Ù - ¿(Ao/«)) = G(wf+X, wf, wf_x)

is only weakly monotone because G0 = 0, yet, if we require the strict CFL

condition X\f'(w)\ < 1, we may take G' - G = -XeA+A_Wj for e sufficiently small,

to prove existence of discrete shocks for rational tj. (Notice that we added negative

dissipation in this rather peculiar case in order to construct the strictly monotone

G'.) It was pointed out by Ralston that, regarded as an algorithm of the form

uf^2 = G(wf+2, wf, wf_2),

the Lax-Friedrichs scheme is strictly monotone. It is easy to use this along with

Jennings' existence and uniqueness results to show that uniqueness, monotonicity,

and the ordering principle are in general false for the Lax-Friedrichs scheme for tj

rational.

Remark (4.2). If a discontinuity obeys Oleinik's condition E,

f(u)-f(uR)        f(uL)~f(uR)       . ,     -   ,    R      L\ i    R      LW
—^^ <    —7—^—^    for " e (nun(uÄ, uL), max(wÄ, uL)\

u — u u   — u

it is usually called a shock. If the left side identically equals the right, it is usually

called a linear discontinuity. Finally if equality holds somewhere in the interval, it

is usually called a contact discontinuity. It is widely stated, e.g. [5], that good

numerical resolution of contact discontinuities is difficult to obtain, that there is
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more spreading than for shocks. This is true in general. However, our first order

scheme (4.1) may have numerical steady solutions approximating linear and

contact discontinuities with infinite resolution. If we take, for example, a function

which looks like

f I

with/constant for a < u < b,f'(u) > 0 if u > b,f'(u) < 0 if u < a, then a discrete

steady solution is

Uj = b    for y < /0,       Uj = a   for/ >/0.

We next address ourselves to an analysis of the truncation error equation. For a

difference scheme approximating (3.1) of the usual form (4.2) with C2 and

piecewise C3 coefficients, a truncation error analysis shows that all smooth solu-

tions of (4.1) satisfy

(a) u(xp t + At)- G(u(xJ+k, t),..., u(xj_„ t))

(45) = (At)2[%(u,X)ux]x+ 0((Atf),   where

(b) % (u, X) = -L 2 J2Gj(u, u,u,...,u)- {(f'(u))2.
2\  j--i

It has been pointed out [5] that solutions of monotone schemes such as (4.1)

often behave very much like solutions of the modified parabolic equation

(4.6) u, + (f(u))x = At[%(u,X)ux]x,

where % (u, X) is defined in (4.5)(b). In fact, it is conjectured that discrete shocks

are frequently closer to solutions of (4.6) than to solutions of (3.1). It was also

conjectured [5] that the width of transition of these discrete shocks can be

approximated by

,. _. , x     . f* <$>(w,X)dw
(4.7) w(u_, u + )~X(     —-   \'   >-,

•V   /(*-) - AuL) - s(w - uL)

where w(u_, u+) measures the number of cells occupied by values between u_ and

u+. We have

Remark (4.3). Both of the above conjectures are sometimes false for the scheme

(4.1).
We prove this as follows. First in order that the functions in (4.1) be C2 and

piecewise C3, we take/ G 6 with/"(«) = 0. (We could make the coefficients in

(4.1) Ck for arbitrary k by requiring that a sufficiently high number of derivatives

of / vanish at u = ¿7.) For convenience, we again take ¿7 = f(u~) = 0. For our

scheme

(4.8) 9, (u, X) = -¿ |/'(u)| [ 1 - X\f'(u)\ ] > 0,
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and (4.6) becomes

(4.9) u, + (f(u))x = ^(|/'(«)|(1 - X\f'(u)\)ux)x.

We look for a viscous profile, a solution of (4.9) of the form u((x — st)/Ax) =

u(r) satisfying w(oo) = uR, m(-oo) = uL and s = (f(uR) - f(uL))/(uR - uL)

satisfies the strict entropy condition E. Such a solution solves the ordinary

differential equation

(4.10) -s(u - uL)+f(u)-f(uL)=\\f'(u)\(l - X\f'(u)\)u'.

