On Odd Perfect, Quasiperfect, and Odd Almost Perfect Numbers

By Masao Kishore

Abstract. We establish upper bounds for the six smallest prime factors of odd perfect, quasiperfect, and odd almost perfect numbers.

1. Suppose $N = \prod_{i=1}^r p_i^{a_i}$ is an odd perfect (OP) number, i.e. $\sigma(N) = 2N$, where p_i 's are odd primes, $p_1 < \cdots < p_r$, and a_i 's are positive integers. Grun [1] proved that

$$p_1 < 2 + 2r/3$$

and Pomerance [5] proved that

(1)
$$p_i < (4r)^{2^{i(i+1)/2}}$$
 for $1 \le i \le r$.

In [3] we showed that if N is an odd integer and the number $\omega(N)$ of distinct prime factors of N is 5, then

(2)
$$|2 - \sigma(N)/N| > 10^{-14}$$
.

From this it follows immediately that if M is an odd integer, $\sigma(M) = 2M + L$, and if $|L/M| < 10^{-14}$, then $\omega(M) > 6$. OP, quasiperfect (QP) numbers, i.e. $\sigma(N) = 2N + 1$, and odd almost perfect (OAP) numbers, i.e. $\sigma(N) = 2N - 1$, are such examples.

Also, it can be proved from (2) that if $M = \prod_{i=1}^{r} p_i^{a_i}$ is OP,

$$p_6 < 2 \cdot 10^{14} (r - 5).$$

However, if we consider only those $N = \prod_{i=1}^{5} p_i^{a_i}$ in (2) for which $\prod_{i=1}^{r} p_i^{a_i}$ is OP, then exponents a_i are restricted, and hence we have a better lower bound in (2). Consequently we have a better upper bound for p_6 .

In this paper we prove

THEOREM. Suppose $M = \prod_{i=1}^r p_i^{a_i}$. If M is OP or QP,

$$p_i < 2^{2^{i-1}}(r-i+1)$$
 for $2 \le i \le 6$.

If M is OAP.

$$p_i < 2^{2^{i-1}}(r-i+1)$$
 for $2 < i \le 5$, and $p_6 < 23775427335(r-5)$.

Although our Theorem gives upper bounds for p_i only for $2 \le i \le 6$, they are better than (1). For example, if M is OP, then $p_5 < 65536(r-4)$ by our Theorem

Received January 21, 1980; revised July 28, 1980. 1980 Mathematics Subject Classification. Primary 10A20.

and $p_r > 100110$ by Hargis and McDaniel [2]. Hence, we have another proof that $\omega(M) > 6$.

2. In order to prove our Theorem, we need three lemmas. Definition. $S(N) = \sigma(N)/N$.

LEMMA 1. Suppose $M = \prod_{i=1}^{r} p_i^{a_i}$ is OP. Then

$$S\left(\prod_{i=1}^{5} p_i^{a_i}\right) < \frac{3}{2} \frac{5}{4} \frac{17}{16} \frac{257}{256} \frac{65537}{65536} = \alpha \approx 2 - 4/10^{10}.$$

Proof. Since M is OP, by Euler,

(3) if $p_i \equiv 1$ (4), $a_i \equiv 0$, 1, 2 (4), and if $p_i \equiv 3$ (4), $a_i \equiv 0$ (2), and if q is an odd prime factor of $\sigma(p_i^{a_i})$ for some i, then $q \mid M$. Suppose

(4)
$$\alpha \leq S\left(\prod_{i=1}^{5} p_{i}^{a_{i}}\right) < 2,$$

and $q \neq p_i$ for $1 \le i \le 5$. If $q < 10^9$, then

$$\log 2 = \log S(M) > \log S\left(\prod_{i=1}^{5} p_i^{a_i}\right) + \sum_{i=6}^{r} \log S(p_i^{a_i})$$
$$> \log \alpha + \log(q+1)/q > \log \alpha + \log(10^9 + 1)/10^9 > \log 2,$$

a contradiction. Hence,

(5) If q is an odd prime factor of
$$\sigma(p_i^a)$$
 for some i and $q \neq p_i$ for $1 < j < 5$, then $q > 10^9$.