Take a shock for which s > 0 and u R < 0 < u L. We impose the condition u(0) = 0

to fix it, and solve (4.10) obtaining an implicit expression for the solution

"2/0  '

lf» (/'(") + X(f'(w))2)
aw-*-——,        r > 0,

f(w) - f(uR) - s(w - uR)
(4.11) V   '     JK     '       V '

dw        W-XÜ»)'     ,   ,        r<0.
f(w)-f(uL)-s(w-uL)'

In Theorem 4.3 we have shown for s > 0 that Vj=uR for/ > 1 — sX for the

discrete shock satisfying these conditions at ± 00. We interpolate if necessary and

let

(4.12) uf = v(jAx, nAt) = v(Ax(j - sXn)) = Vj_sKn = vr=uR

for r > 1 — sX, which is very different from the function u(r) defined implicitly in

(4.11). Thus, for (x — st)/Ax > 1 — sX, the exact solution to the difference equa-

tion coincides with the solution to the hyperbolic differential equation and is far

from any solution to the parabolic truncation error equation. Suppose, in Harten's

expression (4.7), we take 0 > u_>u+ >uR. We have shown 0 < w(u_, u+) < 1 -

sX < 1, while the expression he has is

\f'(w)\[l - X\f'(w)\] dw1   ru*

2)„2 K_   f(w) - sw- (f(uR) - suR)'

Clearly, as «+ \ «", this expression approaches +00 while the true number is

always less than one.

We also note that, as s \ 0, these discrete shocks can easily be shown to

converge to the discrete shock for s = 0 which gives infinite resolution on both

sides. Thus, for s close to zero, these discrete shocks give good resolution even

behind the shock. See the next section for numerical verification of this.

The remainder of this section will be devoted to proving Theorems 4.1-4.4.

Proof (Theorem 4.1). We modify Eq. (4.1) to make the right side strictly

monotone.

(4.13) Uj_sX = G'(uf+X, uf, uf_x) = G(uf+l, uf, uf_x) + eXA+A_uf

for e > 0 sufficiently small. An explicit calculation gives us

G\ =-Xf'_(Uj+x) + eX > eX > 0,

GÓ = l+X[f'_(Uj)-f'+(Uj)-2e]
(4.14)

= 1 - A[|/'(«,)| + 2e] > 1 - N - 2Xe > 0,

G'_x = Xf'+(Uj_i) + eX > eX > 0,
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if

0 < e < ^^    for u,, = sup X\f'(u)\ < 1.

We first construct traveling waves for tj = p/q, p, q mutually prime. Iterating

(4.5) q times gives us

«   «*'-, - G-*(uf+r....«;_,),

(b)     uf = G'-"(uf+p+q, ..., uf+p_q).

G''q is monotone increasing in its arguments.

By Theorem (1) of [8], for any u0 G (uR, uL), there exists a unique {«,'}"„ which

takes on the value u0 at / = 0 and satisfies (4.4), (4.15)(b) and is monotone

decreasing. Now we let e \ 0 for / = 1. u0 > u[ > uR, hence a subsequence

ux' -» ux. Repeating this procedure gives us a sequence uf' such that uf -> Uj for

each/. It is clear that «, is monotone nonincreasing in/ and satisfies (4.14)(b) for

e = 0. It remains only to show that ux = uL, u_aa = uR. Since u, is monotone, it

follows that ux exists and uL > u0 > ux > uR. For any e(,,) and/0 we have

(4.16) f (uf - «ft) =-a 2 (hfi%i - Hf2f),
J-Jo J"Jo

using the conservation form of G and hence Gtq. Using consistency we have

(4.17) «f> + • • • + «£»,_, -puR = \(A&, - qf(uR)).

Now let e(,,) \ 0. We have, for any S > 0, by taking/0 sufficiently large

(4.18) \(u„-uR)-s(f(uJ-f(uR))\<8.

Hence,

f(uj ~f(uR)
s =

M~ - UR

ÎOTU^ e[uR,u0],

and hence ux = uR by condition E. The proof that u_x = uL follows similarly.

Next we prove the ordering principle. The key idea is an observation of Jennings

[8],-if u and t; are two discrete shock solutions with the same limits at ± oo, then

for all/

(4.19) \Uj~Vj\=   2    G?\uj+r+p - vj+r+p\,
p = -q

where each partial derivative G? is evaluated at a point on the straight line

connecting   the   pair   of   (2q +  1)   vectors   (uj+p+t¡, . . . , uj+p_q)   and

(vj+p+a< • •• > vj+p-q) such that

i

(4.20) uj - Vj, - 2   g;(uj+v+p - vj+y+p).
v = -q

First we suppose// > 0. Condition E implies/'(") > 0 for uL > u > uL — ô for

some S > 0. Our scheme is such that Gg > 0. Thus (4.19), (4.20) imply that if

"o > vo> m^n u_kp > v_kp for all positive integers k. Choose kx so large that

Uj, Vj > uL - 8 if/ < -kxp. Suppose there exists/, <-kxp with u} < Vj. Our prior

analysis shows there is/2 such that/, — p <j2 </, with uJi >v.. Consider (4.19),
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(4.20) for j = /, - p. Our scheme is such that G„* > 0 here for v =

-q, . . . , 0, hence u¡ — Vj and uji — Vj cannot be of opposite signs. This contradic-

tion proves Uj > Vj for all / <-kxp. Now if uJ} < Vj for some j3, it follows that

Uj   fy < Oj -ig, for all positive integers k, contradicting the above result. Hence

"0 > v0 =* Uj > Uj.

An analogous argument works forp < 0.

If p = 0, we need the additional hypothesis of convexity, / G 6. The ordering

principle and, in fact, a uniqueness result both follow from part (c) of Theorem 4.3

proven below.

In order to construct discrete shocks for irrational tj > 0, we choose a sequence

of rationals s¡X = tj, -» tj. Fix uR = uR and let uf vary so that the sharp entropy

condition remains valid. This can be done by taking u¡L > uL and redefining / if

necessary for uf > u > uL. The functions uj for certain/ rational can be extended

to piecewise constant monotone nondecreasing functions u(x) continuous on the

left. We can pass to a subsequence if necessary so u'(x) -» w(x) on a dense subset

of the line. The limit is monotone, hence it can be extended to a function defined

on the whole real line and continuous on the left. Also w0 = u0. The fact that

wx = uR, w_x = uL can be proven using condition E as in the proof of the first

part of this theorem.

It is clear that Eq. (4.3) is valid for all/ in R '. Hence existence is proven.

Suppose w(x) and z(x) are two such solutions continuous from the left. Then it is

easy to see that Jennings' observation (4.19), (4.20) is valid even in the irrational

case (for q = 1 here). If w(0) > z(0), then there exists some 5 > 0 for which

w(x) > z(x) for each interval -8 - ksX < x < -ksX, for all positive integers. Let x0

be such that f'_(w(x)) =f'_(z(x)) if x < x0. It also follows that if x, < Xq, with

w(xx) > z(x), then w(x, — v) > z(x, — v) and w(x, — vsX) > z(x, — vsX), for all

positive integers v. We use the fact that G* > 0 in (4.19), (4.20) if/ < x, — vsX and

q < p < 0. Hence, w(x) > z(x) for any x = x, =-kxsX — k2 for kx, k2 positive

integers and all x, in an interval -8 — k3sX < x, < k3sX for k3 a fixed sufficiently

large positive integer. It is easy to show that this means there exists some positive

integer k4 for which w(x) > z(x) for all x < -k4. By a now familiar argument, it

follows that w(x) > z(x) for all x and the ordering principle is valid.

If w(x) and z(x) are two discrete shocks continuous from the left, then the

integral

h(t) = C(z(x + t) - w(x)) dx
-00

is continuous. By the ordering principle, there exists some t0 for which h(t0) = 0,

and, furthermore, z(x + /0) = w(x). Since u0 was arbitrary in (uR, uL), it follows

that w(x) takes on every value in this interval and is hence continuous.

Proof (Theorem (4.4) (Ralston)). The proof begins by first assuming the initial

vector {uf} lies between two discrete shocks {t^} and {¿3,}. For monotone

difference operators T,

uf" = {7V},_„= {r"+1«°},_,(n+1),

it follows that

Vj < (Tku)j < vj.
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We can find a vector {w,} and a subsequence T 'u such that

|| Tk'u - w\\, = 2 \(Tk'u)j - Wj\ ̂  0   as k, -+ oo
j

L(For this we need Jennings' result that any discrete shock {¿3,} approaches u

and uR exponentially in/ as/ ^± oo. This result is easily extended to our weakly

monotone scheme.)

Since T is an L, contraction, we have for any discrete shock

(a) ||r*'+"u - r*6||, < 117% - v\\x^\\w - ó||,

<->   JT-6"'
(b) ||7'*'+'-*'-|rA:'+'1u - Tk'*'-k'-lv\\x < \\Tk'+liu - v^x->\\T*w - v\\

i

\\w - 5||,.