As in [3], we used a computer (PDP11 at the University of Toledo) to find odd integers $\prod_{i=1}^{5} p_i^{a_i}$ satisfying (3) and (4). There were infinitely many such $\prod_{i=1}^{5} p_i^{a_i}$. (However, there were finitely many (just over one hundred) $\prod_{i=1}^{5} p_i^{a_i}$ if $a_i \leq a(p_i)$ where

$$a(p_i) = \min\{a_i \mid a_i \text{ satisfies (3) and } p_i^{a_{i+1}} > 10^{11}\}.$$

See [3].) In every case such $\prod_{i=1}^{5} p_i^{a_i}$ had a component $p_i^{a_i}$ such that $a_i < a(p_i)$, q is an odd prime factor of $\sigma(p_i^{a_i})$, $q \neq p_j$ for $1 \leq j \leq 5$ and $q < 10^9$, contradicting (5). O.E.D.

LEMMA 2. Suppose $M = \prod_{i=1}^{r} p_i^{a_i}$ is QP. Then

$$S\left(\prod_{i=1}^{5} p_i^{a_i}\right) < \frac{3}{2} \frac{5}{4} \frac{17}{16} \frac{257}{256} \frac{65537}{65536} = \alpha \approx 2 - 4/10^{10}.$$

Proof. Since M is QP, by [3], r > 6, $S(\prod_{i=1}^{5} p_i^{a_i}) < 2$, and

(6)
$$a_{i} \equiv 0 \text{ (2) for any } i,$$

$$\text{if } p_{i} = 3, a_{i} = 4, 12 \text{ or } > 24,$$

$$\text{if } p_{i} = 5, a_{i} = 6 \text{ or } > 16,$$

$$\text{if } p_{i} = 17, a_{i} = 2 \text{ or } > 8.$$

We used the computer to find odd integers $\prod_{i=1}^{5} p_i^{a_i}$ satisfying (6) and

$$\alpha < S\left(\prod_{i=1}^{5} p_i^{a_i}\right) < 2,$$

but there were none. Q.E.D.

LEMMA 3. Suppose $M = \prod_{i=1}^r p_i^{a_i}$ is OAP. Then

$$S\left(\prod_{i=1}^{5} p_i^{a_i}\right) < S(3^{12}) \frac{5}{4} S(17^6) \frac{257}{256} \frac{62939}{62938} = \beta \approx 2 - 8/10^{11}.$$

Proof. Since M is OAP, by [3], r > 6 and

(7)
$$a_{i} \equiv 0 \text{ (2) for all } i,$$

$$\text{if } p_{i} = 3, \, a_{i} = 12, \, 16 \text{ or } \geq 24,$$

$$\text{if } p_{i} = 5, \, a_{i} = 2, \, 10 \text{ or } \geq 16,$$

$$\text{if } p_{i} = 257, \, a_{i} \geq 16.$$

We used the computer to find odd integers $\prod_{i=1}^{5} p_i^{a_i}$ satisfying (7) and

$$\alpha < S\left(\prod_{i=1}^{5} p_i^{a_i}\right) < 2,$$

and the results were

$$3^{a_1}5^{10}17^{a_3}257^{a_4}65449^{a_5}$$
, where $a_1 > 24$, $a_3 > 8$, $a_4 > 16$, $a_5 > 2$, and $3^{12}5^{a_2}17^6257^{a_4}62939^{a_5}$, where $a_2 > 16$, $a_4 > 16$, $a_5 > 2$.

Since

$$\frac{3}{2}S(5^{10})\frac{17}{16}\frac{257}{256}\frac{65449}{65448} < S(3^{12})\frac{5}{4}S(17^6)\frac{257}{256}\frac{62939}{62938} = \beta,$$

Lemma 3 follows. Q.E.D.