So for any discrete shock v and any positive integer p

(4.22) \\T*w-v\U -||w-6||,.

For the particular discrete shock {«,-} having the property that 2 (vj — uf) = 0,

it follows that 2 (u, - T"uf) = 2 (ç, - u,0) = 0 for any n, hence 2 (ü,. - wf) = 0.

Thus, if Wj ̂  u,, it follows that (vv, - u,) is not always of the same sign.

Now

1(7-"»), - (T*>)j\ = \G"(wJ+k+n,..., wj_k+f) - G'(C/+Jt+,,..., Vj_k+n)\

k

<   2    G?\w,+j+y - «,+y+J
(4.23)

k

2  G;(w„+y+^ - or+,+„)
I—-It

= K+*+7, - vJ+k+v\ - XVhf\v ■ | Wj+V - Vj+1)\

+XVhf+v_x- |w,+1)_, - vJ+v_t\,

where Wj = {wj+k, ..., Wj_k+X).

Summing gives us

(4.24) ||r"w- «||, < ||w-u||„

but by (4.22) this is an equality. Hence, equality holds in (4.23). If Wj — uja and

Wj — Uj are of opposite signs, we may choose/ appropriately and p so large that

wJo — uJo and wjt - uJt appear on the right in (4.23). By strict monotonicity (the only

place we use it), strict inequality must hold in (4.23) which is a contradiction. Thus,

we have proven the theorem for this class of initial data.

Given a vector {uf) satisfying the hypotheses of this theorem, we shall show

below that, for any e > 0, there exists u' bounded above and below by discrete

shocks with ||ue - u°\\ < e/2, and 2 (uf - uf) = 0.

Then, for any such ue, we have

||TV - o||, <e/2   if« >iV(e),

and, since T is an L, contraction, it follows that

||TV- u||, <e    iin>N(e).
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It remains only to construct ue. We first choose M such that

(4.25) 2   l«j° - Vy\ < £>       vM<uR + e,       v_M > uL - e.
U\>M

Next, by translating v¡, we choose discrete shocks v', v' with

(4.26) 2   {uL -vf)<e, 2   i^;-«Ä)<«-
\J\<M \j\<M

We then define ue as

(4.27) uj = Vj,    l/l > M,       uf = max(_r;;, min(«,, vf)),    |/| < M.

We claim that \2yl¥zM («,- - w/)| < 3e. This follows from (4.25), (4.27) and the

fact that 2 (vj - uf) = 0. Thus, if e < (uL - uR)/6, we can find u'_M, u'M in the

intervals [uL — 3e, v_M\ and [vM, uR + 3e], respectively, so that 2 («,- — ",') = 0.

Next, we note that

||u - we||, <e + 2e + 6e = 9e.

Finally, we claim that for any/, vf > uf >vej-

For l/l < M, this is immediate. For |/| > M, it is a consequence of the fact that

we can take vf > u, > vf for any / which follows from the ordering principle for

discrete shocks.

Proof (Theorem (4.2)). Clearly we need only prove this result for [uf] between

two discrete shocks {Vj) and {t3,}. Define Wj = )xia.(Tkmf) as before, and again let Uj

be the traveling wave solution satisfying 2 (vj — uf) = 0. Equation (4.22) is still

valid for this weakly monotone scheme, so either Wj s Vj or Wj — Vj takes on both

positive and negative values. Suppose Wj > v¡, Wj < Vj.

We first consider I > -q = p/q > 0 and let

uf+" = G"(uf\q, ..., uf_q) = (Tu")j.p.

Since equality holds in (4.23) for tj = p, and since G$ > 0, it follows that

(4.28) (TNw)j.-Np > vJt_Np,       (TNw)j2+Np < vj2+lfp

for any nonnegative integer N. By condition E, we know there exists an integer/0

with f'_(vf) = f'_(Vj) = 0 if / < /0, and by monotonicity the same is true for (T"u)p

and hence w¡. Let N0 be chosen large enough so that/, — N0p </0. We claim that

(TNw)j > Vj if N > N0,j < /0. This is a contradiction, hence vv, = vp

We prove the claim as follows. Suppose 3NX > N0 and/3 </0 with (TNlwY <

vj3. We also have (7*^.^ > Vji_Np.

Now we let / = max(/3,/, — Np) — p and choose R so large that Rq — p >

|/3 — /, + Np\. We then form

(4.29) TR(T»<w)j-TRVj=    %     G«(T»»r+,+J -v,+p+J),
v=-Rq

where each partial derivative Gfq is strictly positive for -Rq < v < 0, hence

(4.30) \TR(T^w)j-TRVj\<     2     GyR"\TN>wr+p+j-vv+p+j\,
r— - Rq

which is a contradiction.

The proof for -1 < tj < 0 follows analogously.
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For tj = 0 and/ G C, we use the results of part (c) of Theorem (4.3). Define Wj

in the usual fashion. We claim first that if vv, > ¿7 for / < y'p, then vv, = uL for

/ =/0. Suppose instead that U < Wj <uL for /, < j0 — 1. Then let {vf1)} be a

discrete shock for which vjl) = uL for/ < /, — 1, ü < Wj < vf^ <uL, and vj^\.¡ <

¿7 < vv, +,. It is easy to obtain the contradiction

\\Tw - vV% < \\w - vV%

by letting/ = /, + 1, p = 1, and tj = 0 in (4.23).

We now call j0 the largest integer for which Wj > ¿7. Thus, w. +, < ¿7 < vv, and

Wj,= uL for/ </0. Let {Vj} be the unique discrete shock agreeing with {vv,} for

/ < /p such that ü,o+, < ¿7. We claim vJo+x = Wjo+x. If for example ¿7 > c, +, >

Wjo+x, we can find another discrete shock {vj2^} for which ¿7 > uj2|, > w, +, and

¿7 < t^2) < w,o again leading to the same contradiction as above.

We need only show Wj = uR for / >j0 + 2. Let j2 be the smallest integer

>/0 + 2 for which hj > uR. Let {vj3)) be another discrete shock for which

Wj < tf> for/ < /2 - 2, w,2_, < üfl„ ijg» < min(Wj2, Ü). By letting tfl, \ wy.2_„
we easily obtain

(7H,_, - t,,« = w,.2_, - t;y2(_3), - ^/,,:'2", x(s)f'(s) ds
wji-i

(4.31) -Ap(l-x(iMi)*
•S2-1

-x/^(i-xW)/'W^>o,
''»A

while vv,2_, < vj3Li, which again yields a contradiction. Thus, ü, = vv, and we are

finished.

Proof (Theorem (4.3)). For s > 0, we have

K*  < Uj =  G(«, + 1+iX, M, + a" _,+jX) =  G"(UJ+   +    x, ..., Uj_ x)

= G"(My+9+?jV . . . , uJ+qsX) < G"(uJ+qsX, . . ., uJ+qsX) = uj+qsX

if My is such that/'(M„) < 0 for v > j + sX — 1. We used monotonicity in the second

inequality above.

Let q -» 00. It follows that «• = mä.

The result for s < 0 follows in the same fashion.

For i = 0, we wish to solve

(4-33) A_/+(m,) + A+ /_(«,) = 0.

Sum this from - 00 to/, arriving at

(4.34) f+(uf) + f-(uJ+l) = f.(uL) + f+(uL) =f(uL),

where for convenience we took ¿7 = 0= /(0).

Thus, if Uj < 0 for y < y0 with u¡ +] < 0, we must have Uj = uL for j < y0 — 1,

while f+(Uj) + /_(m,o+1) = f(uL). Moreover, /_(m,o+2) = f(uL) = f(uR), so uj<¡+2 =

m", and hence Uj =uR for/ >y0 + 2.

V. Numerical Examples. In this section we shall present results from numerical

computations with the algorithms discussed in the previous sections. We shall focus
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on approximations of shock solutions to the model equation

(5.1) ut + {{u2)x = 0.

The schemes (1.3) and (1.6) have also been applied to a number of other

problems including the small disturbance equation of transonic flow (1.2) in two

space dimensions. Results from computations with the first order scheme (1.3) as

one step in a dimensional splitting algorithm were given in [4]. In a forthcoming

paper we shall present transonic flow calculations with the second order scheme

(1.6) and also analyze nonlinear stability of the time-discretized higher order

scheme (5.5).

We have computed approximations to solutions of problems with other convex

functions / than that given in (5.1). The qualitative behavior in each of these

approximations was essentially the same as those with the quadratic flux function.

For the first order scheme (1.3), we use an Euler approximation in time [4]. The

time derivatives in the second order algorithms are approximated by Lax-Wendroff

type differencing. With this discretization, the schemes will be of second order also

in the time direction. The appropriate linear stability analysis is given in Section 2,

Theorem 2.2.