Proof of Theorem. We prove only the case i = 5. Suppose $M = \prod_{i=1}^r p_i^{a_i}$ is OP or QP, $N = \prod_{i=1}^5 p_i^{a_i}$, and

$$\frac{2}{2-\alpha}(r-5)+1 \leqslant p_6 < \cdots < p_r.$$

Since $\log(1 + x) < x$ and $\log(1 - x) < -x$ if 0 < x < 1, we have, by Lemmas 1 and 2,

$$\log 2 \le \log S(M) = \log S(N) + \sum_{i=6}^{r} \log S(p_i^{a_i})$$

$$< \log \alpha + (r-5)\log S(p_6^{a_6})$$

$$< \log 2 + \log \alpha/2 + (r-5)\log p_6/(p_6-1)$$

$$= \log 2 + \log(1 - (2-\alpha)/2) + (r-5)\log(1+1/(p_6-1))$$

$$< \log 2 - (2-\alpha)/2 + (r-5)/(p_6-1)$$

$$< \log 2 - (2-\alpha)/2 + (2-\alpha)/2 = \log 2,$$

a contradiction. Hence,

$$p_6 < \frac{2}{2-\alpha}(r-5) + 1 = 2^{2^5}(r-5) + 1.$$

Since p_6 is a prime, $p_6 < 2^{2^5}(r-5)$.

Suppose $M = \prod_{i=1}^r p_i^{a_i}$ is OAP, $N = \prod_{i=1}^5 p_i^{a_i}$, and

$$\frac{2}{2-\beta}(r-5)+1 \leqslant p_6 < \cdots < p_r.$$

Since $M > 10^{30}$ by [4] and $\log(1 - x) < -x - x^2/2$ if 0 < x < 1, we have, by Lemma 3,

$$\log 2 - \frac{1}{2} \cdot 10^{30} \approx \log 2 + \log \left(1 - \frac{1}{2} \cdot 10^{30}\right)$$

$$= \log(2 - 1/10^{30}) < \log(2 - 1/M) = \log(S(M)/M)$$

$$= \log S(N) + \sum_{i=6}^{r} \log S(p_i^{a_i}) < \log \beta + (r - 5)\log p_6/(p_6 - 1)$$

$$< \log 2 + \log(1 - (2 - \beta)/2) + (r - 5)/(p_6 - 1)$$

$$< \log 2 - (2 - \beta)/2 - (2 - \beta)^2/8 + (2 - \beta)/2$$

$$= \log 2 - (2 - \beta)^2/8 \approx \log 2 - 9 \cdot 10^{-22},$$

a contradiction. Hence

$$p_6 < \frac{2}{2-R}(r-5) + 1 < 23775427335(r-5) + 1.$$

Since p_6 is a prime, $p_6 < 23775427335(r-5)$. Q.E.D.

Finally, we (re)state the following

THEOREM. Suppose $N = \prod_{i=1}^r p_i^{a_i}$ is an integer.

- (a) If r = 5, $|2 S(N)| > 2 S(3^75^617^2233) \cdot 36550429/36550428 > 10^{-14}$.
- (b) If r = 4, $|2 S(N)| > 2 S(3^75^617^2233) > 5/10^8$.
- (c) If r = 3, $|2 S(N)| > S(3^5 5^2 13) 2 > 3/10^4$.
- (d) If r = 2, $|2 S(N)| > 2 \frac{3}{2} \cdot \frac{5}{4} = 0.125$.
- (e) If r = 1, $|2 S(N)| > 2 \frac{3}{2} = 0.5$.

Mathematics Department

University of Toledo

Toledo, Ohio 43606

- 1. O. GRUN, "Über ungerade vollkommene Zahlen," Math. Z., v. 55, 1952, pp. 353-354.
- 2. P. HAGIS, JR. & W. L. McDaniel, "On the largest prime divisor of an odd perfect number. II," Math. Comp., v. 29, 1975, pp. 922-924.
- 3. M. KISHORE, "Odd integers N with five distinct prime factors for which $2 10^{12} < \sigma(N)/N < 2 + 10^{-12}$," Math. Comp., v. 32, 1978, pp. 303-309.
- 4. M. KISHORE, The Number of Distinct Prime Factors of N for Which $\sigma(N) = 2N$, $\sigma(N) = 2N \pm 1$, and $\phi(N)|_{N} 1$, Doctoral dissertation, Princeton University, Princeton, N. J., 1977.
- 5. C. POMERANCE, "Multiply perfect numbers, Mersenne primes, and effective computability," Math. Ann., v. 266, 1977, pp. 195-206.