We shall compare solutions of the one-sided schemes with solutions of the

standard centered Lax-Friedrichs and Lax-Wendroff schemes. Below are the ex-

plicit formulas for the algorithms approximating a nonlinear conservation law (1.1),

(3.1).

(5.2) uf*1 =\(uf+x + uf_x) - XAof(uf)       (Lax-Friedrichs),

M/+, = M/"-XA0/t«;)

(5-3) X2
+ A+ (/'(K"/ + uf. ,))A_/(m/))        (Lax-Wendroff),

(5.4)   uf*1 = uf - X(A+ f_(uf) + AJ+(uf))       (1st order, one-sided, (1.3)),

«;+1 = uf - x(a+ /.(«;) - X(/:(z,")a+m/)

+a_/+(«/)+K(/;(w/)a_«/))
(5-5) 2

+ y(A+(/:(z/)A+/_(M/)) + A.(/;(w/)A_/+(m/)))

(2nd order, one-sided, approximation of (1.6)),

uf*1 = uf - X({A+ -\A\)f_(uf) + (A_+ JA2)/+(«/))

(56) + y (A+(f'_(uf)A+f_(uf)) + A_(/;(m/)A_/+(m/)))

(2nd order, one-sided, approximation of (1.5)),

uf*1 = uf - X(A+ /_(«/) -|A+(/:a/)A+«/)

+ AJ+(uf) +\A_(f+(u>f)A_uf))
(5.7)

+ y(A+(/:U/)A+/_(«/)) + A_(/;(w/)A./+(m/)))

(2nd order, upwind biased, approximation of (3.8)).
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The notation which is used in (5.2)-(5.7) is defined earlier in this paper. Let us

here recall a few of the more important definitions.

X = Af/Ax;    uf ~ u(xp t"),   Xj =/Ax,   t" » nAt.

Ap =i(A+ + A_), A+ and A_ are the standard backward and forward difference

operations, respectively. For convex/ with f'(U) = 0, we have

/+(") = /(max(M, ¿7)),      f_(u) = /(min(M, ¿7)).

See (1.3) for the definition of/+ and/_ for nonconvex/. See (3.5) for the definition

of Zj, Wj and (3.8) for the definition of $p w,.

In Figure 5.1 we present results with all the schemes (5.2)-(5.7) approximating a

nonsteady shock with f = \u2, m(-oo) = uL = 2, and m(oo) = uR = -1. We have

chosen X small (= 0.1) in order to mimic the time-continuous problem which is

analyzed in the earlier sections. The discrete solutions after 90 time iterations are

plotted.

-t»v

« » » » « a

•>>■■>

x

Figure 5.1

The computed solution u as a X = 0.1, discrete function ofx. Methods (5.2)-

(5.7). uL =2,uR = 0.5,/= 1/m2. The solid line is the analytic solution.

The result from this test is typical for shock calculations where /' switches sign

from one side to the other over the shock. The Lax-Friedrichs scheme produces a

monotone profile. Since X is small, the dissipation is large. Calculations with larger

X give sharper profiles. The overshoots (m, > 2, m, <-l) in the Lax-Wendroff

approximation are typical for second order centered methods.

Both the first and the second order one-sided schemes (5.4), (5.5) have solutions

with sharp and monotone profiles. Note in particular

(1) The shock profile is sharp on both sides. Theorem 4.3 guarantees «• s uR for

increasing/ away from the shock. The example shows that also «• -* uL rapidly as

the index/ decreases.
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(2) The solution to the second order scheme is monotone as a function of/. For

steady solutions, this is proved in Theorem 3.1.

The simplest second order one-sided method (5.6) produces a solution with

overshoots. The last frame in Figure 5.1 displays the solution of (5.7). This solution

is similar to that of (5.5).

We shall complement Figure 5.1 with displays of a few other cases for some of

the schemes with different values of X, uL and uR. Figure 5.2 contains the steady

problem uL = 1, uR =-1 for the methods (5.3), (5.4), (5.5) and (5.6) with varying X.

The computational stability limit for the Lax-Wendroff scheme and the first order

one-sided scheme was X < 1. In these experiments the second order one-sided

scheme (5.5) could be used for all X < 2, and the scheme (5.6) was only stable for

X < 0.4.

* m * *  *

• •••mm

■ ■»■■■ »>•■•■

Figure 5.2

77ie computed solution u as a discrete function of x. a, b: Method (5.3) X =

0.1, 0.9. c, d, e: Method (5.5) X = 0.1,0.9,1.5. f: Method(5.6) X= 0.1. uL =

1, uR = -1 ,/= Vlu2. The solid line is the analytic solution.

The one-sided schemes were designed to approximate solutions to nonlinear

conservation laws where /' changes sign across a shock. If this is not the case, some

of the desirable properties of the schemes will fail.

Figure 5.3

The computed solution u as a discrete function ofx.  a: Method (5.4). b:

Method (5.5) X

lytic solution.

0.1 .uL = 2,uR= 0.5,/= tëir. 77ie solid line is the ana-
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In Figure 5.3 uL = 2 and uR = 0.5 with/' > 0 for all values of x.

All the traveling wave solutions that we computed were not sensitive to the

choice of initial data.

The techniques and results discussed in this section have direct application for

some transonic flow calculations; compare [4]. They may also be considered as

models for more complex applications.

Department of Mathematics

University of California

Los Angeles, California 90024

1. M. G. Crandall & A. Majda, "Monotone difference approximations for scalar conservation

laws," Math. Comp., v. 34, 1980, pp. 1-21.
2. G. Dahlquist, "A special stability problem for linear multistep methods," BIT, v. 3, 1963, pp.

27-43.
3. G. Dahlquist, "Positive functions and some applications to stability questions for numerical

methods," Recent Advances in Numerical Analysis (C. de Boor and G. Golub, Eds.), Academic Press,

New York, 1978, pp. 1-29.
4. B. Engquist & S. Osher, "Stable and entropy satisfying approximations for transonic flow

calculations," Math. Comp., v. 34, 1980, pp. 45-75.

5. A. Harten, "The artificial compression method for computation of shocks and contact discon-

tinuities," Comm. Pure Appl. Math., v. 30, 1977, pp. 611-638.
6. A. Harten, J. M. Hyman & P. D. Lax, "On finite difference approximations and entropy

conditions for shocks," Comm. Pure Appl. Math., v. 29, 1976, pp. 297-332.

7. A. Jameson, "A numerical solution of nonlinear partial differential equations of mixed type,"

Numerical Solutions of Partial Differential Equations III, Academic Press, New York, 1976, pp. 275-320.

8. G. Jennings, "Discrete shocks," Comm. Pure Appl. Math., v. 27, 1974, pp. 25-37.

9. J. A. Krupp & J. D. Cole, Studies in Transonic Flow IV, Unsteady Transonic Flow, UCLA Eng.

Dept. Rep., 76/04, 1976.
10. P. D. Lax, "Shock waves and entropy," Contributions to Nonlinear Functional Analysis (E. H.

Zarantonello, Ed.), Academic Press, New York, 1971, pp. 603-634.

11. P. D. Lax & B. Wendroff, "Systems of conservation laws," Comm. Pure Appl. Math., v. 23, 1960,

pp. 217-237.
12. E. M. Murman & J. D. Cole, "Calculations of steady transonic flows," AIAA J., v. 9, 1971, pp.

114-121.
13. P. Roache, Computational Fluid Dynamics, Hermosa, Albuquerque, N.M., 1972.

14. J. Sieger, "Coefficient matrices for implicit finite difference solutions of the inviscid fluid

conservation law equations," Comput. Methods Appl. Mech. Engrg., v. 13, 1978, pp. 175-188.

15. G. Strang, "Accurate partial difference methods. II: Non-linear problems," Numer. Math., v. 6,

1964, pp. 37-46.
16. B. van Leer, "Towards the ultimate conservative difference scheme III-Upstream-centered

finite-difference schemes for ideal compressible flow," J. Comput. Phys., v. 3, 1977, pp. 263-275.

17. B. van Leer, "Towards the ultimate conservative difference scheme IV; A new approach to

numerical convection," J. Comput. Phys., v. 23, 1977, pp. 276-299.
18. R. F. Warming & R. M. Beam, "Upwind second-order difference schemes and applications in

aerodynamical flows," AIAA J., v. 14, 1976, pp. 1241-1249.
19. R. F. Warming & R. M. Beam, "On the construction and application of implicit factored schemes

for conservation laws," Computational Fluid Dynamics, SIAM-AMS Proceedings, vol. 11, 1978, pp.

85 - 129.


